2,465 research outputs found

    Review of Person Re-identification Techniques

    Full text link
    Person re-identification across different surveillance cameras with disjoint fields of view has become one of the most interesting and challenging subjects in the area of intelligent video surveillance. Although several methods have been developed and proposed, certain limitations and unresolved issues remain. In all of the existing re-identification approaches, feature vectors are extracted from segmented still images or video frames. Different similarity or dissimilarity measures have been applied to these vectors. Some methods have used simple constant metrics, whereas others have utilised models to obtain optimised metrics. Some have created models based on local colour or texture information, and others have built models based on the gait of people. In general, the main objective of all these approaches is to achieve a higher-accuracy rate and lowercomputational costs. This study summarises several developments in recent literature and discusses the various available methods used in person re-identification. Specifically, their advantages and disadvantages are mentioned and compared.Comment: Published 201

    Multitarget Tracking in Nonoverlapping Cameras Using a Reference Set

    Get PDF
    Tracking multiple targets in nonoverlapping cameras are challenging since the observations of the same targets are often separated by time and space. There might be significant appearance change of a target across camera views caused by variations in illumination conditions, poses, and camera imaging characteristics. Consequently, the same target may appear very different in two cameras. Therefore, associating tracks in different camera views directly based on their appearance similarity is difficult and prone to error. In most previous methods, the appearance similarity is computed either using color histograms or based on pretrained brightness transfer function that maps color between cameras. In this paper, a novel reference set based appearance model is proposed to improve multitarget tracking in a network of nonoverlapping cameras. Contrary to previous work, a reference set is constructed for a pair of cameras, containing subjects appearing in both camera views. For track association, instead of directly comparing the appearance of two targets in different camera views, they are compared indirectly via the reference set. Besides global color histograms, texture and shape features are extracted at different locations of a target, and AdaBoost is used to learn the discriminative power of each feature. The effectiveness of the proposed method over the state of the art on two challenging real-world multicamera video data sets is demonstrated by thorough experiments

    Dynamically parallel CAMSHIFT: GPU accelerated object tracking in digital video

    Get PDF
    The CAMSHIFT algorithm is widely used for tracking dynamically sized and positioned objects in real-time applications. In spite of its extensive study on the platform of sequential CPU, its research on massively parallel Graphical Processing Unit (GPU) platform is quite limited. In this work, we designed and implemented two different parallel algorithms for CAMSHIFT using CUDA. The first design performs calculations on the GPU, but requires iterative data transfers back to the host CPU for condition checking, which bottlenecks the entire program. In the second design, we propose an enhanced parallel reduction-based CAMSHIFT using dynamic parallelism to reduce overhead of data transfers between the CPU and GPU. Test results for a 400 by 400 search window show that the second design is up to five times faster than the first design and nine times faster than a pure CPU implementation. We also investigate the deployment of dynamic parallelism for multiple object tracking using CAMSHIFT --Leaf iv
    corecore