
Eastern Washington University
EWU Digital Commons

EWU Masters Thesis Collection Student Research and Creative Works

2016

Dynamically parallel CAMSHIFT: GPU
accelerated object tracking in digital video
Matthew J. Perry
Eastern Washington University

Follow this and additional works at: http://dc.ewu.edu/theses

This Thesis is brought to you for free and open access by the Student Research and Creative Works at EWU Digital Commons. It has been accepted for
inclusion in EWU Masters Thesis Collection by an authorized administrator of EWU Digital Commons. For more information, please contact
jotto@ewu.edu.

Recommended Citation
Perry, Matthew J., "Dynamically parallel CAMSHIFT: GPU accelerated object tracking in digital video" (2016). EWU Masters Thesis
Collection. 382.
http://dc.ewu.edu/theses/382

http://dc.ewu.edu?utm_source=dc.ewu.edu%2Ftheses%2F382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dc.ewu.edu/theses?utm_source=dc.ewu.edu%2Ftheses%2F382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dc.ewu.edu/student_research?utm_source=dc.ewu.edu%2Ftheses%2F382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dc.ewu.edu/theses?utm_source=dc.ewu.edu%2Ftheses%2F382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dc.ewu.edu/theses/382?utm_source=dc.ewu.edu%2Ftheses%2F382&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jotto@ewu.edu

Dynamically Parallel CAMSHIFT:

GPU accelerated object tracking in digital video

A Thesis

Presented To

Eastern Washington University

Cheney, Washington

In Partial Fulfillment of the Requirements

for the Degree

Masters of Science in Computer Science

By

Matthew J. Perry

Summer 2016

ii

THESIS OF MATTHEW JAMES PERRY APPROVED BY

DATE
YUN TIAN, PHD. GRADUATE STUDY COMMITEE CHAIR

DATE
CAROL TAYLOR, PHD. GRADUATE STUDY COMMITTEE MEMBER

DATE
ESTEBAN RODRIGUEZ-MAREK, M.S. GRADUATE STUDY COMMITTEE MEMBER

iii

MASTER’S THESIS

In presenting this thesis in partial fulfillment of the requirements for
a master’s degree at Eastern Washington University, I agree that the
JFK Library shall make copies freely available for inspection. I further
agree that copying of this project in whole or in part is allowable only
for scholarly purposes. It is understood, however, that any copying or
publication of this thesis for commercial purposes, or for financial gain,
shall not be allowed without my written permission.

Signature

Date

iv

Abstract
The CAMSHIFT algorithm is widely used for tracking dynamically sized and positioned objects

in real-time applications. In spite of its extensive study on the platform of sequential CPU, its

research on massively parallel Graphical Processing Unit (GPU) platform is quite limited. In this

work, we designed and implemented two different parallel algorithms for CAMSHIFT using CUDA.

The first design performs calculations on the GPU, but requires iterative data transfers back to the

host CPU for condition checking, which bottlenecks the entire program. In the second design, we

propose an enhanced parallel reduction-based CAMSHIFT using dynamic parallelism to reduce

overhead of data transfers between the CPU and GPU. Test results for a 400 by 400 search window

show that the second design is up to five times faster than the first design and nine times faster than a

pure CPU implementation. We also investigate the deployment of dynamic parallelism for multiple

object tracking using CAMSHIFT.

v

Acknowledgement
A special thank you to Yun Tian. His guidance and knowledge about digital image processing

and the CUDA programming model were indispensable to this project.

vi

Contents

1 Introduction 1

2 Problem Space 2

2.1 Image Processing Concepts . 2

2.1.1 Digital Color Models . 2

2.1.2 Digital Image Model . 3

2.1.3 Digital Video Model . 4

2.1.4 OpenCV . 4

2.1.5 Image Histogram . 5

2.1.6 Histogram Back-Projection . 6

2.2 Graphics Processing Unit . 6

2.3 Maxwell Architecture . 7

2.4 CUDA Programming Model . 7

2.5 CUDA Memory Types . 8

2.5.1 32-bit Registers . 9

2.5.2 Shared Memory . 10

2.5.3 Texture Memory . 11

2.5.4 Constant Memory . 11

2.5.5 Global Memory . 11

2.5.6 Occupancy . 12

2.5.7 Local Memory and Register Spilling . 12

2.6 Reduction Kernels . 12

3 Background 14

3.1 MeanShift Algorithm . 14

3.1.1 Limitations of MeanShift . 15

3.2 CAMSHIFT Algorithm . 15

3.2.1 CAMSHIFT limitations . 18

vii

4 Related Works 19

4.1 Previous CAMSHIFT Extensions . 19

4.1.1 Original CAMSHIFT Extension . 19

4.1.2 SURF Method Extension . 19

4.2 Previous GPU implementations . 20

4.2.1 Previous OpenGL Version . 20

4.2.2 Previous CUDA Version . 22

4.2.3 Reliance of Related Works . 22

5 Methodology 23

5.1 Video Frame Pre-processing . 23

5.1.1 Image Histogram Construction . 23

5.1.2 Background Noise Removal . 24

5.2 CPU version . 25

5.2.1 Floating-Point Considerations . 26

5.3 Shared Features in CUDA Versions . 26

5.4 Non-Dynamic Parallel CUDA Version . 27

5.5 Dynamic Parallelism . 29

5.6 Dynamic Parallel CUDA Version . 30

5.6.1 CUDA Histogram . 30

5.6.2 CUDA BGR to HSV Conversion . 31

5.6.3 Dynamically Parallel Reduction . 32

5.6.4 Sequential Reduction of Statistical Moments 33

5.6.5 Multiple Object Tracking . 35

5.6.6 Lost Object Recovery . 37

6 Results 37

6.1 Single Object Tracking Results . 38

6.1.1 CPU and Non-Dynamic Parallel GPU design comparison 38

6.1.2 CPU and Dynamic Parallel GPU design comparison 38

6.2 Non-Dynamic Parallel and Dynamic Parallel GPU Design Comparison 39

viii

6.3 Multiple Object Tracking Results . 40

6.3.1 Non-dynamic parallelism GPU versus CPU Designs 40

6.3.2 Dynamic parallel GPU versus CPU Designs 41

6.4 Non-Dynamic Parallel GPU versus Dynamic Parallel GPU Designs 41

7 Observations and Discussion 42

8 Future Work 44

9 Conclusion 45

1 Introduction
“Continuously Adjusting MeanShift” (CAMSHIFT) is a well-established computer vision al-

gorithm for tracking objects in digital video. It is based on the MeanShift algorithm, iteratively

moving the center of its search window towards the peak density of a probability distribution im-

age. The probability distribution used in CAMSHIFT is made from the hue color model profile of

its tracking target. Unlike MeanShift, CAMSHIFT can adjust its search window size and orienta-

tion to follow the dynamic probability distributions of moving targets between video frames. This is

possible based on the statistical moments under the search window within a probability distribution

image. CAMSHIFT can contribute as a layer in a diverse spectrum of applications, for example:

estimating the distance a tennis player covers throughout an entire match, controlling the rotation

of surveillance cameras towards a probable target, or providing an interactive user-interface for a

video game. However, CAMSHIFT, in its most basic form, will fail to reliably track an object under

certain conditions within a video sequence. There has been much research contributing different po-

tential solutions to make the algorithm more robust under these conditions. These efforts proposed

ways to both improve the accuracy of the basic algorithm and add extended features to help recover

lost targets. Many of the applications where CAMSHIFT can contribute demand real-time per-

formance. Improving the performance of the algorithm’s basic computation becomes increasingly

important as more features are added to improve its tracking accuracy and reliability. Some past

research has looked into general purpose programming on the graphics processing unit (GPGPU)

to parallelize some of the CAMSHIFT computational workload. Parallel reduction is a commonly

applied GPGPU algorithm to accelerate the computation of the statistical moments under the search

window. Past GPGPU implementations were bounded by the iterative nature of the CAMSHIFT

algorithm to rely on the CPU for processing between parallel reductions.

This paper explores newer GPGPU techniques to improve the runtime performance of the basic

CAMSHIFT algorithm. Two designs of CAMSHIFT using the CUDA programming model were

developed to test the findings in this study. The main contribution of this paper to the CAMSHIFT

algorithm is an optimized parallel reduction routine with dynamic parallelism, a newer feature pro-

vided by the CUDA runtime, to help minimize CPU bound processing. The optimization of video

frame preprocessing with CUDA and an extended use of dynamic parallelism for multiple object

2

tracking were also implemented and discussed in this paper. The goal of this project was to de-

velop a fast enough basic tracking routine where more robust features may be added later and still

achieve a runtime well under real-time performances demands. An equivalent sequential CPU ver-

sion written in C++, and OpenCV for video frame preprocessing, was developed for comparable

test results.

The paper is organized in the following manner. Section 2 describes the important concepts

and components of digital video processing and the CUDA programming model that will be used

throughout the rest of the discussion. Section 3 describes the origins of the CAMSHIFT algorithm.

Section 4 examines past research that has gone into extending the CAMSHIFT algorithm to im-

prove its performance and other related works. Section 5 explains the methodology carried out in

implementing the three designs of CAMSHIFT developed in this project. Section 6 describes how

the two versions were tested and compared. Section 7 reflects on the results found in section 6 and

the tracking performance under different test conditions. Section 8 looks at the necessary improve-

ments made apparent from the examination in section 7 and the future direction of the project. The

paper ends with concluding remarks in section 9.

2 Problem Space

2.1 Image Processing Concepts

2.1.1 Digital Color Models

A digital color model describes how color can be represented as a mathematical abstraction that

computers can display, reproduce, and persist.

The “Red, Green and Blue” (RGB) color model is an additive approach to representing digital

color. Its typical use is in displayable digital imagery on monitor screens. The intensities of the three

RGB color values combine to produce a distinct digital color. The fullest intensity of each color

produces the color white, while zero intensity in all three color values produces black. An equal

intensity value for all three colors will produce a gray color. Any other combination of intensity

values produces a hue, a pure color without any white or black [3]. The saturation of the color is

based on the difference between the minimum and maximum intensities [4]. Figure 2.1 represents

how the gamut of producible colors can be visualized as a RGB cube. Each primary color is a

dimension of the color cube and its diagonal transitioning from the influence of black to white.

3

However, it is not always intuitive to produce expected colors by directly manipulating the color

intensities of this color model without a visual reference.

Figure 2.1: RGB color model cube [5]

Figure 2.2: HSV Hexacone [6]

The “Hue, Saturation, Value” (HSV) color model was in-

vented by Alvy Ray Smith in 1978 to express digital color

more intuitively, “mimicking the way an artist mixes paints on

his palette” [7]. The HSV model has the shape of a hexacone

with a polar coordinate system, as shown in Figure 2.2. The

model separates the pure hue from the influence of white and

black mixed into the color. The top axis represents hue as a de-

gree around the color wheel. The horizontal axis corresponds

to saturation, the degree of white present in the color space. Saturation measures the intensity of a

color represented as a percentage ranging from 0% to 100%. No saturation results in a pure white

and full saturation represents the pure color. Value represents the brightness of a color defined by

the percentage of black mixed in. Its degree decreases down the vertical axis towards the tip of the

hexacone is zero value is pure black.

The hue of an object’s appearance is especially useful for object tracking. It is less prone to

changes in illumination than saturation and value. Its single valued representation is also simpler to

process than using three values in the RGB model.

2.1.2 Digital Image Model

A digital image model represents the translation of a physical light signal captured by a camera

into a digital color model stored on a computer. A digital image is typically stored in a frame buffer

in a computer’s memory. A frame buffer is a two-dimensional array storing the pixel values of a

4

given digital color model as a tuple.

2.1.3 Digital Video Model

A digital video model is a file format combining a series of digital images. Rendering each

image in the series to the display monitor at a constant sample rate gives the appearance of anima-

tion. Typically, sampling at a rate of 25 to 30 frames per second represents an accurate “real-time”

depiction of the captured events. The .mov video file format was used for the input and output video

files in this project. It is a video container for the mpeg-4 audio and video file compression format.

The OpenCV library was used to read the input video file into memory and write an output video

file out to memory after processing.

2.1.4 OpenCV

Figure 2.3: OpenCV
Mat coordinate system

OpenCV is an open-source computer vision API allowing the ap-

plication programmer to read, write, and edit digital images and video.

OpenCV stores RGB video in reverse “Blue, Green, Red” (BGR) order

as image Mat objects. Each primary color intensity is represented by

an 8-bit value ranging from 0 to 255. The Mat object exposes certain

features about the image to the application programmer. This includes

the number of columns and rows in the matrix, as well as many methods

for image manipulation, e.g. copying images or converting their color

models. The Mat coordinate system starts in the top-left corner with the x-coordinate along the

horizontal axis and the y-coordinate along the vertical axis, as shown in Figure 2.3. Each Mat index

is accessible through the method at(x,y). However, faster access is possible through the underlying

data array storing its pixel tuples. The data array is one-dimensional and stores each value within

a pixel tuple in separate contiguous indexes as unsigned char primitives. One benefit of using the

slower at(x,y) method is that it abstracts away the maintenance of offsetting the starting indexes by

the size of the tuples.

The cvtColor function converts the color model of a Mat another color model. The cvtColor

conversion from BGR to HSV uses the equations found in Figure 2.4.

5

V = max(B,G,R) S =

8
>><

>>:

V�min(B,G,R)
V

if V 6= 0

0 otherwise
H =

8
>>>>>><

>>>>>>:

240+60(R�G)
V�min(B,G,R)) if V = B

120+60(B�R)
(V�min(B,G,R)) if V = G

60(G�B)
(V�min(B,G,R)) if V = R

Figure 2.4: Value, Saturation, Hue computations [8]

The full 360 degrees of hue cannot be represented by the 8-bit storage used in OpenCV. The

hue values are halved to fit this representation with a range of 0 to 179. Saturation and value are

normalized in OpenCV to ranges of 0 to 255 to fit in this representation as well. The OpenCV API

includes many digital processing algorithms, as well, including a CAMSHIFT implementation. The

OpenCV CAMSHIFT uses an elliptically shaped tracking window. It was, therefore, not a direct

comparison with the rectangular search window described in the methodology of this project.

2.1.5 Image Histogram

Figure 2.5: Histogram as a bar graph

A histogram is an estimation of the probability dis-

tribution of numerical data within a sample set. As Fig-

ure 2.5 shows, histograms are visually represented as bar

graphs. The horizontal axis represents the range of pos-

sible values within the sample set, and the vertical axis

represents the frequency within a range found in the sam-

ple set. The bins are equally sized, non-overlapping, and consecutive value ranges. Wider ranges of

bin values “smooth” the frequency of the distribution, providing a rougher estimate.

In a computer program, a histogram is stored as an array of memory with each index repre-

senting an individual bin. To sequentially construct a histogram, each input value comprising the

distribution is examined and a bin value is incremented each time its index is hashed by the input

value divided by the bin width. After all of the input data is processed, each bin value is divided by

the input size. The final bin result is a percentage of how many input values fell under the bin range

in the initial distribution. The percentage is represented by a floating-point value between 0 and 1.

The total of all the bins always equals 1. Hashing future distribution values in the histogram serves

as a look-up of the probability that the values belong to the initial distribution.

6

2.1.6 Histogram Back-Projection

Figure 2.6: Grayscale Normalized Representation of Histogram Back Projection

Histogram back-projection is the process of replacing the pixel values of a digital image with

the corresponding bin values of a histogram. The back-projected image represents the probability

distribution found within the image. Figure 2.6 gives a normalized visual perspective of what a

histogram back-projections looks like in the grayscale color model. Normalization of the back-

projection consists of multiplying each value by 255 to bring it into the grayscale color model [9].

The probability distribution image contains peaks of probability densities. Figure 2.7 shows a top-

down three-dimensional representation of the modes of probability densities found in the histogram

back-projected video sequence also shown in Figure 2.6.

Figure 2.7: 3D Mesh Graphs of the Modes of Probability Distribution Images

2.2 Graphics Processing Unit
The Graphical Processing Unit (GPU) is a specialized computer processor. It was originally

designed to offload processing and manipulating frame buffer memory in real-time 3-D graphical

digital images. The Arithmetic Logical Units (ALU) have slower clock cycles than those found on

a typical general-purpose CPU. What the GPU loses in per ALU clock cycle it makes up for with

its massively parallel design. Its number of processing cores outnumber those found on a typical

7

general-purpose CPU and enough brute force of concurrent ALU processing to outperform the CPU

for certain kinds of processing tasks. The possible uses of GPU hardware expanded greatly with the

advent of floating-point support and programmable shaders. An entire family of algorithms whose

input data can be broken up into separate parts can now take advantage of the general purpose

parallel computation on the GPU.

2.3 Maxwell Architecture

The server used in this project had a commodity level motherboard equipped with four Nvidia

GeForce GTX 970 graphic cards. The 900 series of Nvidia graphics cards are designed with the

Maxwell architecture. The ability for the massively parallel computation of Nvidia graphics cards

lies in the streaming multiprocessor (SM). Each SM receives only one instruction at a time and runs

in parallel with the other SMs. The Maxwell SM has a quadrant-based design comprised of four

independent 32-core processing blocks. Each processing block has its own scheduler capable of

dispatching two instructions per clock cycle and its own local memory. Each core can execute a

sequential thread in parallel with other cores.[10] A GeForce GTX 970 graphics card is equipped

with thirteen SMs, totaling 1664 cores.

2.4 CUDA Programming Model

CUDA is a GPGPU platform and API created by Nvidia for writing parallel programs that run

natively only on Nvidia graphics cards. Resources located in the memory of the CPU and GPU are

labeled with the keywords host and device, respectively. CUDA applications run parallel code on

the GPU from a host function by launching a global kernel. A kernel is a special parallel function

whose instructions are written from the perspective of a single thread’s sequential execution. The

global keyword labels a function that may be called from either another host or device function.

The CUDA programming model use a Same Instruction Multiple Threads (SIMT) parallel pattern,

the sequential instructions of a kernel are executed in parallel by multiple threads. The launch of a

global kernel must be configured explicitly by the application programmer to inform the GPU of the

dimensionality of parallelism. The kernel is organized as a grid of thread blocks. Grids and blocks

can have up to three-dimensions. All threads of the same block have the same block index within

the grid. Each thread within a block has its own index.[2] Within a one-dimensional grid and thread

block to identify its order within the grid based on the following calculations:

8

1. threadID = threadIdx.x

2. absoluteThreadID = blockIdx.x * blockDim.x + threadIdx.x

Figure 2.8: CUDA Kernel Grid [11]

The threadID is the number assigned to the thread

within its thread block. The absoluteThreadID is the in-

dex within the entire grid based on the block size, the

block index in the grid, and its threadID within a partic-

ular block. The GTX 970 can have a maximum block

size of 1024 threads. It is a recommended best practice

to write kernel code that may be executed independently

by each thread block for two reasons. First, the order of

block execution is not knowable before runtime. Second,

there is no synchronization natively supported between

different blocks [12]. Even within a block, the order of

thread execution is not guaranteed before runtime. For-

tunately, the threads within a block can be explicitly syn-

chronized with the syncthreads() API function which serves as a thread barrier. All threads reach-

ing the barrier stall their further execution until all other threads within the block reach the barrier

before continuing. Threads within a block are further organized into sub-groups called warps. A

warp is comprised of 32 threads and serves as the unit of execution for the scheduler. A single

instruction is executed simultaneously by all threads within a warp. Warps cannot be split between

different thread blocks. However, any logical divergence between threads of a warp results in se-

quential execution of the divergent threads. This is an automatic resolution policy handled by the

Nvidia hardware. Memory reads are simultaneously executed by half-warp groupings of 16 threads.

An entire warp can read from memory in one clock cycle because there can be two memory reads

per clock cycle.

2.5 CUDA Memory Types

9

Figure 2.9: Device Memory Layout [15]

Whereas the typical CPU is equipped with

many registers and cache layers for hiding the

memory latency of reading data from disk, the

CUDA programming model tends to hide such

latency through massive parallelism [12]. How-

ever, there are a variety of device memory types

available to the CUDA application program-

mer, each with its own best use case and performance considerations. Utilizing the correct memory

types for the appropriate situation can help the performance of a CUDA application.

2.5.1 32-bit Registers

32-bit registers are the fastest and most abundant type of device memory physically located in

a SM. A single register can store a floating-point precision operand. Pairs of registers are capa-

ble of storing double-precision 64-bit arithmetic operands. The hardware is optimized for 32-bit

floating-point precision without the overhead of maintaining register pairs to store double-precision

operands. All data primitives and pointers stored in the other device memory types must first be

read into registers before threads can operate on them. The maximum number of registers used per

thread can be adjusted by setting a compilation flag. However, when all registers are fully occupied,

memory will spill over to cache layers with slower access. The GTX 970 card has 256 kb of registry

memory per SM and 65,536 total registers available per block.

10

2.5.2 Shared Memory

(a) Bank Conflict [16]
(b) Linear Addressing [16]

Figure 2.10: Shared Memory Access Patterns [16]

Shared memory is another fast memory type physically located in a SM. It is used for the

storage and exchange of data between the threads within a thread block. Shared memory cannot be

exchanged between different thread blocks. It can be statically allocated within a kernel function

as multiple arrays. However, the application programmer must know the appropriate allocation size

before runtime. Dynamic allocation is possible, but comes with the limitation of allowing only one

shared memory pointer per block. There are 49,152 bytes of shared memory available per thread

block and 96 kilobytes total per SM. The shared memory access is broken into 32-bit sections called

words.

Concurrent access to shared memory is made possible by arranging words into memory banks.

The Maxwell architecture organizes shared memory into 32 banks of words. Successive words

are assigned to successive banks, wrapping around to the first bank after every 32nd word. The

bandwidth of each bank is one word per clock cycle. Performance is fastest when each warp makes

only one memory request from each bank at a time [17]. The same value from the same bank is

broadcasted without conflict when read by an entire warp [16]. Similarly, when some threads of

a warp read the same word from the same bank, the value is multicasted to those threads without

conflict [16]. On the other hand, when different words are requested from within the same bank

by different threads within a warp, a bank conflict occurs. Bank conflicts are resolved by hardware

through an enforced sequential series of memory requests. Avoiding bank conflicts in application

11

code improves run-time performance. Different shared memory access patterns can be used to

ensure that bank conflicts do not occur. The simplest conflict free access pattern is linear addressing,

as shown in figure 2.10b. Warp threads access consecutive indexes of shared memory in linear

addressing conflict free, because there are 32 threads in a warp and 32 banks of shared memory.

There is no inter-block shared memory conflicts. When one block stalls from bank conflicts, another

can take its place for execution until the memory is accessed.

2.5.3 Texture Memory

Texture memory is a read-only memory type cached on chip. There is only 48 kilobytes of

texture cache in a Maxwell SM and has been combined with the L1 cache. It was originally designed

for traditional graphics applications, but is frequently used in GPGPU applications as well. Texture

cache is efficient for neighboring threads to access memory indexes with close spatial locality within

two-dimensional arrays [18]. The disadvantage of texture memory is it has read-only restrictions.

Updating texture memory requires slow memory copy to the entire texture.

2.5.4 Constant Memory

Constant memory is another form of read-only memory. It resides off-chip, but each SM con-

tains a small cache optimized for constant memory reads. Reading from constant cache is as fast as

reading from a register for a half-warp, if only the same memory address is requested. Otherwise,

the different requests are issued sequentially to the different threads in the half-warp. [21]

2.5.5 Global Memory

Global memory gets its name from its scope within an application. It allows the exchange of

data between device and host. It is also useful for persistent storage throughout the lifetime of the

application [20]. There is over four gigabytes of global memory per GTX 970 card. Global memory

resides off-chip in device DRAM and is about 100 times slower than shared memory [17].

There are two ways to declare global memory. It can be declared statically with global scope

using the CUDA device keyword or allocated dynamically from the host using the cudaMalloc()

API call and assigned to a regular host pointer variable. However, host code cannot directly access

the data pointed to via a host pointer reference. The global device memory must be transferred back

to host allocated memory. This memory transfer is quite slow, depending on the size of memory,

12

and should be limited as much as possible within a CUDA application.

2.5.6 Occupancy

The use of registers, shared memory, and different types of cache located physically in the SM

can affect occupancy. Occupancy is the number of active warps that a SM can keep ready for

execution in its cores. Dividing the actual number of warps per SM by the maximum number of

warps a SM can hold provides the occupancy number of an application. An application tends to

perform faster with a higher occupancy number because more active warps execute more work in

parallel and the scheduler has less overhead of swapping in and out different warps. [19]

2.5.7 Local Memory and Register Spilling

Another consideration about the overuse of memory types located in the SM is memory spilling.

[15] When a SM runs out memory resources, the L2 cache layer is used to store data outside of the

SM. The memory is coined “local” because it is stored in the privately accessible registers of an

individual thread. The older Nvidia Fermi architecture spilled memory into the L1 cache layer and

only used the L2 cache if evicted from the L1 cache. L2 cache is located outside of the SM. In

many cases, it is better to recompute a value than store it in a local variable, because this helps avoid

memory spilling and takes advantage of the highly parallelized CUDA programming model.

2.6 Reduction Kernels

A reduction is a simple parallel algorithm used to compute the summation of a large linear array.

It takes a divide and conquer approach. The tree pattern of this division of labor is shown in 2.11.

The complete reduction in CUDA uses a two-phase recursive kernel:

1. The input array is divided into subsections across multiple thread blocks

2. A first-phase kernel reduces each subsection into an intermediate total by the different thread

blocks

3. A second-phase kernel reduces the intermediate totals into a final total summation of the

entire input array

13

Figure 2.11: Two Kernel Reduction Overview [29]

A simple reduction of a single input array can use the same reduction kernel recursively so long

as the block size is a power of two. The global input memory is first read into the shared memory

of each thread block. Each thread reads in a corresponding input value from the global memory

index matching the thread’s absoluteTheadID and loads the input value to the shared memory index

matching its threadID, the thread indexes discussed in section 2.4. If an absoluteTheadID is larger

than the length of the entire input array, then its corresponding shared memory index is padded

with a value of zero. The reduction proceeds in stages of combining higher shared memory index

values into the lower indexes until the total is consolidated within the first index of the array. The

final result within a block is written back to another global memory array the size of the number

of blocks at the index of the block ID. The two most common reduction patterns, interleaved and

sequential addressing, are shown in Figure 2.12.

Figure 2.12: Interleaved vs Sequential Block Reduction [29]

Interleaving addressing is slower than a sequential addressing pattern [29]. One reason it can be

slower is the use of the modulus operator to calculate which threads are the lower index of the stride.

This creates highly divergent warps which get sequential executed, and the use of modulus operator

itself is relatively slow. Optimizing the interleaved reduction pattern with a strided index avoids

14

divergent warp branching. However, this causes a new problem of shared memory bank conflicts

within the thread warps.

Sequential addressing is a conflict-free access pattern for shared memory, similar to linear ad-

dressing access discussed in section 2.5.2. There are log(N) stages per block of the reduction for

N defined as the block’s input size rounded to its nearest higher power of two. There are ways to

further optimize a sequential reduction kernel. Using an equal number of threads as the number of

global memory indexes to read the input into shared memory is wasteful. Half of the threads are

only used for the memory loading and end their execution after this step. If the block size equals a

power of two, then the block size can be halved. Each thread would add two global input indexes

strided by the initial difference in the reduction stages and load the result into one index in shared

memory. The initial stage of the reduction can then be skipped and the remaining threads have at

least another round of the reduction. [29] The threads with an absoluteTheadID greater than the in-

put size only need to load the lower input value. This mimicks an add-on-load with a padded value

of zero. Another optimization is unrolling the for-loop controlling the reduction once the stride

decreases to the size of a warp [29]. This eliminates the need for thread synchronization during the

final steps by the last warp, because the instructions are executed simultaneously within the warp.

3 Background

3.1 MeanShift Algorithm

Figure 3.1: Mean Shift
Search Window

The CAMSHIFT algorithm is based on the MeanShift algo-

rithm. The MeanShift algorithm is used to find the mode or peak in

a static probability distribution. It iteratively climbs the gradient of

a probability distribution until it reaches a gradient of zero, indicat-

ing the zenith of the distribution. It is a non-parametric technique

similar to kernel density estimations, however it operates on dis-

crete, rather than continuous, distributions. The algorithm proceeds

in the following manner:

1. An initial search window size and location is chosen

2. Compute the mean location within the search window

15

3. The search window is then re-centered at the mean location

Step 2 is defined by computing a mean shift vector from the center of the window. The mean shift

vector is a directed average distance calculated based on the average of all vectors connecting each

point in the distribution to the center of the search window. Steps 2 and 3 are iteratively repeated

until the difference between current and previous search window centroids is equal to or less than a

predefined minimum threshold. The mode of a distribution is reached upon convergence [1].

3.1.1 Limitations of MeanShift

The MeanShift algorithm fails as an object tracking algorithm for video sequences, because it

was designed for static probability distributions. The mean shift vector does not reveal any infor-

mation about distributions with changing sample sizes. However, objects in a video sequence can

change sizes between video frames. The distribution of pixels representing an object will change

with its size between video frames. Tracking an object with a fixed search window size can fail in

different situations. If the search window is too large compared to the object’s pixel distribution,

then extraneous background pixels will be introduced into the distribution. Noise is introduced by

extraneous background pixels that hash into higher probability bin values of the object’s color his-

togram. If the search window is too small, then the algorithm might steer towards a false local peak

of the probability distribution because the entire distribution isn’t considered in the computation.

Furthermore, too small of a search window will not accurately cover a larger object, producing

inaccurate results.

3.2 CAMSHIFT Algorithm

The CAMSHIFT algorithm was developed by Gary Bradski in 1998 as an extension of the

MeanShift algorithm [22]. Unlike MeanShift, CAMSHIFT continuously adjusts its search window

size to track the changing sizes of objects across video frames. The basic form of the CAMSHIFT

algorithm proceeds in the following manner:

1. An initial search window size and location is chosen

2. The pixels under the search window are back-projected by a histogram of the object’s hue

values

16

3. The statistical moments of the back-projected values under the search window are calculated

4. The new centroid of the search window is based on the zeroth and 1st-order statistical mo-

ments

5. The size and orientation of the search window are optionally calculated based on the zeroth

and 2nd-order statistical moments

6. The center of the search window is moved to the new centroid and its orientation is optionally

adjusted

7. The distance between previous and new centroids are compared for convergence

Steps 2 through 7 are repeated until convergence is reached. Convergence is defined as a dis-

tance between centroids under a pre-defined threshold. The histogram is pre-defined and saved for

repeated use. The hue component is used to create the histogram because it is less susceptible to

the effects of lighting changes than a combination of RGB values which include the saturation level

[22]. The zeroth moment is defined as:

M00 =
X

x

X

y

P (I(x, y)) (3.1)

where:

I : hue value of the video frame at a particular x and y-coordinate

P : histogram bin value using the hue as a hash key value

Bradski described the zeroth-order moment of the distribution as its “area” irrespective of any

directionality found under the search window [22]. The first-order moments for the x and y-

coordinates are defined as:

M10 =
X

x

X

y

xP (I(x, y)); M01 =
X

x

X

y

yP (I(x, y)); (3.2)

The first-order moments are the “area” with respect to the position along the coordinate axises.

The x and y-coordinates of the new centroid for the search window are derived from the following

17

equations:

x
c

=

M10

M00
; y

c

=

M01

M00
; (3.3)

The 2nd-order moments for the x and y-coordinates are defined as:

M11 =
X

x

X

y

xyP (I(x, y)); M20 =
X

x

X

y

x2P (I(x, y)); M02 =
X

x

X

y

y2P (I(x, y));

(3.4)

Calculating a rectangular shaped window size is computable based on the zeroth moment. If the

zeroth-order moment is a lower value, then the search window should decrease in size. This assumes

extraneous pixels under the search window with low probability values were involved in the zeroth

moment calculation. Conversely, if the zeroth-order moment has a higher value, then the search

window should increase in size. This assumes the search window was filled with higher probability

values of matching the object’s color profile and has not expanded to extremities of the object yet.

The width of a rectangular shaped search window is defined as:

width = 2 ⇤
r

M00

max
(3.5)

The height of the search window is arbitrarily sized by multiplying the width by a constant factor.

The constant factor is determined through experiment beforehand. Certain assumptions about the

dimensions of the object need to be made to tune the ratio of height and width. Bradski’s original

goal for CAMSHIFT was to track human faces. He set the ratio at 1.2 to produce an elongated search

window proportional to a human face. Bradski’s implementation used a histogram normalized to

store 8-bit values between 0 to 255. The maximum value max in equation 3.5 was set to 255. The

maximum value can be altogether omitted from equation 3.5 if the histogram is not normalized and

keeps its possible range between 0 and 1, because the maximum bin value is 1.

The search window can also be elliptically shaped and re-sized using the following equations

18

[9]:

length =

s
(a+ c) +

p
b2 + (a� c)2

2

; width =

s
(a+ c)�

p
b2 + (a� c)2

2

; (3.6)

where:

a =

M20

M00
; b = 2(

M11

M00
� x

c

y
c

); c =
M02

M00
� y2

c

; (3.7)

3.2.1 CAMSHIFT limitations

The basic CAMSHIFT algorithm has several deficiencies because it follows the highest density

in the probability distribution image based only on hue. Extreme illumination levels can affect its

tracking accuracy because hue is ambiguously defined. This can be visualized by the constriction

of the radius in color wheel representing hue. Low lighting in a digital image corresponds to lower

levels of brightness (V). The diameter of the HSV hexacone narrows as brightness declines, con-

stricting the radius of the hue color wheel. Similarly, different hues become more indistinguishable

as saturation decreases. This occurs in digital images with more lighting and white present.

The presence of too much background noise obscures which pixels in the probability distribution

image belong to the object. Background noise is defined by pixels not belonging to the object that

have a similar histogram probability to the object. When background noise dominates the statistical

moment computation the new centroid will be centered around a point in the background rather than

the target object. The search window will grow to the size of the background noise as a result. This

becomes a difficult situation for the tracking to lock back onto the object. Figure 5.1 illustrates the

ill-effects caused by too much background noise.

A similar problem occurs from extreme object occlusion. Occlusion occurs when one object

moves in front of an object and blocks the camera’s vantage point. If the occlusion blocks only a

portion of the object, then the search window will shrink to the still visible area until the occlusion

ends and recover back to the size of the entire object. However, if the occlusion is large enough to

completely block out the object from the video frame, then tracking might become lost. The search

can leave the region where the object is and become susceptible to background noise. The algorithm

performs better against noisy occlusion, absorbing the occlusion and maintaining its position [22].

19

4 Related Works

4.1 Previous CAMSHIFT Extensions

4.1.1 Original CAMSHIFT Extension

Bradski used thresholding to extend the basic algorithm to help reduce the effects of the de-

ficiencies described in section 3.2.1. The corresponding levels of saturation and brightness were

used to selectively choose which hue values were permissible to include in the statistical moments

computation. Whenever low brightness or saturation values corresponded to a hue value, the hue

was ignored. The threshold values were set as constant values. If the overall video scene was very

dim, then CAMSHIFT could not track without camera adjustments for more brightness. This is be-

cause too few pixels would remain after thresholding. An upper bound threshold was also used for

high levels of brightness. This was used because whiter colors can appear similar to flesh colored

hues, affecting facial tracking in his implementation. Constant threshold levels might work for the

lighting levels of a particular scene. However, if the lighting levels change throughout the series of

video frames, then the threshold levels might not be appropriate under different illumination.

4.1.2 SURF Method Extension

Li et al. [9] proposed using adaptive adjustments to the threshold values for brightness and

saturation. The thresholds were dynamically adjusted by considering the texture information of

each video frame in addition to the HSV levels in individual pixels. The texture information is

the spatial arrangement of colors within an image, including the overall lighting levels within the

video frame. Using an integral image, corresponding to the original video frame, was used for quick

look-ups of the levels under different sub-regions. Each pixel value in an integral image stores the

summation of original values from the neighboring pixels above and to the left of the pixel [25].

Calculating the area of any sized rectangle in an integral image is constant time. The threshold

levels were adjusted during the initialization period when the search window is first set in a given

video frame. The adjustment ended “when the ratio of back projection value between the whole

image and the search window reaches the minimum” [9]. When a video frame had overall higher

level of lighting illumination, pixels with high saturation values were ignored. Pixels with lower

saturation values were ignored when lower illumination levels were detected. The adjustment of the

thresholds was kept between 30 and 120, because too much noise occurs at the extremes beyond

20

these values. However, because thresholding reduces the number of useable pixels, Li et al. found

that the threshold adjustment needs to stop when a minimum of thirty percent of useable hue values

remain within the search window to maintain enough of the object’s color profile.

An additional extension was added to detect and recover lost objects. Detecting a lost object was

defined by the bhattacharrya distance [23] of the original probability distribution and the one found

under the search window. The bhattacharrya distance is a value signifying the likeness between

probability distributions. If the bhattacharrya distance was less than 0.8, then it was considered

failed tracking. A bhattacharrya distance of 1 signifies an exactly equal comparison, which is not

likely to ever be encountered in practice. In the event of an object being lost, the Speeded Up Robust

Features (SURF) [24] method was used to identify the lost target in the overall image.

The SURF algorithm detects, describes and matches features in an image. It relies on the integral

image for faster computation of the key points of interest during the detection phase. A Gaussian

pyramid is created to find interest points at different scales. This is created by applying a Hessian

matrix, comprised of box filters approximating second order Gaussian filters, to individual pixels

of the integral image. The image is repeatedly smoothed using increasing scale sizes to form the

layers of the pyramid. The Hessian determinant is used to identify extremum points of a smoothed

region of interest [9]. The highest and lowest extremum points compared to its 26 adjacent points

is marked as an interest point. The interest point descriptor relies on the dominant orientations of

all the interest points determined by scanning the Haar wavelet response of the x and y-coordinates

of interest points from different angles. A descriptor matching the descriptor of the original target

marks a region for rediscovery.

4.2 Previous GPU implementations

4.2.1 Previous OpenGL Version

The previous two implementations used a static single histogram throughout the life of their

applications to model the probability distribution of the target object. A single histogram might fail

to accurately model the different colored sides of three-dimensional objects. Tracking and recovery

can fail if the side of the object used to create the histogram is not exposed to the camera’s vantage

point.

Exner et al. [26] used multiple reference histograms to model a composite probability distri-

21

bution of the different sides of three-dimensional objects. Each reference histogram of the current

search window with a different enough distribution was integrated into a normalized accumulated

reference histogram. The individual reference histograms were saved for object identification during

search window drift caused by object occlusion. Histogram intersection summated the minimum

bin values between the target histogram and each reference histogram. The histogram pair with the

maximum intersection value affirmed an object’s identification. An overall maximum intersection

value below a threshold indicated a lost object.

Their lost object re-detection strategy used a recursive hierarchical search window subdivision

scheme. Starting with the entire frame, the search window was split into four regions. If all of

the child windows uniformly converged within their parent, then the object was re-detected at the

point of convergence. Otherwise, the recursive division into sub-quadrants was further applied to

the sub-regions. If the zeroth-moment was sufficiently small or all four quadrants diverged, then

recursion ended in a parent quadrant.

Exner et al. utilized the GPU to accelerate building the multiple histograms and calculating the

statistical moments by using the OpenGL API. The video frames and histograms were loaded into

vector buffer objects (VBO) in OpenGL texture memory. To save computation, only every ith pixel

was directly rendered with vertex texture coordinates. A geometry shader generated the neighbor-

ing vertexes with the same histogram value. Each histogram bin was filled by the additive alpha

blending of the alpha channels in the mapped vectors. The alpha blending is a sequential process

per bin, but the vertex shaders ran each process in parallel. They implemented tracking for different

color models. Mapping triple values pairs of RGB, HSV, or YUV color models to two-dimensional

textures required tiling the textured 2D color planes. Calculating moments followed a similar ap-

proach to building a histogram. In parallel, shaders used additive blending to summate the alpha

channels of the neighboring pixels of a mapped regional pixel. The resulting five statistical moments

were stored in the RGBRG channels of two File Buffer Object (FBO) pixels. Their implementation

required the CPU to compute the new centroid and determine if convergence occurred, requiring the

transfer of calculated statistical moments between device VRAM and host RAM every iteration.

22

4.2.2 Previous CUDA Version

Studies have shown that the CUDA implemented versions of GPGPU parallel matrix problems

can outperform the OpenGL equivalent [27]. It has the advantage of more memory types for dif-

ferent use cases, like texture memory for faster cached access than global memory. Inter-block

communication is an advantage for CUDA over the OpenGL fragment shader which can only write

to itself. CUDA is a native proprietary programming model specifically for the Nvidia family of

GPU, whereas OpenGL is an extra virtualized layer between application and hardware. Jo et al.

[28] successfully implemented a CUDA CAMSHIFT program with real-time performance for ro-

tating a PTZ security camera along the track of a targeted object. The video frame was stored as

texture memory, with an image mask as the search window. A sequentially patterned parallel re-

duction was adapted to calculate the statistical moments under the masked texture. The results from

the reduction had processed with the CPU after the reduction kernels finished to calculate the new

centroid and search window size. Iterations of kernel launches for the two-phase parallel reduction

and memory transfers the statistical moments back to the host to update the search window would

continue until host calculated convergence of centroids was reached.

4.2.3 Reliance of Related Works

Extending the basic CAMSHIFT algorithm has been shown to improve its accuracy and reliabil-

ity. However, the previous extensions required overhead that slows down the runtime performance

of the overall routine. The SURF method requires the construction of an integral image per video

frame to analyze the texture information of the pixel groupings. Exner et al. [26] required the con-

struction of a new reference histogram whenever a probability distribution image differed from the

original reference histogram. The use of GPGPU reductions can adapt the CAMSHIFT statistical

moment calculations into a faster version than the equivalent with host CPU processing. A faster

CAMSHIFT can hide the overhead of extensions that provide robust performance. CUDA has an

API allowing native access to optimized memory types for different appropriate use-cases. The

proper use of CUDA can outperform an OpenGL equivalent. The following section describes how

the sequential reduction pattern can be used with dynamic parallelism in CUDA to improved the

runtime and design of a GPGPU parallel CAMSHIFT.

23

5 Methodology
Three versions of CAMSHIFT were implemented for comparisons in this project: one entirely

reliant on CPU processing and two CUDA versions. Many iterations went into the development of

the CUDA implementations; the presented CUDA versions offer a look at two different approaches

to tracking multiple objects in parallel. The first version, developed earlier, attempted to track

all objects across the blocks of the same grid. The more mature version, separated the blocks

tracking a given object into its own grid with the use of dynamic parallelism. All versions shared the

same pre-processing steps using OpenCV and C++ to build the hue histogram and remove potential

background noise. The project required the hardware from a remote server. Real-time tracking with

a live video feed was not tested, given this limitation. The tracking was performed on previously

recorded video files and pre-detemined initial search window locations.

5.1 Video Frame Pre-processing

5.1.1 Image Histogram Construction

The project used a single static histogram throughout the lifetime of the application. There

would not have been significant performance gain by parallelizing its construction, because the

construction was carried out only once for the entire lifespan of the application. It stored floating-

point values with a non-normalized discrete range between 0 and 1 based on the probability of the

hue values found in the initial search window. The histogram array had a length of 60 index bins.

The width of each bin held three consecutive hue values to cover the range of OpenCV 8-bit hue

values described in 2.1.4. The initial search window was constructed from reading in its top-left and

bottom-right corners from a file. These coordinates were predefined to overlap the target in the first

video frame. The first video frame was converted from BGR to HSV using the OpenCV cvtColor()

described in [8]. The hue channel was extracted into a separate unsigned char array using OpenCV.

The indexes in the hue array belonging to the search window were traversed, incrementing a bin

whenever its hash value was encountered. The hash value was derived from a hue value divided

by the bin width. Each total bin count was divided by the size of the search window to arrive at

the final percentage value. The histogram was doubled in size for each additionally tracked object.

Accessing the histogram bins for a given object was then achieved by offsetting the bin index by the

product of the object ID and the original histogram length.

24

A feature was added to write a histogram out to file after its construction. Reading the histogram

in from file into its array on a new execution of the application allowed the same object to be tracked

from different videos having to know its initial position or construct the histogram again.

5.1.2 Background Noise Removal

Figure 5.1: Effects of Background Noise

Figure 5.2: Background Noise Removed with Background Subtraction

An optional background subtraction feature was added as a menu option for video sequences

that experiments showed had too much background noise. It was carried out before the CAMSHIFT

processing in each video frame. Background subtraction compares a background model to the pixels

in each frame and creates a mask of pixels that do not match the background model. The pixels in

the mask that match the background are filled with zeros. The mask is then applied to the current

frame creating a new image with only colored pixels not belonging to the background model. The

background model was the first frame of the video sequences. These steps are carried out in OpenCV

with the following:

1. Ptr<BackgroundSubtractor >subtractor->apply(frame, mask, 0);

25

2. cvtColor(mask, mask, COLOR GRAY2BGR);

3. frame.copyTo(foreground image, mask);

The foreground image Mat was then used for further CAMSHIFT processing with the background

pixels replaced by zeros.

5.2 CPU version

A custom implementation of a CPU version of CAMSHIFT was a fair comparison to the GPU

version rather than using the standard OpenCV CAMSHIFT implementation for two reasons. First,

the OpenCV version uses an elliptically shaped search window rather than the rectangular shaped

search window used in this project. Secondly, a custom implementation allowed a one-to-one com-

parison by processing the same data in equivalent ways.

The video frames needed to be first converted from a BGR Mat to the corresponding hue value

array. This conversion was carried out for the CPU version with the following steps in OpenCV:

1. cvtColor the BGR Mat to a HSV Mat

2. split to extract the HSV Mat into separate Mat channels

3. memcpy the uchar hue data in the hue channel Mat into an allocated array

The search window was defined by its top-left and bottom-right corner points and initialized by

the position read in during the histogram construction. Calculating the moments was controlled by

a doubly-nested for-loop covering only the search window. The outer-loop started from the top-left

x-coordinate to the bottom-right x-coordinate. The inner-loop started from the top-left y-coordinate

to the bottom-right y-coordinate. The points had coordinates defined by their placement within the

overall video frame. Translating the two-dimensional x and y-coordinates to the one-dimensional

index was defined as:

absolute index = (frame width ⇤ x) + y (5.1)

Each hue value was histogram back-projected by looking up the hashed histogram bin value cor-

responding to the hue value. The hue value was used to lookup the histogram value. Each back-

projected histogram value was used in the statistical moment calculations in equations 3.1 and 3.2.

26

5.2.1 Floating-Point Considerations

Computers adhering to the IEE-754 Floating-Point Standard internally represent a floating-point

value with three underlying integers: sign (S), exponent (E), and mantissa (M). The value is then

computed as follows:

value = (�1)

S ⇤ 1.M ⇤ (2E�bias

) (5.2)

The exponent determines the range of representable numbers, whereas the mantissa determines the

possible precision. During floating-point arithmetic, the mantissa of a smaller value is bit-shifted

right until its exponent matches the exponent of the larger value. Inaccuracy occurs from precision

rounding after an arithmetic operation between floating-point numbers, if the resulting mantissa re-

quires too many bits to be represented exactly. The order in which a series of floating-point values is

added together will affect the accuracy of its summation. In many cases, applications first sort val-

ues before adding them together limit the rounding error caused by bit-shifting the mantissa of the

smaller value.[2] Otherwise, slightly different results should be expected between a sequential and

parallel version of a summating a float-point series. The different versions of this project occasion-

ally had some minor discrepancies between the search window positions. Experiments led to the

conclusion to use double floating-point precision for the storing the zeroth and first-order moments

of the CPU version. It was particularly susceptible to inaccuracy because of its iterative addition

of increasingly large values storing the statistical moment totals with much smaller histogram val-

ues. The GPU version did not suffer in the same manner because the work was broken into parallel

parts. Floating-point precision is preferable over double precision in CUDA applications because

the hardware is optimized for 32-bit precision.

5.3 Shared Features in CUDA Versions

Both versions of the CUDA CAMSHIFT presented in following sections performed a sequential

reduction pattern to compute the statistical moments of CAMSHIFT. The reduction was performed

twice, the first on the sub-regions of the search windows assigned to each thread block, and the

second on these intermediate block totals. The input values were stored in three statically allocated

arrays in shared memory representing the zeroth and first-order statistical moments in the algorithm.

27

A different thread in each block read the mapped indexes of the search window into shared memory

from a linear representation of the video frame buffer in global memory. The pre-processing con-

struction of the hue histogram was the same as the CPU version for both presented GPU versions.

The constructed histogram in the host memory was transferred into constant memory for access

from the device reduction kernels. The histogram back-projection occurred by hashing the read-in

hue value from global memory into the constant memory histogram and loading the hashed result

into shared memory.

5.4 Non-Dynamic Parallel CUDA Version

The non-dynamic parallel (NDP) design was different than the mature dynamic parallel design

in a number of ways. The BGR to HSV conversion of the video frame pre-processing in the early

design used the same OpenCV library calls as the CPU design. The dynamic parallel design par-

allelized this conversion in a kernel used to load the video frame in global memory. The NDP

version required the CPU to coordinate the reduction kernels and guide the convergence logic in

CAMSHIFT. This workflow required memory transfer overhead between the host and device. The

total blocks assigned to each target object were stored in an array for look-up to offset and demar-

cate which blocks belonged to an object’s reduction. The block size totals array had to compute

in the host and transferred into device global memory. The final reduction values after the second

kernel had to be transferred back to the host for the computation of the new centroid coordinates

and the check for the convergence of previous and current centroids.

The strategy of the NDP version was to use the same kernels to track multiple objects. The

blocks associated with the first object would be calculated first. The number of blocks was calcu-

lated by dividing the search window size by the block size of 1024 and rounding the float-point

result to the nearest higher integer. The last block resulting from the rounding-up would have buffer

threads that load zeros into the shared memory input and then do nothing. The block total was stored

in the index hashed by the object’s ID and added to a overall total variable. Each subsequent object’s

block total was calculated and stored in the same way. The first reduction kernel was configured as

a one-dimensional grid of the total number of blocks summated in the above process, each block

with 1024 threads. An object ID per block was set, demarcating which object the block was con-

tributing computation for, by comparing the block ID to the array storing different objects’ block

28

totals. If the block ID was greater than the block total stored in one index and less than the block

total in the next index, then its block belong to the object ID matching the first index. Mapping a

reduction kernel thread to a video frame global memory input index required first subtracting from

its absoluteThreadID the total number of threads from the blocks before the blocks associated with

its target to have a relative ID to its search window.

The second reduction kernel of the NDP version was configured to a grid size of one block per

object tracked. Each block was configured to the size of the total blocks used in the first reduction

kernel. The second kernel did not use a sequential reduction pattern, because the block size was

set to a non-power of two. Instead, it simply loaded shared memory with each thread associated

with each block in the first kernel. Only one thread was used to add all of the intermediate block

results together that were in the range of its object. The thread then calculated the new centroids

and window dimensions and stored these values in global memory. A test showed that there was not

a significant difference in runtime between a linear summation by one thread in the final reduction

step versus rounding block size to a higher power of two and doing a sequential reduction pattern.

This is because the input size was under 1024 and within only one block. The NDP version was lim-

ited to how many search window blocks in the first reduction could be represented by less than 1024

threads in the second final reduction stage. Checking for the centroid convergence from the host re-

quired transferring the new centroids and windows dimensions from the device global memory and

scanning an array of boolean flags set by the final reduction kernels if convergence had occurred.

The runtime of any object in this design was limited by the computation of the largest search win-

dow. Much of the overhead in the NDP version was eliminated by using dynamic parallelism in the

second design. The extra memory latency between host and device memory transferring at the end

of each iteration in the CAMSHIFT algorithm was no longer needed. Nor was it required to offset

and consider the computation of other objects within the same kernel.

29

Figure 5.3: Non-Dynamic Parallel GPU Overview

5.5 Dynamic Parallelism

Figure 5.4: Dynamic Parallelism Parent and Child grid execution [13]

30

Dynamic Parallelism (DP) in CUDA enables a kernel to spawn and synchronize nested kernels.

Applications with iterative stages of kernel launches can shift the control to the parent kernel away

from the CPU’s responsibilities. The parent kernel can collect the output produced by its child ker-

nels and control the next launch of children accordingly. CUDA DP also supports recursive kernel

launches from within a parent kernel. Large data transfers is a bottleneck in GPGPU applications.

The lack of CPU reliance improves application runtime where repeated data transfers between de-

vice and host would otherwise be required. The GPU schedulers and load balancers can increase

the parallelism by dynamically responding to parent kernel’s decisions and changing work loads.

Figure 5.4 shows the runtime synchronization of nested grids. Even if the parent threads do not

explicitly synchronize their child grids, an implicit synchronization between the parent and child

is guaranteed by the CUDA runtime [13]. However, to ensure all child grids have finished work

before the parent can accurately read their output, child grids must be explicitly synchronized with

cudaDeviceSynchronize() called by the application programmer. There is also some overhead in DP

kernel launching. The parameters of the kernel launch must be parsed, implicitly calling cudaGet-

ParameterBuffer and cudaLaunchDevice. The device runtime manager must be setup and enqueued

before managing and dispatching the child kernels. [14]

5.6 Dynamic Parallel CUDA Version

The kernels in the dynamic parallel (DP) version of CAMSHIFT could be written from the

perspective of only tracking one object. The host control only had to launch a parent kernel and

retrieve the final new centroid coordinates and search window dimensions after the processing for

each frame. Figure 5.5 shows the overview of the logic flow controlled by the parent kernel.

5.6.1 CUDA Histogram

After the histogram was constructed as described in section 5.1.1, it was copied into device

constant memory for use in the kernels. The constant memory histogram was statically sized as

the maximum number of trackable objects multiplied by the 60 histogram bins per object. The

maximum number of trackable objects was set to only three as a proof of concept. Any more

objects would probably become too crowded and cause too much object occlusion to accurately

track all of the objects.

Constant memory was chosen for the histogram’s storage because the histogram was a read-only

31

one-dimensional linear array, constructed once, and re-used through the application lifetime. The

rationale behind increasing the histogram bin width to three was to improve the runtime performance

at the expense of tracking accuracy. A smaller range of histogram bins would increase the likelihood

of a constant cache hit by the reads of the threads within a warp.

Figure 5.5: Dynamic Parallel GPU Overview

5.6.2 CUDA BGR to HSV Conversion

The conversion of the BGR video frame to HSV was parallelized using a CUDA kernel as an

optimized preprocessing step before loading the video frame hue values into global memory. The

hue array was statically allocated as device global memory for the following reasons. The video

frame had a fixed size throughout the life of the application. The array needed to be updated with

each subsequent video frame. Using global memory allowed each index to be updated concurrently

by the threads of the conversion kernel. The conversion kernel proceeded in the following steps:

1. cudaMemcpy the BGR data array directly from Mat into a host reference pointer to device

global memory

2. Launch kernel with a block size the third of the BGR array

3. Each CUDA thread read in a BGR pixel triplet based on its absolute thread ID within the grid

32

4. Each CUDA thread converts the BGR pixel triplet into HSV values with the equations in

figure 2.4

5. Each CUDA thread write the hue value into a statically pre-allocated global memory array

based on its absolute thread ID within the grid

The extracted BGR array from step 1 had each BGR triplet stored in three contiguous indexes and

required offsetting the access in step 2 by a multiple of three. Experiments revealed a rounding

difference between the actual OpenCV API conversion function and implementing its underlying

equations separately. This resulted in occasional off-by-one value discrepancies, but the difference

did not affect the positioning of the two versions by more than a few pixels. The increased histogram

bin width helped decreased the impact of the conversion discrepancy by hiding some inaccuracy

within the bin widths.

5.6.3 Dynamically Parallel Reduction

Dynamic parallelism minimized the memory transfer between host and device. A parent kernel

was configured with a grid size of one block per object and a block size of one thread. The block ID

of the parent kernel set the object ID for offsetting access to the histogram. The parent kernel blocks

controlled their convergence logic with only information concerning their own respective target ob-

ject. The use of dynamic parallelism allowed the parent kernel blocks to launch their own reduction

kernels using their own scheduling resources. These reduction kernels likewise had no need for

any knowledge of blocks reducing other search windows statistical moments. The first child block

reduction grid was launched from the parent device thread and synchronized before the second child

reduction was launched from within the parent thread to further reduce the final statistical moments.

Explicit device synchronization was required between reduction kernel launches by the parent con-

trol thread to ensure the first kernel finished its computation first. The parent grid calculated the

new centroid and search window dimensions based off of the second child reduction values, and

updated the variables used in the first reduction kernel representing the search window dimensions

and positions. If the new centroid converged with the previous centroid, then the parent thread ter-

minated. The host would then copy the memory from the global memory and update its variables

storing the new centroid and top-left and bottom-right corners of the search window for display.

However, if there was no convergence, then the parent thread calculated the new grid size for the

33

first kernel and repeated the two-step reduction kernel launches again. The only per-frame memory

transfer between host and device was the host-to-device image hue array and the device-to-host new

centroid and height and width after convergence. The use of statically sized global memory allowed

for the re-use of memory between iterations without any need to re-allocate memory.

5.6.4 Sequential Reduction of Statistical Moments

The sequential reduction pattern described in section 2.6 was adapted in this project to calculate

the statistical moments of the search window. The problem space did not allow for the recursive use

of a single reduction kernel for the two levels of reduction. Two different reduction kernels were

required, each with its own unique tasks. The thread blocks in the first kernel had the following

tasks:

1. Map absolute thread IDs to the absolute index in the hue array

2. Calculate the x and y-coordinates of the original Mat object corresponding to the absolute

index

3. Load the shared memory with histogram back-projected values

4. Reduce the shared memory to intermediate totals

5. Write the intermediate totals out to global memory

The block size of the first kernel was set to the maximum allowed value of 1024 threads. The

number of blocks was calculated by rounding up to the nearest integer value the window size di-

vided by the block size. Each thread block had three statically allocated shared memory arrays of

floating-point precision, each the same size as the thread block, representing the zeroth and first-

order moments respectively. The precision errors described in section 5.2.1 did not result from using

floating-point precision in the reductions, because the totals were broken into intermediate totals by

the first reduction kernel. Combining the intermediate totals in the second reduction avoided the

accumulative error experienced in the CPU version with floating-point values. The absolute thread

ID, defined by equation 2, corresponded to a relative position within the search window, conceived

as a one-dimensional array. Translating this relative index value to its absolute frame index within

the entire hue array was computed using the following equation:

34

absolute frame index = (W ⇤ topY) + topX + (W ⇤ subY) + subX (5.3)

where:

topX : x-coordinate of the start of the search window in the video frame Mat object

topY : y-coordinate of the start of the search window in the video frame Mat object

W : the width of video frame

subX : x-coordinate relative to within the search window

subY : y-coordinate relative to within the search window

The subX and subY coordinates were calculated from the thread ID using the following equa-

tions:

subX = i/w

subY = i mod w

(5.4)

where:

i : the absolute thread ID within the grid

w : search window width

Any thread with an absoluteThreadID larger than the size of the search window filled its shared

memory indexes with zeros. Otherwise, the absolute frame index was used to read in a hue value

from global memory. The hue value served as the hash key to an index in the constant memory

histogram. Each thread used its threadID within the block as the index to load the retrieved his-

togram value into shared memory. The zeroth moment shared memory array was loaded with only

the histogram value. The first-order x and y moment arrays were loaded with the histogram value

multiplied by the subX and subY values respectively. The first reduction kernel proceeded with the

sequential addressing pattern described in section 2.6 for each shared memory array in the same way

after loaded. The intermediate values were written out to another statically allocated global memory

array by the first thread in the block. The zeroth-order moment intermediate value was written to

the index of the block ID, the first-order moment with respect to x was written to the block ID offset

35

by the number of blocks, and the first-order moment with respect to y was written to the block ID

offset by twice the number of blocks.

Figure 5.6: Example Mapping Thread ID of 3 to Search Window Index in Video Frame

The second reduction kernel had the simple task of further reducing the intermediate values

from the first reduction. The grid size in the first reduction was guaranteed to be less than 1024

because the dimensions of a video frame was only 1024 by 720. This allowed the second reduction

kernel to be launched in a single block. The block size was set as the number of blocks from the first

kernel was rounded up to the nearest power of two, in order to maintain the same reduction pattern

as the first kernel. The original number of blocks from the first kernel was kept as the new length

of the input data for the second reduction. Any thread with a block threadID less than this length

filled its shared memory indexes with a buffer value of zero. Otherwise, the threads read in the first

reduction output values to three shared memory arrays and proceeded as described in section 2.6.

The first three indexes in the same output global array were used to write the final moments results

out to global memory.

5.6.5 Multiple Object Tracking

The initial attempt at extending the GPU version to track multiple objects with the NDP version

kept the calculations of different objects statistical moments in the blocks of the same reduction

36

kernels. This approach was overly complicated and inefficient. It required the use of offsets to

differentiate which blocks corresponded to a given object. The number of blocks per object were

used as the offsets and had to be stored in global memory for access across thread blocks. The

runtime of the reductions for a smaller search window was limited by the completion of the largest

search window reduction, because all block offsets needed to be updated in the parent thread before

the next iteration. Checking for the convergence of multiple objects required setting a boolean

flag for each object upon its convergence. The condition for a completely processed video frame

required the parent thread to scan an array storing all of the convergence flags and finding all true

values.

Figure 5.7: Extension for Multi-Object Tracking

The extension to tracking multiple objects in this project was greatly simplified and accelerated

by utilizing dynamic parallelism. Each object was tracked separately by its own thread in the parent

kernel launched from the host. The parent control kernel and both child reduction kernels were

kept simplified because all blocks of their reductions belonged to the same object. The thread ID

of each parent thread identified the object ID used by the parent thread and all of its nested threads

for offsetting access to any shared data structures. The histogram array and moment output arrays

were extended by the multiple of objects tracked to offset their storage. The object ID was used to

perform pointer arithmetic to point threads to the start of their object’s offset section of the arrays.

Each parent thread could operate in complete isolation from each another until its own convergence.

Only the host thread had to synchronize the parent grid launch to ensure reading the accurate final

centroids and search window dimensions.

37

5.6.6 Lost Object Recovery

An extension to this project was attempted to help recover from the failed tracking that results

from the deficiencies in the algorithm described in section 3.2.1. The approach was to expand

the search window to the size of the entire video frame when a lost object was detected. Lost

object detection was defined by an convergence iteration count of over twenty times. An obvious

problem with this definition is that it will not recognize when a search window has locked onto

any background noise or similar object. However, it is quite effective in the event of a drifting

search window that has lost the object because of occlusion by a dissimilar object. The window can

drift if the background hue values are different enough from its histogram distribution to result in

no convergence. Another problem arises during the recovery of the lost tracking. Only expanding

the search window to the entire frame leaves the convergence algorithm vulnerable to mistaking

background noise as the object for rediscovery. Coupling the recovery algorithm with preprocessed

background subtraction helps mitigate this risk.

6 Results
The test results collected in this project were run on a server with an Intel i7 CPU with 6 cores

and a clock speed of 3.50 GHz. The server had 4 Nvidia GTX 970 GPUs with 1.2 GHz clock speed.

Reading the video frames into memory and writing the processed video frames to an output video

file shared the same OpenCV library calls for all three versions of the implemented CAMSHIFT.

The collected test results were comprised of the two computational tasks that differed between

the CPU version and the improved dynamically parallel design on the GPU. The first task was

the pre-processing stage of BGR-to-HSV video frame conversion before the actual CAMSHIFT

statistical moment computation. The test results of this stage for the dynamically parallel GPU

version included both the host-to-device memory transfer of the BGR video frame and the runtime of

the BGR-to-HSV conversion kernel. The earlier non-dynamically parallel GPU version shared the

same OpenCV BGR-to-HSV video frame conversion as the CPU version. Therefore, the memory

transfer of the prepared video frame was not required for this conversion and was not included in its

timing. The second computational task timed and compared was the CAMSHIFT statistical moment

computation. The memory transfer for each video frame was included in the results for the non-

dynamically parallel GPU version, because it occurred after the first task. However, this memory

38

transfer was not considered in the dynamically parallel GPU version because the conversion hue

array was already stored in global memory at the conclusion of its BGR-to-HSV conversion kernel.

Test results were gathered for both single and two object multi-tracking. Statically sized search

windows were used to show the average runtimes at set search window sizes.

6.1 Single Object Tracking Results

All three designs tested could track a search window the size of the entire frame, because the

frame size could be divided into less than the NDP design limit of 1024 block size in the second

block reduction kernel.

Figure 6.1: CPU and Non-Dynamic Parallel GPU Single Object Tracking Design Comparison

6.1.1 CPU and Non-Dynamic Parallel GPU design comparison

The runtime of the per-frame computation of the statistical moments and convergence is the

only way to compare the differences between the NDP and the CPU versions. This is because

both versions shared the same pre-processing for the input preparations. The speed-up for the NDP

version over the CPU version was modest for small to medium sized search windows. Figure 6.1

shows the more drastic improvement provided by the parallelized version for single object tracking

once the search window is expanded to the entire video frame.

6.1.2 CPU and Dynamic Parallel GPU design comparison

The DP design showed five times speed-up in the pre-processing color model conversion over

the other designs. This step pre-loads the global converged hue video frame at the conclusion of the

39

conversion kernel, hiding the latency of each video frame memory transfer to device. The speed-up

increased compared to the CPU design without the initial per-frame memory transfer latency.

Figure 6.2: CPU and Dynamic Parallel GPU Single Object Tracking Design Comparison

6.2 Non-Dynamic Parallel and Dynamic Parallel GPU Design Comparison

Figure 6.3: Non-Dynamic Parallel and Dynamic Parallel GPU Single Object Tracking Design Com-
parison

The use of a dynamically parallel design shows a five time total speed-up over the earlier design.

The comparison of the convergence computation is admittedly unfair between these designs because

of the included extra initial memory transfer in the earlier design. However, the total speed-up con-

siders all memory transfer latency between the two designs. The DP design showed performance

40

gains without the iterative and intermediate device-to-host memory transfer of results. The dynam-

ically parallel design was also worth implementing over the earlier design because of the simpler

logic within the reduction kernels.

6.3 Multiple Object Tracking Results

Only the earlier NDP design could not track multiple objects because of its problem with block

size overflow. Regardless, most trackable objects fit within a smaller 400 by 400 search window.

The full-frame 1080 by 720 search window feature was only tested for gaining understanding of its

time-cost for a possible future extension of object re-detection. The results for tracking two objects

are presented in the following sections.

6.3.1 Non-dynamic parallelism GPU versus CPU Designs

The CPU design tracked multiple objects consecutively by calculating the per-frame final cen-

troids of the different object sequentially. The NDP GPU design attempted to parallelize multiple

object tracking. Its design was limited by slowing the faster search window computation to the

time cost of the slower search window during every iteration of the per-frame computation, due

to the sharing of kernels between the blocks of both search windows. As expected, the CPU de-

sign roughly doubled its time cost during the convergence computation. The CPU design became

unusable for a real-time application when tracking two search windows both sized the entire frame.

Figure 6.4: CPU and Non-Dynamic Parallel GPU Version Multiple Object Tracking Comparison

41

6.3.2 Dynamic parallel GPU versus CPU Designs

Figure 6.5: CPU and Dynamic Parallel GPU Version Multiple Object Tracking Comparison

The timing results showed the DP GPU design actually doubled for the convergence computa-

tion. This might be explainable in two ways. One explanation is the added overhead of maintaining

and parsing the scheduling information by the parent grid. There are three layers of kernel launching

recursion. The second explanation might be the decreased occupancy for branches of the recursion

due to more active blocks. However, the slowdown results in a time that is still much below the re-

quirements of real-time performance. The comparison of the DP GPU design and the CPU design,

shown in figure 6.5, an improved speed-up over single object tracking still occurred.

6.4 Non-Dynamic Parallel GPU versus Dynamic Parallel GPU Designs

The increased target of two objects did not increase the speed-up for the DP GPU design over

the NDP GPU design. However, the DP GPU design was the better design because it continued to

show a speed-up and had no block size overflow problem limiting the number of search windows.

The design could theoretically compute over as many search windows as maintainable in device

memory.

42

Figure 6.6: Non-Dynamic Parallel GPU and Dynamically Parallel GPU Version Multiple Object
Tracking Comparison

7 Observations and Discussion
The goal of this paper was to increase the computational speed of the basic CAMSHIFT com-

putation. Without the use of thresholding the saturation and brightness levels or any other robust

extensions, its performance quality remained vulnerable to its traditional deficiencies. However,

object tracking in this project still performed well under specific conditions. Objects with a small

probability distribution range were accurately tracked without background noise. Even when oc-

cluded by another object of a different histogram distribution, these objects could be recovered

consistently due to their high probability histogram values. When the object was occluded by a

dissimilar obstruction, the search window would shrink to the size of the nearest, if any, uncovered

portion of the object.

Sometimes the window would not recover to a large enough size if it became too small, however.

An explanation might be the use of histogram ranges between 0 to 1 were too small to recover the

size of the window after occlusion. The problem also occurred when the object just moved far

enough away from the camera. The past implementations in the related works always normalized

the histogram values to contain 8-bit integers.The non-normalized percentage values were kept in

this project, however, to keep the summations of the statistical moments low enough to fit in the

optimized 32-bit registers of the SM. It is unclear why smaller histogram values affects it. It might

simply be the over-importance each pixel takes in the smaller sample size. A heuristic was added to

43

increase the search window size large enough to recover tracking if the window shrank too small.

If the search window’s total size, regardless of dimensionality, fell below 20, then it was resized to

have a width of 200. Experiments derived this heuristic based on tweaking the thresholds until it

performed well.

Figure 7.1: Statistical Moment Computation Speed-Up Overview

Both versions were particularly prone to background noise interference. Not using thresholding

based on the lighting was a major contributor to this problem. But imprecise hue definition during

histogram back-projection also played a role in making the background seem more noisy than it

should. First, the OpenCV use of 8-bit storage for the BGR primary color values cut the range of

translated hue values in half from 360 degrees to 180. This alone cut the range of hue definition

in half. Second, the increased histogram bin width to three hue values per bin further reduced the

number of distinguishable hue probabilities.

Background noise removal with the OpenCV background subtraction was a very effective pre-

processing technique to compensate the increased background noise susceptibility. Figure 5.2 shows

how effective of a measure it could be. However, experiments proved that background subtraction

can be a limited technique in most situations. If the camera is not stationary, then the background

44

model will not be comparable with the background in each subsequent video frame. It did not work

well for video sequences that built the histogram of the object based on the initial search window

in the first frame either. The background model treated the pixel values at the initial position of

the object as a part of background. Tracking the object in this video sequence often fails, because

the first few video frames black out the object if it does not change positions quickly enough. The

search window often would drift too far away for the object to be recovered. The added feature to

read the histogram from a file instead was added partly to fix this issue. The first frame would not

have to include the object for histogram construction and the background model would not include

the object. However, the object detection routine needs improvement to ensure this process will

consistently work.

Another performance issue arose from the hue definition ambiguity. Tracking objects with

more complex hue compositions did not perform well without background noise removal. There

are several factors that could account for this. A complex hue composition would correlate to a

more evenly distributed histogram. A wider range of background hue values would have a more

significant histogram value. Object occlusion would also have a greater chance of confusing the

algorithm because of a wider range of coinciding significant histogram bins in the different objects’

color models.

The equations for calculating the window size presented some issues as well. Objects with wider

rather than taller dimensions tended to have windows that were too large, because the height of the

search window was defined as a simple ratio of the calculated width. Likewise, when the object was

much taller than its width, using a constant ratio to calculate the height resulted in a window too

short to cover its entirety. Rotating the object would shrink the search window, as well, because a

significant portion of the object would angle outside of search window coverage.

8 Future Work
The next focus for this project will be directed towards improving its tracking accuracy. The

first step towards this goal is increasing the distinguishable range of different hues. Another impor-

tant step is adding extensions to the basic routine to make the tracking more robust. A combination

of the SURF extension with the use of different multiple histograms for three-dimensional object

profiling would be an interesting experiment. The use of atomic operations to construct histograms

45

with a CUDA kernel is a well-established technique [30][31]. Atomic operations can allow threads

to safely increment the histogram bin counters without conflict by enforcing sequential operations

between the conflicting updates. The use of dynamic parallelism to launch the CAMSHIFT reduc-

tion kernels in parallel with reference histogram construction kernels should also be investigated.

Other features of the CUDA API should be explored for a even faster CAMSHIFT routine. Bet-

ter runtime performance might be achieved using asynchronous memory transfers to hide latency.

This project was limited in its application by its reliance on a remote server. An extension to

real-time object tracking is an important step towards integrating the routine into other applications.

A different way the project could be extended to real-time object tracking is porting it to the iOS

framework using the Metal API. Metal is a relatively new API that exposes native low-level calls to

the GPU within Apple hardware devices for custom shaders and general purpose progamming.

9 Conclusion
This paper presented a computer vision system for tracking multiple object positions and sizes

across the span of digital video frames. The system utilizes the CUDA programming model to

distribute the requisite work across the many cores of the Nvidia graphics card streaming multi-

processors. The basis of this system is the well-established CAMSHIFT algorithm. It calculates

the local peak of the probability distribution image comprised histogram values of an object’s color

profile. The conversion from the RGB color model, stored in regular video frames, to the isolated

color found in the hue channel of the HSV color model was shown to perform faster via CUDA

parallelization than in an OpenCV equivalent. The CAMSHIFT algorithm was translated into the

well-established two-phase sequential addressing reduction parallel algorithm to show significant

speed-up over an equivalent version using only CPU processing. The help of dynamic parallelism

allowed the CAMSHIFT computation to avoid any CPU intervention until convergence despite the

iterative nature of the algorithm. The good run-time speeds of this implementation were fast enough

to allow adding image preprocessing techniques for more robust performance while remaining under

the time requirements for real-time performance. Background subtraction proved to be an effective

noise removal procedure to allow tracking in the presence of similarly colored backgrounds under

certain conditions. Thresholding based on different color model channels would be an easy and

efficient extension to avoid the effects on hue values of the presence of intense illumination levels.

46

Vita

Author: Matthew J. Perry

Place of Birth: Saint Louis Park, Minnesota

Undergraduate Schools Attended: University of Montana,

Eastern Washington University

Degrees Awarded: Bachelor of Arts in Philosophy, 2009, University of Montana

Professional Experience: Junior Software Engineer, Commerce Architects, Spokane, Washington,

2016

47

References
[1] Y. Cheng, “Mean shift, mode seeking, and clustering,” Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on, vol. 17, no. 8, pp. 790–799, 1995.

[2] D. B. Kirk and W. H. Wen-mei, Programming massively parallel processors: a hands-on

approach. Newnes, 2012, no. 151-170.

[3] [Online]. Available: https://en.wikipedia.org/wiki/Hue#cite note-1

[4] [Online]. Available: https://en.wikipedia.org/wiki/RGB color model

[5] [Online]. Available: https://commons.wikimedia.org/wiki/File:RGB farbwuerfel.jpg

[6] (2006). [Online]. Available: http://david.navi.cx/blog/wp-content/uploads/2006/06/HSV

cone.png

[7] A. R. Smith, “Color gamut transform pairs,” ACM Siggraph Computer Graphics, vol. 12, no. 3,

pp. 12–19, 1978.

[8] [Online]. Available: http://docs.opencv.org/2.4/modules/imgproc/doc/miscellaneous

transformations.html

[9] J. Li, J. Zhang, Z. Zhou, W. Guo, B. Wang, and Q. Zhao, “Object tracking using improved

camshift with surf method,” in Open-Source Software for Scientific Computation (OSSC), 2011

International Workshop on. IEEE, 2011, pp. 136–141.

[10] M. Harris, “Maxwell: The most advanced cuda gpu ever made.” [Online]. Available:

https://devblogs.nvidia.com/parallelforall/maxwell-most-advanced-cuda-gpu-ever-made/

[11] [Online]. Available: http://geco.mines.edu/tesla/cuda tutorial mio/pic/Picture1.png

[12] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W.-m. W. Hwu,

“Optimization principles and application performance evaluation of a multithreaded gpu using

cuda,” in Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of

parallel programming. ACM, 2008, pp. 73–82.

48

[13] [Online]. Available: http://developer.download.nvidia.com/assets/cuda/files/

CUDADownloads/TechBrief Dynamic Parallelism in CUDA.pdf

[14] J. Wang and S. Yalamanchili, “Characterization and analysis of dynamic parallelism in un-

structured gpu applications,” in Workload Characterization (IISWC), 2014 IEEE International

Symposium on. IEEE, 2014, pp. 51–60.

[15] N. Paulius Micikevicius, “Local memory and register spilling.” [Online]. Available:

http://on-demand.gputechconf.com/gtc-express/2011/presentations/register spilling.pdf

[16] N. Gupta, “Bank conflicts in shared memory in cuda.” [Online]. Available: http:

//cuda-programming.blogspot.com/2013/02/bank-conflicts-in-shared-memory-in-cuda.html

[17] “Advanced cuda webinar: Memory optimizations.” [Online]. Avail-

able: http://on-demand.gputechconf.com/gtc-express/2011/presentations/NVIDIA GPU

Computing Webinars CUDA Memory Optimization.pdf

[18] N. Gupta, “Texture memory in cuda, what is texture memory in cuda

programming.” [Online]. Available: http://cuda-programming.blogspot.com/2013/02/

texture-memory-in-cuda-what-is-texture.html

[19] N. C. Dr. Justin Luitjens, Dr. Steven Rennich, “Cuda warps and occupancy: Gpu computing

webinar 7/12/2011.” [Online]. Available: http://on-demand.gputechconf.com/gtc-express/

2011/presentations/cuda webinars WarpsAndOccupancy.pdf

[20] M. Harris, “How to access global memory efficiently in cuda

c/c++ kernels.” [Online]. Available: https://devblogs.nvidia.com/parallelforall/

how-access-global-memory-efficiently-cuda-c-kernels/

[21] N. Gupta, “What is ”constant memory” in cuda, constant memory in cuda.” [Online]. Avail-

able: http://cuda-programming.blogspot.com/2013/01/what-is-constant-memory-in-cuda.

html

[22] G. R. Bradski, “Computer vision face tracking for use in a perceptual user interface,” 1998.

49

[23] A. Bhattachayya, “On a measure of divergence between two statistical population defined by

their population distributions,” Bulletin Calcutta Mathematical Society, vol. 35, pp. 99–109,

1943.

[24] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,” in Computer

vision–ECCV 2006. Springer, 2006, pp. 404–417.

[25] Badgerati, “Computer vision - the integral image.” [Online]. Available: https://

computersciencesource.wordpress.com/2010/09/03/computer-vision-the-integral-image/

[26] D. Exner, E. Bruns, D. Kurz, A. Grundhöfer, and O. Bimber, “Fast and robust camshift track-

ing,” in Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer

Society Conference on. IEEE, 2010, pp. 9–16.

[27] R. Amorim, G. Haase, M. Liebmann, and R. W. d. Santos, “Comparing cuda and opengl

implementations for a jacobi iteration,” in High Performance Computing & Simulation, 2009.

HPCS’09. International Conference on. IEEE, 2009, pp. 22–32.

[28] J. H. Jo and S. G. Lee, “Cuda based camshift algorithm for object tracking systems,” 2013.

[29] M. Harris et al., “Optimizing parallel reduction in cuda,” NVIDIA Developer Technology,

vol. 2, no. 4, 2007.

[30] V. Podlozhnyuk, “Histogram calculation in cuda,” NVIDIA Corporation, White Paper, 2007.

[31] N. Sakharnykh, “Gpu pro tip: Fast histograms using shared atom-

ics on maxwell.” [Online]. Available: https://devblogs.nvidia.com/parallelforall/

gpu-pro-tip-fast-histograms-using-shared-atomics-maxwell/

	Eastern Washington University
	EWU Digital Commons
	2016

	Dynamically parallel CAMSHIFT: GPU accelerated object tracking in digital video
	Matthew J. Perry
	Recommended Citation

	tmp.1489685329.pdf.WesaG

