61,758 research outputs found

    Improved Rate Control Algorithm for Scalable Video Coding

    Get PDF
    In the Scalable Video Coding (SVC) standard, a multi-layer based structure is utilised to support scalability. However in the latest Joint Scalable Video Model (JSVM) reference software, the rate control algorithm is implemented only in the base layer, and the enhancement layers are not equipped with a rate control scheme. In this work, a novel rate control algorithm is proposed for when inter-layer prediction is employed. Firstly, a Rate-Quantisation (R-Q) model, which considers the coding properties of different prediction modes, is described. Secondly, an improved Mean Absolute Difference (MAD) prediction model for the spatial enhancement layers is proposed, in which the encoding results from the base layer are used to assist the linear MAD prediction in the spatial/CGS enhancement layers. Simulation results show that, on average, rate control accuracy is maintained to within 0.07%. Compared with the default JVT-G012 rate control scheme employed in SVC, the proposed rate control algorithm achieves higher coding efficiency, namely an improvement of up to 0.26dB in PSNR and a saving of 4.66% in bitrate

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Multi-loop quality scalability based on high efficiency video coding

    Get PDF
    Scalable video coding performance largely depends on the underlying single layer coding efficiency. In this paper, the quality scalability capabilities are evaluated on a base of the new High Efficiency Video Coding (HEVC) standard under development. To enable the evaluation, a multi-loop codec has been designed using HEVC. Adaptive inter-layer prediction is realized by including the lower layer in the reference list of the enhancement layer. As a result, adaptive scalability on frame level and on prediction unit level is accomplished. Compared to single layer coding, 19.4% Bjontegaard Delta bitrate increase is measured over approximately a 30dB to 40dB PSNR range. When compared to simulcast, 20.6% bitrate reduction can be achieved. Under equivalent conditions, the presented technique achieves 43.8% bitrate reduction over Coarse Grain Scalability of the SVC - H.264/AVC-based standard
    • …
    corecore