664 research outputs found

    ICA of Functional MRI Data: An Overview

    Get PDF
    Independent component analysis (ICA) has found a fruitful application in the analysis of functional magnetic resonance imaging (fMRI) data. A principal advantage of this approach is its applicability to cognitive paradigms for which detailed a priori models of brain activity are not available. ICA has been successfully utilized in a number of exciting fMRI applications including the identification of various signal-types (e.g. task and transiently task-related, and physiology-related signals) in the spatial or temporal domain, the analysis of multi-subject fMRI data, the incorporation of a priori information, and for the analysis of complex-valued fMRI data (which has proved challenging for standard approaches). In this paper, we 1) introduce fMRI data and its properties, 2) review the basic motivation for using ICA on fMRI data, and 3) review the current work on ICA of fMRI with some specific examples from our own work. The purpose of this paper is to motivate ICA research to focus upon this exciting application

    Any-way and Sparse Analyses for Multimodal Fusion and Imaging Genomics

    Get PDF
    This dissertation aims to develop new algorithms that leverage sparsity and mutual information across data modalities built upon the independent component analysis (ICA) framework to improve the performance of current ICA-based multimodal fusion approaches. These algorithms are further applied to both simulated data and real neuroimaging and genomic data to examine their performance. The identified neuroimaging and genomic patterns can help better delineate the pathology of mental disorders or brain development. To alleviate the signal-background separation difficulties in infomax-decomposed sources for genomic data, we propose a sparse infomax by enhancing a robust sparsity measure, the Hoyer index. Hoyer index is scale-invariant and well suited for ICA frameworks since the scale of decomposed sources is arbitrary. Simulation results demonstrate that sparse infomax increases the component detection accuracy for situations where the source signal-to-background (SBR) ratio is low, particularly for single nucleotide polymorphism (SNP) data. The proposed sparse infomax is further extended into two data modalities as a sparse parallel ICA for applications to imaging genomics in order to investigate the associations between brain imaging and genomics. Simulation results show that sparse parallel ICA outperforms parallel ICA with improved accuracy for structural magnetic resonance imaging (sMRI)-SNP association detection and component spatial map recovery, as well as with enhanced sparsity for sMRI and SNP components under noisy cases. Applying the proposed sparse parallel ICA to fuse the whole-brain sMRI and whole-genome SNP data of 24985 participants in the UK biobank, we identify three stable and replicable sMRI-SNP pairs. The identified sMRI components highlight frontal, parietal, and temporal regions and associate with multiple cognitive measures (with different association strengths in different age groups for the temporal component). Top SNPs in the identified SNP factor are enriched in inflammatory disease and inflammatory response pathways, which also regulate gene expression, isoform percentage, transcription expression, or methylation level in the frontal region, and the regulation effects are significantly enriched. Applying the proposed sparse parallel ICA to imaging genomics in attention-deficit/hyperactivity disorder (ADHD), we identify and replicate one SNP component related to gray matter volume (GMV) alterations in superior and middle frontal gyri underlying working memory deficit in adults and adolescents with ADHD. The association is more significant in ADHD families than controls and stronger in adults and older adolescents than younger ones. The identified SNP component highlights SNPs in long non-coding RNAs (lncRNAs) in chromosome 5 and in several protein-coding genes that are involved in ADHD, such as MEF2C, CADM2, and CADPS2. Top SNPs are enriched in human brain neuron cells and regulate gene expression, isoform percentage, transcription expression, or methylation level in the frontal region. Moreover, to increase the flexibility and robustness in mining multimodal data, we propose aNy-way ICA, which optimizes the entire correlation structure of linked components across any number of modalities via the Gaussian independent vector analysis and simultaneously optimizes independence via separate (parallel) ICAs. Simulation results demonstrate that aNy-way ICA recover sources and loadings, as well as the true covariance patterns with improved accuracy compared to existing multimodal fusion approaches, especially under noisy conditions. Applying the proposed aNy-way ICA to integrate structural MRI, fractal n-back, and emotion identification task functional MRIs collected in the Philadelphia Neurodevelopmental Cohort (PNC), we identify and replicate one linked GMV-threat-2-back component, and the threat and 2-back components are related to intelligence quotient (IQ) score in both discovery and replication samples. Lastly, we extend the proposed aNy-way ICA with a reference constraint to enable prior-guided multimodal fusion. Simulation results show that aNy-way ICA with reference recovers the designed linkages between reference and modalities, cross-modality correlations, as well as loading and component matrices with improved accuracy compared to multi-site canonical correlation analysis with reference (MCCAR)+joint ICA under noisy conditions. Applying aNy-way ICA with reference to supervise structural MRI, fractal n-back, and emotion identification task functional MRIs fusion in PNC with IQ as the reference, we identify and replicate one IQ-related GMV-threat-2-back component, and this component is significantly correlated across modalities in both discovery and replication samples.Ph.D

    Orthogonal Extended Infomax Algorithm

    Full text link
    The extended infomax algorithm for independent component analysis (ICA) can separate sub- and super-Gaussian signals but converges slowly as it uses stochastic gradient optimization. In this paper, an improved extended infomax algorithm is presented that converges much faster. Accelerated convergence is achieved by replacing the natural gradient learning rule of extended infomax by a fully-multiplicative orthogonal-group based update scheme of the unmixing matrix leading to an orthogonal extended infomax algorithm (OgExtInf). Computational performance of OgExtInf is compared with two fast ICA algorithms: the popular FastICA and Picard, a L-BFGS algorithm belonging to the family of quasi-Newton methods. Our results demonstrate superior performance of the proposed method on small-size EEG data sets as used for example in online EEG processing systems, such as brain-computer interfaces or clinical systems for spike and seizure detection.Comment: 17 pages, 6 figure

    Template Independent Component Analysis: Targeted and Reliable Estimation of Subject-level Brain Networks using Big Data Population Priors

    Full text link
    Large brain imaging databases contain a wealth of information on brain organization in the populations they target, and on individual variability. While such databases have been used to study group-level features of populations directly, they are currently underutilized as a resource to inform single-subject analysis. Here, we propose leveraging the information contained in large functional magnetic resonance imaging (fMRI) databases by establishing population priors to employ in an empirical Bayesian framework. We focus on estimation of brain networks as source signals in independent component analysis (ICA). We formulate a hierarchical "template" ICA model where source signals---including known population brain networks and subject-specific signals---are represented as latent variables. For estimation, we derive an expectation maximization (EM) algorithm having an explicit solution. However, as this solution is computationally intractable, we also consider an approximate subspace algorithm and a faster two-stage approach. Through extensive simulation studies, we assess performance of both methods and compare with dual regression, a popular but ad-hoc method. The two proposed algorithms have similar performance, and both dramatically outperform dual regression. We also conduct a reliability study utilizing the Human Connectome Project and find that template ICA achieves substantially better performance than dual regression, achieving 75-250% higher intra-subject reliability
    • …
    corecore