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Abstract — People tracking using colour feature in crowded scene through CCTV network 

have been a popular and at the same time a very difficult topic in computer vision. It is 

mainly because of the difficulty for the acquisition of intrinsic signatures of targets from a 

single view of the scene. Many factors, such as variable illumination conditions and viewing 

angles, will induce illusive modification of intrinsic signatures of targets. The objective of this 

paper is to verify if colour constancy (CC) approach really helps people tracking in CCTV 

network system. We have testified a number of CC algorithms together with various colour 

descriptors, to assess the efficiencies of people recognitions from real multi-camera i-LIDS 

data set via Receiver Operating Characteristics (ROC). It is found that when CC is applied 

together with some form of colour restoration mechanisms such as colour transfer, the 

recognition performance can be improved by at least a factor of two. An elementary 

luminance based CC coupled with a pixel based colour transfer algorithm, together with 

experimental results are reported in the present paper. 
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I. INTRODUCTION 

 

People tracking in crowded place using closed circuit television (CCTV) have been widely 

deployed for surveillance and security purposes particularly in strategic public places [22]. 

Regardless of the advances in machine vision technology, it is in fact still a daunting task to 

track a person from the CCTV footage. Part of the problem is due to the occlusions of targets 

in the crowded scene, and partly it is the variable lighting conditions that make target 

recognition very difficult in real scenarios [24, 25]. 

 

Conventional methods like face recognition cannot be realistically deployed in the street 

scene because of the low resolution of the CCTV vision for sensing large views from a 

distance which can hardly capture any useful facial features for recognitions. Alternatively, 

the use of the colour of people’s dress may offer a more effective means for target 

recognitions. Unlike in the human visual system [22, 23], most of today’s machine vision 

technology is incapable to perceive the actual colour of a target irrespective of illumination 

conditions. For instance, an object appears to be in different colours when it is under shade. 

Moreover, the same object may be seen very differently from the CCTV when it is viewed 

from different angles or through another TV in the network. Figure 1 highlights the effects of 

this illumination/viewing angle issues which exhibit undesired apparent colour variations 

when the target was walking towards the exit where the illumination intensity was a lot 

stronger than other parts of the room. 

 

Figure 1(a) depicts the raw RGB images of the i-LIDS [21] video clip for every ~0.5sec 

intervals recorded by camera 1, and it is seen that the colours of the dress (overcoat) and the 

suit case appear in different shade of tone when the target is approaching towards the exit. 

Figure 1.1(b) shows the same video images but after colour constancy (CC) transformation 



using a luminance based algorithm (see below for more information). Figure 1.1(c) shows the 

means of the red (R), green (G) and blue (B) bands extracted from the region of interest (ROI) 

for every 10 frames of the video data. In the raw data (circled plot) the colour attributes of the 

ROI exhibits an abrupt step change of values after ~2 seconds of the travels (FR1275) when 

the illumination intensity is much stronger from that spot. Colour constancy is the method 

which attempts to reduce effects due to non-uniform illumination artefacts. In the same plot 

also shows the result of the same data after transformed by the proposed colour invariance 

algorithm (triangle plot) which will be described in section III.  

 

 

 

 

 

 



  

(c) 

Fig. 1. Outline one of the most demanding issues in machine vision which still experiences great difficulty 

for tracking targets from CCTV footage. (a) Highlights the apparent colours of the target’s overcoat which 

is seen changing with the illumination conditions. (b) Same as (a) but the video images are transformed by 

one of our colour constancy algorithm. (c) Depicts the mean RGB attributes of the target extracted from the 

ROI (red box in (a)) of the raw data and after colour constancy transformation in circled and triangle plots 

respectively. 

 

This paper provides more evidence of how colour constancy (CC) can improve people 

tracking in real CCTV surveillance applications. During this course of the work, various 

forms of Retinex based CC algorithms have been assessed using real CCTV data. By 

using a luminance based CC together with a pixel based colour transfer algorithm, it is 

found that the target recognitions performance has been improved by at least a factor of 

two. Note that the colour characteristic is the only feature used for the target detection 

throughout this work.  
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II. OVERVIEW (PREVIOUS WORK)  

 

There are a number of algorithms and methods proposed for colour constancy within the 

past two decades. Elementary methods like gamma adjustment, logarithmic compression 

and histogram equalization were found unable to produce colour constancy particularly 

when the image is taken under complex illumination condition. More advanced 

techniques based on Retinex [1,2,7,8] and its derivatives such as single scale Retinex 

(SSR) [3] and Multi-Scale Retinex (MSR) [3,4,5,6] have been found more useful for 

complex scenes having large dynamic range of pixel attributes. These algorithms tend to 

improve the colour perception of the scene through the ‘gray-world’ principle. While 

these algorithms manage to maintain the colour constancy of the scene, the resulting 

images tend to turn ‘gray’ and lose the original colour integrity, which is seen as one of 

the biggest drawbacks in machine vision particularly for target detections[25]. Some 

measures along this line have been using colour restoration (CR) such as in the MSRCR 

algorithm [3] which involves the estimation of colour factors from the raw data and it is 

then used to enhance local contrast after colour constancy transformation [9-11]. One 

problem of this approach is that the result is sensitive to the proportions of the ‘colour 

distorted’ pixels in the scene. Alternative approach has been the estimation of the 

luminous of the scene [12, 13] and the method has been applied in conjunction with a 

non-symmetric adaptive Gaussian function for the correction of ‘halo-effects’ in MSR 

[14].  

 

Parameterisation in all Retinex based algorithms has been non-trivial and all free 

parameters such as iteration cycles for each spatial scale, Gaussian surround function 

parameters and the gains and offsets for the colour restoration, are needed to tune 



manually. There are attempts in parameterisation using edge sharpness [15] but it lacks 

robustness and more research in this direction is needed. Alternative approach to the 

Retinex theory is the luminance perception based [16, 25] which estimates the reflectance 

of objects without the need of calibration standards to be present in the scene. This is by 

no means a more robust method and its performance is evaluated here together with the 

well-tried Retinex base colour constancy method in this paper.  

 

III. ENHANCED LUMINANCE REFLECTANCE COLOUR CONSTANCY ALGORITHM 

[ELRCC] FOR CCTV NETWORK  

One common way to synchronise spectral characteristics between multiple cameras is 

through camera calibration. Camera calibration has been an important factor for 

maintaining the white balance of the recorded images in each camera view within the 

multi-camera surveillance system. When this method is not available or when calibrations 

cannot be performed to achieve high degree of accuracy, then alternative method has to 

be employed for maintaining consistent colour characteristics over multi- camera 

network. In this paper we use a modified form of colour transfer principle [17, 25] for 

achieving multi-camera spectral synchronisation. 

A. Colour Transfer 

Colour transfer is the method for the correction of colour differences in two sets of 

images using statistical means. This method can be very useful for applications such as 

image analysis in multi-camera system. In real situations there are factors such as various 

illumination conditions, view angles and camera settings which all can induce colour 

distortions not intrinsic to the image. Initial efforts in this area have been using gain or 

exposure compensation for image intensity normalisation. Recent work by Erik Reinhard 

[17] has developed a colour transfer method for reducing illumination induced artefacts. 



The method utilised simple statistics of two images and introduces a relationship between 

the colour of the target image and that of the source image through a transform as shown 

in equation (1). 
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Where I’ is the intensity map of the scene which receives the characteristics from 

another camera I (designated as source) within the network, j represents the R-G-B 

components, s and t depict the information to be extracted from the source and target 

scenes respectively, σ and µ are the standard deviation and mean respectively. This 

method is termed as CT hereafter in this paper. 

 

I is the one-band intensity value at pixel location (x,y) which can be evaluated using for 

example the RGB value components: 

 

]y)b(x, y),g(x, y),r(x,max[  y)I(x,                                     (2) 

 

where r, g and b are the RGB components of colour images in RGB colour space. The 

intensity map I is the function of the luminance (L) and its reflectance (R) in equ. (3): 

 

y)R(x, y)L(x,  y)I(x,                                                 (3) 

 

There are several ways to estimate the luminance L of the scene and one approach uses 

a low-pass filtering [13, 14] of the intensities I at (m,n) through a 2D discrete Gaussian G 

as shown in equation (4): 
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G is the 2D Gaussian at pixel location (x,y):  
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where c is the surround neighbourhood constant (values of the neighbourhood constant c 

(4~8)) and  q is the normalization constant computed via 1dxdy q.e
c
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. Thus 

the reflectance R can be obtained through equation (3).  

 

B. Adaptive dynamic range compression of luminance  

To achieve a balance of contrast enhancement and colour constancy, researchers in the 

field commonly use a non-linear transfer function, such as the Gaussian or the Windowed 

Inverse Sigmoid (WIS) function [16], to condition the luminance such that the dynamic 

range of the image is compressed into a user defined moderate range. Typical WIS 

transfer function is in the form of: 
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In practise the luminance is moderated into a range of user defined vmin and vmax 

through the transfer function:  
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where Equation (7) linearly maps the normalized luminance to the magnitude range 

f(vmin) f(vmax) and equation (8) is the non-linear inverse sigmoid function. Equation (9) 

is the normalisation after the intensity transfer to bound the range of the luminance. 

Parameters vmax, and vmin controls the exact line shape of the transfer function which 

effectively smooth out the extremes of the intensity map. The range vmin and vmax 

affects the contrast enhancement, and the vmax can be set arbitrary while vmin can be 

extracted from the scene. Other authors [16] have been using different methods and in our 

case it is proposed to use a pixel-wise evaluation for the vmin. This will give more control 

over the details of colour correction: the dark pixels should be given a smaller vmin value 

whereas bright pixels should have larger value of vmin, and one form to achieve the 

objective is illustrate in Equation (10):  
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C. Evaluation of Vmin in ELRCC: pixel-wise vmin 

  In the above section it is seen that the value of Vmin is a sensitive parameter for the 

colour correction through the sigmoid function. Conventionally this is a user’s set fixed 

parameter, and most often the global mean of the scene has been commonly used to set 

this constant Vmin value for whole image. Figure 2 illustrates the effects of Vmin setting 

which directly affects the colour constancy performance. Figures 2 (b) & (c) are the 

processed results of the raw image in (a) by ELRCC using Vmin= -5 and -10 respectively. 

The images shown are the first clip of the video sequence. The spectral characteristics of 

the target extracted from the ROI of the red rectangle as depicted in the images (a-c) are 

shown in figure 2 (d) & (e) for the complete video clip using constant Vmin =-5 and -10 

respectively. The sampling frequency is 5 frames/sec, and the colour attributes are in 

R,G,B. It is quite clear that the colour constancy is rather poor when Vmin of -5 is 

employed (figure 2 d), and the constancy is seen to improve a little when Vmin =-10 is 

used. However, the larger value of the Vmin also increases the colour bleaching.    .     

 

 

 

(a)            (b)         (c) 



   

            (d)                    (e)  

 

Fig 2: Illustrates the effects of vmin settings on the colour constancy of the ELRCC algorithm. (a) raw data, 

(b) & (c) are the sample of processed results by ELRCC using Vmin= -5 and -10 respectively. The images shown 

are the first clip of the video sequence. (d) & (e) are the spectral characteristics (in RGB) of the target extracted 

from the ROI of the red rectangle as depicted in the images (b&c) for the complete video clip using vmin=-5 and 

-10 respectively. The ELRCC processed of the ROI is compared with that of the raw in both (b&c) and data 

sampling frequency is 5 frames/sec. 

 

Thus instead of using a global vmin for the whole image, it is intuitively to evaluate the 

effect of using pixel wise vmin for the colour constancy behaviour. Figure 3 compares the 

effects of using a constant vmin for the complete image with that using a pixel wise 

evaluation according to equation (10). The colour characteristics of the video clips processed 

by the pixel wise vmin in the triangle trace of figure 3(d), which exhibits a much better colour 

constancy performance than that using the global vmin for the whole image (see figure 3 (c)). 
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                  (a)                               (b) 

  

      (c)                                (d) 

Fig 3: (a) & (c) showing the effect of using a global vmin and to compare it with that using pixel wise vmin as 

shown in (b) & (d). Note that the image processed by the global vmin in (a) is found unable to rectify local 

colour non-uniformity due to variable illumination conditions. 

 

D. Adaptive mid tone frequency components enhancement 

Like all the Retinex algorithms, the luminance as depicted above exhibits a mid-tone and 

low frequency components which can be degraded by the dynamic range compression. A 

centre-surround type of contrast enhancement method can be utilized to help compensate this 

degradation:  
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where the exponent E(x,y) is defined by: 
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Where I(x, y) and the Iconv(x, y) are the luminances evaluated using larger values of the 

neighbourhood constant c (10~20) in equations (4-5). The L’n,enh(x, y) is the luminance after 

mid-tone frequencies enhancement. The exponent P is chosen to be a function of the global 

standard deviation in the I(x,y) which measures the extremeness of the intensity map. The 

exact value P is determined by experiments and it can be scene dependent. Typical values of 

P is (0.1~0.5) for the data set utilised in this study.  

Given the knowledge of the luminance L, then the reflectance R can be achieved using the 

relationship from equation (3). Once we obtain final luminance L’n,enh(x, y), now the method is 

ready to combine reflectance R (from equ 3) using following equation to produce the 

enhanced one-band image Ienh as shown in equation (13). 

 

y)R(x, y)(x,L'  y)(x,I enhn,enh                                             (13) 

 

E. Colour restoration algorithm 

It is noted from the above sections that almost all colour constancy algorithm exhibit side 

effects of colour bleaching (see figure 2(c) as example). This is not desirable in target 

detection and to remedy this shortcoming, colour restoration is needed. The principle of 

colour transfer is to adjust the mean and standard deviation of each colour band from the 

target image to match them with that of the source image which can be any other scene taken 

by any other cameras.  

 

It is found from this work that it is necessary to perform a colour transfer after the application 

of the colour constancy algorithm. Given a raw image I and the processed image Ienh obtained 

after the colour constancy luminance based algorithm the colour bleach in the Ienh can be 

somewhat compensated through the colour transfer coefficient.  

  t

t

s 



 -C   C iy),(x, Rawsiy),(x, CT 








                                   (14) 

Where i depicts the R/G/B channels, CCT is the R-G-B band after colour transfer, CRaw is the 

raw R-G-B band at pixel (x,y) before the ELRCC, µ is the mean and σ is the standard 

deviation in each colour band. Colour information is stored in a single channel image Ienh via 

equation (15). 
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where Ienh R, Ienh G, Ienh B are the enhanced R-G-B components and CCT r, CCT g , CCT b are the 

output after colour transfer of the RGB components according to equation (14). 

 

IV. EXPERIMENT 

A. Data set and signature acquisition 

The objective of this work is to evaluate whether colour constancy (CC) algorithm really 

helps people tracking from CCTV footage. To this end the i-LIDS multi-camera data set 

MCT-TR(1001-1005) g and h serials [25, 21] have been exclusively used in this study. 

Throughout all the detections, all the spectral features of target are acquired from the first 

THREE frames of the clips from CAMERA 1 (i.e. from MCT-TR1001) and they are then 

stored in the memory as the signatures of each individual targets.  Note that the acquired 

spectral signatures from the first Frame 1 may NOT necessary fully represent the true 

characteristics of the targets due to the substantial illumination variations across the view in 

the scene of camera 1(TR1001 serial). 

 

TWO different forms of the same data for the target detection performance assessment have 

been utilised here: A) raw data recorded by cameras (1,3,5) and B) after colour transfer from 

camera 1 into others (cameras 3,5). All targets presented in this work do not make 

appearances in cameras 2 and 4 and therefore target detection have been performed for the 

data recorded by camera 1, 3 and 5 only. 

 



 

Fig. 4. Shows the representative pictures of three targets exploited in this study: (left to right) T10, T10B 

and T1 

 

  

  

                                          (a)                                                                           (b)  

 

Fig. 5. (a) Typical ROC results for the detection of a target in every 10 frames of a video clip when the 

target transverse across the scene. There are ~10 detections for a particular target and each produces one 

ROC. Note the spread of the ROC results within this short video clip as the result of strong illuminations 

across the scene. (b) To better visualise the detection performance for this particular target within this video 

clip, all ROC results as seen in (a) is averaged into one. 
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B. Targets and presentations of detection results 

The purpose of the present work is to validate whether colour constancy helps target 

detections in multi-camera CCTV scenario. Two targets have been chosen, namely, the man 

with pale blue shirt (T10) and the lady with pink coat (T10B and representative pictures of 

these targets are respectively depicted in figure 4. Short duration of clips are selected 

whenever these targets appear within the camera field of views (views 1, 3 & 5), and the 

detection is made for every 10 frames of video clips and the detection result is presented in 

receiver operating characteristics (ROC) before and after the data set is processed by the 

ELRCC algorithm as described in the above sections. Within each video clip there is ~10 

detections with ~10 ROC results (see figure 5a), which is not easy to visualise the 

effectiveness of the detection. Therefore, all these ~10 ROC results are averaged into one as 

shown in figure 5b. In all cases, the ratio colour descriptor (see next section) has been 

employed as the colour feature: 

Ratio Feature (F2)  

 The ratio feature (F2) has been commonly exploited in machine vision as it is 

insensitive to the change of illumination intensity:  
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All processing involves colour transfer (CT), couple with the enhanced luminance 

reflectance colour constancy algorithm (ELRCC) and again colour transfer (CT) has been 

employed here prior to target detection (thereafter denoted as CT LB CT). Covariance based 

matched filter algorithm [19] has been used for the target detection throughout this work.  



C. Optimum colour descriptor 

It is well known that the selection of appropriate colour feature descriptor is detrimental to 

object recognitions. In this study we have employed 6 different colour descriptors in 3 colour 

spaces for the target recognitions over multiple camera views. Figure 6 present the averaged 

results of 10 frames of images for the detection of target T10 in camera 1 view using six 

different colour descriptors of RGB Feature (F1)  [18], Ratio Feature (F2), Sum Feature (F3), 

Double Opponency (F4), L1L2L3 descriptor (F5) [18] and C1C2C3 descriptors F(6) [18]. It 

is quite clear that only the ratio (F2) and the C1C2C3 (F6) descriptors have exhibited rather 

good colour invariance properties with better detection performances (figure 6). Due to the 

popularity of the ratio descriptor (F2) and also it is the fact that it exhibits almost the best 

detection performance and spectral invariance, the ratio descriptor (F2) and C1C2C3 (F6) 

have been selected for assessing the effectiveness of colour constancy approach for target 

detections in the CCTV footage. 

 
 

 Fig. 6. Shows the averaged detection ROC of T10 raw data in camera view 1. Note that some descriptors, such 

as double opponency (F4) or sum feature (F3), exhibit very poor detection performances. 

D. Detection performances of various CC algorithms 

The effectiveness of CC algorithms can be seen from their object recognition performances 

10
-3

10
-2

10
-1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Probability of False Alarm

P
ro

b
a
b
ili

ty
 o

f 
D

e
te

c
ti
o
n
 [

T
a
rg

e
t 

p
ix

e
ls

]

 ROC[pixel] -T10 All Feature Plot

 

 

R G B Feature

Ratio Feature

Sum Feature

R G Y Feature

L1L2L3 Feature

C1C2C3 Feature



after the same video clip is processed by various CC algorithms. The experiment involves the 

averaging of 10 detection results for target (T10) while he was walking approaching to the 

exit of scene 1(camera 1). The mean of the ~10 detection ROC results is presented in figure 7. 

The ratio colour descriptor (F2) has been employed throughout this experiment. In the legend 

of fig 7 it depicts various CC algorithms employed in this experiment: (1) raw data (no CC), 

(2) after proposed ELRCC and colour transfer CT (denoted by LB CT), (3) after ELRCC but 

no CT (denoted by LB) (4) after sub-band CC [20] (denoted by subband MSR) (5) after LB 

MSR.  Two main results have been observed from figure 7: (1) all CC algorithms produce 

WORSE detection result than that using the raw data, (2) ONLY the CC algorithms that 

enhanced by using the proposed LB CT improves target detection particularly in the low 

probability of false alarm (PFA) region.  

 

Fig. 7: shows the average of 10 detection results for target T10 in camera view 1 after processed by all the CC 

algorithms. Note that all CC algorithms, except for the one enhanced by the proposed method (in blue circle), 

exhibit WORSE detection result than that using the raw data (in red dot). 

E. Does colour constancy really helps target tracking in multi-camera CCTV surveillance  

The purpose of the present work is to validate whether colour constancy helps target 
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detections in multi-camera CCTV scenario. Two targets have been chosen, namely, the man 

with pale blue shirt (T10) and the lady with pink coat (T10B) (see figure 8). Short duration of 

clips are selected whenever these targets appear within the field of views of cameras (views 1, 

3 & 5), and the detection is made for every 10 frames of video clips and the detection results 

are presented in ROC which are then averaged to form a representative ROC. The ratio colour 

descriptor (F2) has been employed and the CC processing involves (a) colour transfer (CT), 

(b) the ELRCC and (c) colour transfer (CT) which is denoted by CT LB CT prior to target 

detection. 

 

 

Fig. 8. Shows representative images selected from the 3 camera views of target T10 (upper panel) raw data and 

(bottom panel) after transformed by the ELRCC+CT algorithm. 

i. Target T10 

Typical RGB images of target T10 before (raw image) and after processed by the proposed 

ELRCC algorithm (CT LB CT) have been shown in figure 8 (a) & (b) respectively. The target 

detection results for T10 in camera views 1,3 & 5 are presented in figure 9 (a, b & c) 

respectively. In camera views 1& 3 it is quite clear that the CC processed data (in blue trace) 



exhibits consistent and improved target detections over that using the raw data for the 

detection (in red trace). 

 

 

                                 (a)                                                                    (b)  

 

(c) 

 

Fig. 9. Shows the mean of the ROC results for the detection of target T10 who has appeared in the three camera 

views of (a) camera 1, (b) camera 3 and (c) camera 5. The ratio colour descriptor (F2) has been employed in all 

cases, and colour transfer has been applied to cameras 3 & 5 before the detection.  

i. Target T10[B] 

Figure 10 presents the ROC results for the video clip recorded by camera 5 after CC, with 

and without the colour transfer from camera 1. It is found that the detection enhancement is in 
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fact due to the colour transfer (CT) mechanism that we propose here in this work, showing a 

rigid shift of the ROC for the detection of all three targets with a substantial reduction of the 

PFA. 

  

(a)                                                                    (b)  

 

(c) 

Fig. 10. Show the mean of the ROC results for the detections from camera view 5 for targets (a) T10 [B], (b) 

T10 & (c) T12 with (in blue) and without (in black) the colour transfer from camera view 1. It is seen that colour 

transfer scheme serves an important mechanism to help restoring the colour integrity of the image.  
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Target T12  

The RGB images and the detection results for target T12 that presented in figure 11 has 

exhibited similar conclusion as that of the T10: the images after processed by the CT and 

ELRCC and CT have exhibited more consistent colours over different camera views, and at 

the same time it improves the target tracking performances rather substantially (see figure 

11c). Note that the detection of targets, particularly in camera view 5 where the objects in the 

scene (people) appear to be small in pixel sizes, has been improved by at least a factor of two. 

For the probability of detection (PD) less than 0.8, the detection is enhanced by factors of 2 to 

10 (see fig 11(c)).   

  

(a)                                                                    (b)  
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       (c) 

Fig. 11. Shows the mean of the ROC results for the detection of target T12 for three camera views of (a) camera 

1, (b) camera 3 and (c) camera 5. The ratio colour descriptor (F2) has been employed in all cases, and again it is 

shown that great improvement in target detection has been achieved using the colour constancy approach 

proposed in this work. 

 

V. DISCUSSIONS 

The main results in this paper are presented in figures 9, 10 and 11, which have shown a 

consistent trend of detection enhancements after processed by the proposed colour constancy 

(CC) algorithm and the colour transfer (CT) treatment. Figures 9 and 11 highlight the 

improvement of target recognitions after CC and CT processing, while figure 10 demonstrates 

the importance of CT for restoring the colour integrity of the scene. It is also seen that most of 

the enhancement is seen from the camera view 5, with negligible detection improvements for 

the images recorded by cameras 3 and 1. It is speculated without proof that this may be 

related to the more extreme illumination conditions in camera view 5, where the rear view of 

the scene was greatly affected by the strong solar illumination through the window (see the 

right hand panel in figure 8). Furthermore, most targets in camera view 5 appear in the far 

view of the scene, such as the lady with the pink dress (T10[B]) (see the figure 8), which 

makes the detection much more difficult particularly when the spectral characteristics of the 
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very limited number of the image pixels in the targets are heavily distorted by the 

illumination artefacts.  

VI. CONCLUSION  

This study involves the development of colour constancy (CC) algorithm with an objective 

to understand whether target tracking in multi-view camera system is benefited from  colour 

constancy (CC) technique. In this paper, we have reported the target detection efficiency in 

multi-camera CCTV system using several different forms of CC algorithms, and their 

detection efficiencies have been critically accessed via real i-LID data set. It is found that all 

CC Retinex algorithms suffer from strong colour bleaching, and compound to the fact that 

there is a lack of a principle way for the parameterisation of these Retinex based CC 

algorithms to obtain the optimal result.  This paper reports an improved luminance based CC 

in which it incorporates an enhanced pixel-wise colour transfer mechanism, and together with 

an adaptive parameterisation for setting the frequency bound automatically using in-scene 

information. This enhanced CC algorithm has been testified for the detections of a number of 

targets across multi-camera views, and the result exhibits consistent improvement of target 

tracking over different camera views. The detection performance is enhanced most 

significantly when the targets appear to be small in number of pixel sizes, and the people 

recognition ability is seen to improve by factors of 2 to 10. It is also shown that the selections 

of appropriate colour space and colour feature descriptors are critically important in the target 

tracking. 
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