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1. Introduction

In independent component analysis (ICA), it is assumed that the components of the observed
k-dimensional random vector x = (x1, . . . , xk) are linear combinations of the components of a
latent k-vector s = (s1, . . . , sk) such that s1, . . . , sk are mutually independent. This is denoted
by

x = As, (1)

where A is a k × k full-rank non-random mixing matrix. The main objective then is to extract
the mixing matrix through a set of observations x1, x2, . . . , xn. For a detailed description of this
method, including its motivation, existence and relationship with other well known statistical
methods such as principal component analysis, factor analysis, see Hyvärinen et al. (2001).

In signal processing applications, it will be convenient to view the observations as values
recorded at k locations over time periods 1, . . . , n. The number of locations k varies depending

on the application area. For instance, k = 2 in a blind source seperation problem to k ≈ 105 in
a typical human brain imaging data set. The number of time points n also varies and it ranges

from n ≈ 102 to n ≈ 106.

The spatial (location) and temporal (time) description of the data has generated a huge
number of biomedical applications such as cognitive or genomic research. In this paper, we
will focus on human brain data acquired from functional magnetic resonance imaging (fMRI)

technique where k ≈ 105 and n ≈ 102. This imaging technique has been used to effectively
study brain activities in a non-invasive manner by detecting the associated changes in blood
flow. Typically, fMRI data consists of a 3D grid of voxels; each voxel’s response signal over
time reflects brain activity. However, response signals are often contaminated by other signals
and noise, the magnitude of which may be as large as that of the response signal. Therefore,
independent component analysis has been applied to extract the spatial and temporal features
of fMRI data (Calhoun & Adali, 2006; McKeown et al., 1998).

For fMRI datasets, we remark that it is theoretically possible to search for signals that
are independent over space (spatial ICA) or time (temporal ICA). In fact, the above ICA
description involving the spatial k and temporal n scales should be called more precisely as
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the temporal ICA, while in spatial ICA, k will be treated as time, and n as location. Thus
one can see that temporal ICA is just the transpose of spatial ICA. However, in practice, it is
very difficult to obtain accurate and meaningful results from the temporal ICA of fMRI data
because of the correlation among the temporal physiological components. Therefore, the use
of spatial ICA is preferred for fMRI analysis (McKeown et al., 1998).

Our ICA on fMRI data is carried out by first reducing the number of independent components
(IC) using tools such as principal component analysis (PCA) or singular value decomposition
(SVD), followed with an algorithm for determining the ICs. The most commonly used ICA
algorithms for analyzing fMRI data are Infomax (Bell & Sejnowski, 1995), FastICA (Hyvärinen
& Oja, 1997), and joint approximate diagonalization of eigenmatrices (JADE) (Cardoso &
Souloumiac, 1993). Calhoun & Adali (2006) reported that Infomax consistently yielded the
most reliable results, followed closely by JADE and FastICA. In this study, we propose a novel
ICA algorithm that is a modification of the logspline ICA algorithm (LICA) (Kawaguchi &
Truong, 2011) and apply it to fMRI data. In ICA, we employ a likelihood approach to search for
ICs by estimating their probability distributions or density functions (pdf). This is equivalent
to maximizing the independence among ICs, and it is realized by using polynomial splines to
approximate the logarithmic pdf; we call this the logspline model. To account for the sparsity
of spatial fMRI maps, we further treat the pdf as a mixture of a logspline and a logistic density
function; this approach has proven to be very effective for treating sparse features in data.
Using simulated and real data, we compared our method with several well-known methods
and demonstrated the relative advantage of our method in extracting ICs.

The remainder of this paper is organized as follows. Section 2 describes the proposed method.
Section 3 presents the simulation studies. Section 4 describes the application of the proposed
method to real data. Finally, Section 5 presents discussions and concluding remarks of our
method.

2. Method

Let Y denote a T × V data matrix: each column of this matrix corresponds to a voxel time
series, and there are V voxels and T time points. We invoke singular value decomposition
(SVD) to yield the approximation Y ≈ UDX, where U is a T × M orthogonal matrix,
D = diag(d1, d2, . . . , dM) with d1 ≥ d2 ≥ · · · ≥ dM, and X is an M × V orthogonal matrix.
Here, we selected (orthogonal) columns of U to represent some experimental task functions
as well as the physiological components. In addition, the dimension of D has been reduced
by discarding values below a certain threshold; in other words, these values are essentially
treated as noise.

We determine the ICs based on the matrix X so that X = AS, where A is an M × M mixing
matrix and S is an M × V source matrix. That is, the v-th column of X is equal to A multiplied
by the v-th column of S, where v = 1, 2, . . . , V. Equivalently, each column of X is a mixture of M
independent sources. Let Sv denote the source vector at voxel v so that Sv = (S1, S2, . . . , SM),
v = 1, 2, . . . , V. Suppose that each Sj has a density function f j for j = 1, 2, . . . , M. Then, the

density function of X can be expressed as fX(x) = det(W)∏
M
j=1 f j(wjx), where W = A−1 and

wj is the j-th row of W.

We now model each source density according to the mixture with unknown probability a:

f j(x) = a f1j(x) + (1 − a) f2j(x), (2)
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where the logarithm of f1j(x) is modeled by using polynomial splines

log( f1j(x)) = C(βj) + β01jx +
mj

∑
i=1

β1ij(x − rij)
3
+,

with βj = (β01j, β11j, . . . , β1mj j) being a vector of coefficients, C(βj) a normalized constant, rij

the knots; and f2j(x) = sech2 (x) /2 is a logistic density function. Here (y)+ = max(y, 0).

We denote the vector of parameters in the density function by θ = (a, β). The maximum
likelihood estimate (MLE) of (W, θ) is obtained by maximizing the likelihood of X with respect
to (W, θ):

ℓ(W,θ) =
n

∑
i=1

k

∑
j=1

log( f j(w
T
j xi)).

We use a profile likelihood procedure to compute the MLE because a direct computation of
the estimates is generally not feasible. The iterative algorithm is shown in Table 1. Note that

1. Initialize W = I.

2. Repeat until the convergence of W, using the Amari metric.

(a) Given W, estimate the log density gj = log f j for the jth element Xj of X (separately for
each j) by using the stochastic EM algorithm shown in Appendix 7.

(b) Given gj (j = 1, 2, . . . , p),

wj ← ave[Xgj
′(wT

j X)]− ave[gj
′′(wT

j X)]wj

where wj is the jth column of W and ave is a sample average over X.

(c) Orthogonalize W

Table 1. Algorithm

the Amari metric (Amari et al., 1996) used in the algorithms is defined as

d(P, Q) =
1

p(p − 1)

⎧
⎨
⎩

p

∑
i=1

(
∑

p
j=1 |aij|

maxj |aij|
− 1

)
+

p

∑
j=1

(
∑

p
i=1 |aij|

maxi |aij|
− 1

)⎫
⎬
⎭ ,

where aij = (P−1Q)ij, P, and Q are p × p matrices. This metric is normalized, and is between
0 and 1.

Several authors have discussed initial guesses for ICA algorithms. Instead of setting several

initial guesses, as discussed in Kawaguchi & Truong (2011), X is multiplied by W̃, which
is the output of the algorithm when the log density function g(x) is replaced with g(x) =

1/{2b1/bΓ(1 + 1/b)} exp{−|x|b/b} with b = 3. The final output is obtained in the form Ŵ =

W̃Ŵ0, where Ŵ0 is the output of the algorithm shown in Table 1.

The purpose of spatial ICA is to obtain independent spatial maps and the corresponding

temporal activation profiles (time courses). By multiplying X with Ŵ, we can obtain the

estimates of the spatial map Ŝ as Ŝ = ŴX. On the other hand, the corresponding time courses

are obtained in the form Â = Ŵ(UD)−1.
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3. Simulation study

In this section, we conducted a simulation study to compare the proposed method with
existing methods such as Infomax (Bell & Sejnowski, 1995), fastICA (Hyvärinen & Oja, 1997),
and KDICA (Chen & Bickel, 2006). We designed our comparative study by using data that
emulated the properties of fMRI data. The spatial sources S consisted of a set of 250 × 250
pixels. These spatial sources were modulated with four corresponding time courses A of
length 128 to form a 62,500 × 128 dataset. The spatial source images S shown in the left-hand
side of Figure 1 are created by generating random numbers from normal density functions
with mean 0 and standard deviation 0.15 for a non-activation region, and mean 1 and standard
deviation 0.15 for an activation region. The activated regions consist of squares of di pixels on
a side, for i = 1, 2, 3, 4, that are located at different corners. We consider two situations: di’s
are the same among the four components (d1 = d2 = d3 = d4 = d) and di’s are different. For the
former, we used d = 20, 30, 40, and 50. For the latter, we generated uniform random numbers
between 20 and 50 for each di. The temporal source signals in the right-hand side of Figure 1
are the stimulus sequences convolved with an ideal hemodynamic response function as a
task-related component, and sin curves with frequencies of 2, 17, and 32 as other sources. We
generated the task-related component by using the R package fmri with onset times (11,75)
and a duration of 11. We repeated the above procedure 10 times for the case in which di’s were
the same and 50 times for the case in which di’s were different.

Comp 1 (Task) Comp 2

Comp 3 Comp 4

Fig. 1. Spatial and Temporal Simulation Data

Both the spatial and the temporal accuracies of ICA were assessed by R-square fitting of a
linear regression model. The evaluation was carried out as follows. For every estimated time
course, the R-square is computed from the linear regression model with the response being
each of the estimates and the predictor being true, that is, the stimulus sequence (Comp 1 on
the right-hand side in Figure 1). The component that has the maximum R-square is considered
to be task-related. We used the R-square value of this component for the comparison with
the existing methods with respect to temporal accuracy and to determine the corresponding
spatial map. The intensities of the spatial map are vectorized and used in the linear regression
model as the response with the vectorized true (Comp 1 on the left-hand side in Figure 1) as
the predictor to compute R-square for the spatial accuracy.

The averaged R-squares over simulations are summarized in Tables 2 and 3 for the temporal
and spatial data, respectively. When the sizes of the activation region were the same among all
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Infomax fastICA KDICA PSICA

d=50 0.627 0.852 0.679 0.843
d=40 0.456 0.460 0.472 0.735
d=30 0.408 0.463 0.424 0.586
d=20 0.358 0.270 0.709 0.518

average 0.462 0.511 0.571 0.670

rand 0.623 0.651 0.529 0.699

Table 2. Temporal R-square for simulation data. The mean over d = 20, 30, 40, and 50 is
calculated in the row labeled as average. The rand row shows the average over 50
replications when di’s were chosen randomly from the range 20 to 50.

Infomax fastICA KDICA PSICA

d=50 0.801 0.765 0.641 0.761
d=40 0.462 0.502 0.545 0.726
d=30 0.409 0.528 0.552 0.680
d=20 0.323 0.478 0.624 0.587

average 0.499 0.568 0.591 0.688

rand 0.537 0.607 0.579 0.643

Table 3. Spatial R-square for simulation data. The mean over d = 20, 30, 40, and 50 is
calculated in the row labeled as average. The rand row shows the average over 50
replications when di’s were chosen randomly from the range 20 to 50.

components, R-squares of the proposed method were significantly larger than those of others
for moderate sizes (d = 40 and 30) for both temporal and spatial data. For d = 50, fastICA had
the largest R-square for both temporal and spatial data, with the difference from the result
of the proposed method being small. For d = 20, KDICA had the largest R-square for both
temporal and spatial data, with the difference from the result of the proposed method being
significant for temporal data but not for spatial data. With respect to the average for d = 50,
40, 30, and 20, the proposed method had the largest R-square value than the others did. When
di was determined randomly, which might be more practical, we observed that the largest
R-square value in the rand row of the table was achieved by the proposed method.

4. Application

To demonstrate the applicability of the proposed method to real data, we separate fMRI
data into independent spatial components that can be used to determine three-dimensional
brain maps. To study brain regions that are related to different finger tapping movements,
fMRI data were obtained from a twin pair (Twin 1 and Twin 2) performing different tasks
alternately.The paradigm shown in Figure 2 consisted of externally guided (EG) or internally
guided (IG) movements based on three different finger sequencing movements performed
alternately by either the right or the left hand.

The fMRI dataset has 128 scans that were acquired using a modified 3T Siemens MAGNETOM
Vision system. Each acquisition consists of 49 contiguous slices. Each slice contains 64×64
voxels. Hence, each scan produces 64×64×49 voxels. The size of each voxel is 3 mm×3
mm×3 mm. Each acquisition took 2.9388 s, with the scan-to-scan repetition time (TR) set
to 3 s. The dataset was pre-processed using SPM5 (Friston et al., 1995). The preprocessing
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Fig. 2. Experimental Paradigm

included slice timing, realignment, and smoothing. We masked the image outside the human
head using the GIFT software package (Group ICA of fMRI Toolbox, Calhoun et al., 2001). We
used 21 components for Twin 1 and 30 for Twin 2; these were estimated using the minimum
description length (MDL) criteria.

We applied four ICA algorithms—Infomax (Bell & Sejnowski, 1995), fastICA (Hyvärinen &
Oja, 1997), KDICA (Chen & Bickel, 2006), and the proposed method (PSICA)—to the twins’
data. The R-square statistic was calculated from the fitted multiple linear regression model
with the estimated time course as the response. The predictors were the right EG, right IG, left
EG, and left IG, which consists of the expected BOLD response for the task indicator function
given by the argument as a convolution with the hemodynamic response function modeled
by the difference between two gamma functions. Table 4 shows the corresponding R-square
statistics. From this table, we can see that the proposed method extracted more correlated
components for a task than did the other methods for both twins.

Infomax fastICA KDICA PSICA

Twin 1 0.640 0.666 0.655 0.680
Twin 2 0.847 0.661 0.805 0.862

Table 4. Temporal R-square statistics for the twin data

Figure 3 shows one of the resulting spatial maps of SPICA for Twins 1 and 2 respectively, in
which the right motor area is highly activated and the corresponding time course shows a fit
to the left-hand task paradigm.

We mention a few important observations in this real human brain analysis:

1. After the analysis, it was revealed to us that Twin 1 had shown signs and symptoms
(tremors and slowed movements) of the Parkinson’s disease (PD), while Twin 2 was
considered normal at the time the data were collected. This may help to explain why
Twin 2 — the normal subject has higher R-squares in three of the four methods (Table 4).
In these methods, fastICA shows practically no difference of the twins.

2. In interpreting results from ICA, one should note that ICA is ambiguous about the sign:
x = As = (−A)(−s). This fact has produced different colour scales in the spatial maps
(located in the lower right corner). With this in mind, one can say that Twin 2 or the
normal subject has a higher intensity or activation level in the right motor area (because of
the left-hand task paradigm).

202 Independent Component Analysis for Audio and Biosignal Applications
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Fig. 3. Spatial Images for Twin 1 (left) and Twin 2 (right)

3. Further examination of the spatial maps indicates that the normal subject (on the right
panel) has a more focused location of the motor area, see particularly the red region in
slices 51, 48, 45, 42, 39, 36 and 33. The activated motor area of the PD twin (the left panel)
is not as sharply defined.

5. Discussion and conclusion

In this study, we developed an ICA algorithm based on a maximum likelihood approach using
a mixture of logspline and logistic density models with adaptive knot locations. The first
concern about this approach is that its model dimension seems to be much higher than those of
its peers. Here model dimensionality is defined as the number of model parameters including
possibly the spline knot locations. Depending on how noisy the data are, the built-in model
selection procedure (which is based on AIC or BIC) works in a sensible adaptive way: there is
constantly a trade-off in balancing the bias and variance of the estimate of the parameter since
the optimal strategy is to minimize the mean square error loss at the expense of the model
dimension. Moreover, the logistic component is included to reduce the model dimension
from the spline part in handling the sparsity of the spatial map. The main issue then is the
time required to extract the ICs this way. It is considerably more time consuming, but the
accuracy is very rewarding. The improvement over its peers performance was demonstrated
numerically in Tables 2 and 3 using the R-square as a criterion.

It is important to point out that we should also provide a sensitivity and specificity analysis of
the activated spatial locations as described in Lee et al. (2011), where popular methods such as
Infomax and fastICA were shown to have a higher false-positive/nagative rate. This implies
that brain activation should be studied more carefully, and one should avoid using methods
that tend to yield false activation.

As in our previous approahces to ICA, the key feature has always been the flexibility modeling
the source. In Kawaguchi & Truong (2011), the marginal distribution of the temporal source
component was modelled by the logspline methodology and we noted the improvement over
its peers. The comparatrive study was based on a wide variety of density functions, some are
known to be very challenging to estimate. Further details of this approach can be found in
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Kawaguchi & Truong (2011). In pursuing spatial ICA for fMRI based on human brain data,
we observed that simply taking the transpose of the temporal ICA approach mentioned in the
introduction did not always work. This is due to the fact that the spatial activation maps are
very sparse: density estimation using the logspline approach in the presence of sparsity has
never been investigated before. One of the our findings is that the logspline estimate of the
spatial distribution is too noisy, perhaps the model dimension is too high. Thus the logistic
component is added to our previous temporal ICA procedure in order to address this issue.
The advantage over the simple tranposition of the temporal approach has been clearly shown
in this paper.

The mixture modeling has been used previously for the detection of brain activation in fMRI
data (Everitt & Bullmore, 1999; Hartvig & Jensen, 2000; Neumann et al., 2008). In fMRI data,
the density functions of spatial sources are known to be supergaussion with heavy tails due to
the fact that brain activation is sparse and highly localized (McKeown et al., 1998), and often
skewed due to larger signal amplitudes in activated regions (Stone et al., 2002). Cordes &
Nandy (2007) modeled source densities as improved exponential power family. Our modeling
would be more flexible than these approaches.

In addition, the method may have some important extensions. Namely, it has been an
important problem as how to assess the variability of ICA, especially how the variance of the
spatial map can be best displayed. One way to examine the variation of the mixing coefficient
estimates is to use bootstrap method while preserving information about the spatial structure.
For example, in spatial ICA, one can generate bootstrap random samples from the logspline
density estimates of the source over space. Mix these samples using the estimate mixing
coefficients to yield the observed fMRI (BOLD) signals, which will then pass through ICA
to produce the so called bootstrapped spatial maps and mixing coefficients. We outline this as
an algorithm:

1. x ≈ Âŝ via our ICA algorithm.

2. ŝ → s∗ which is a bootstrapped source sample drawnn from the distribution of ŝ.

3. x∗ := Âs∗ to yield bootstrapped observed samples.

4. x∗ = Â∗ ŝ∗ using our ICA algorithm.

5. Repeat until a desirable number of bootstrap samples is achieved.

Table 5. Bootstrap Algorithm

The bootstrapped sample s∗ can be regarded as a by-product of the adequately modelled
spatial map density function. The algorithm can be described similarly for temporal ICA.
Thus it is feasible to develop the statistical inference framework for assessing the variability
of the estimator of the mixing matrix via the bootstrap method while preserving information
about the spatial or temporal structure.

In extending our temporal ICA to spatial ICA, we merely added the logistic component to
the logspline piece, which is essentially a one-dimensional density estimation, or marginal
density estimation procedure. Alternatively, in order to capture the actual spatial feature of
the three dimensional brain, or the two dimensional map, one can incorporate the spatial
correlation structure of the spatial map by introducing tensor products of spline functions or
the interaction terms in the logspline formulation. For temporal ICA, this can be implemented
by using time series models to account for the source serial correlations. Indeed, Lee et al.
(2011) has reported that there is noticeable improvement over the marginal density based ICA
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procedures. It will be important to see if the same will hold for the above spatial ICA approach
using tensor products of splines.

Another issue that we have not addressed is how to extend our method to compare groups of
subjects. This is known as the group ICA problem. In principle, we can follow the Group ICA
of fMRI Toolbox (Calhoun et al., 2001) by simply concatenating the observed data matrices.
This will certainly increase the computational complexity and one has to address the efficiency
problem as well.

Finally, we recall that prior to applying any of the ICA algorithms, one must carry out a
dimension reduction step on the observed data matrix first. In temporal ICA with T and V
as time and space scales, V will be reduced by, typically, employing the principal component
analysis (PCA), while the time factor T will be reduced in the spatial ICA. We have found
that even greater improvement can be achieved by using informative dimension reduction
methods such as singular value decomposition (SVD) by choosing the eigen-vectors to relate
to the experimental task paradigm closely. This is being referred to as a supervised SVD
dimension reduction procedure (Bai et al., 2008) and has been used effectively in Lee et al.
(2011).

In conclusion, the results presented in this paper can be viewed as a tool for setting up a
new framework for addressing some of known issues in applying ICA to fMRI or other brain
imaging modalities such as EEG or neural spike sorting problems. We have demonstrated
that the key element here is the flexibility in modeling the source distribution and that was
achieved by using polynomial splines as an approximation tool. We also used a mixture of
distribution approach to account for the spatial distribution in ICA for fMRI data analysis.
Although there are still many issues to be addressed, we have illustrated the usefulness of our
approach to fMRI brain activation detection in both simulated and real data analysis.
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7. Appendix

A. Stochastic EM algorithm for mixture density estimation

In statistics, an expectation-maximization (EM) algorithm is an iterative method for finding
maximum likelihood estimates (MLE) of parameters in statistical models. Typically these
models involve latent variables in addition to unknown parameters and known data
observations (Dempster et al., 1977). In our mixture model (2), parameter a is associated with
the latent variable of the number of non-activated voxels in a given sample, and the unknown
parameter β is related to the distribution of the fMRI intensity, coming from the logspline
component.

The EM algorithm is particularly useful when the score function cannot be solved directly.
The algorithm iteration alternates between performing an expectation (E) step, which
computes the expectation of the log-likelihood evaluated using the current estimate for the
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parameters, and a maximization (M) step, which locates parameters maximizing the expected
log-likelihood resulted in the E step. A version of this algorithm called a stochastic EM
algorithm was introduced in (Celeux & Diebolt, 1992) to avoid stabilization on saddle points
in parametric mixture models by incorporating the stochastic step (S-step) into the EM
algorithm. (Bordes et al., 2007) generalized it to semiparametric mixture models by using
kernel density estimation.

Suppose we have observations x1, x2, . . . , xn, and the observations are grouped by the
k-means clustering method with k being the integer part of n/10. Let us denote the number
of members in each group by ng (g = 1, 2, . . . , k) and xg = (xig1

, xig2
, . . . , xigng

). The algorithm

used in this paper is given below.

(1) E-step: Compute τ(j|xg) (g = 1, 2, . . . , k, j = 1, 2) using

τ(j|xg) =
1

ng

ng

∑
h=1

τ̃(j|xigh
)

where τ̃(j|x) = a f j(x)/ f (x).

(2) S-step: Draw z(xg) randomly from a Bernoulli distribution with probability of τ(1|xg)
and define z(xigh

) = 1 if z(xg) = 1 and z(xigh
) = 1 otherwise for g = 1, 2, . . . , k and h = 1,

2, . . . , ng.

(3) M-step: The estimator of a is given by

â =
1

n

n

∑
i=1

z(xi).

f1 is estimated by maximizing the likelihood described in Appendix 7 based on xi for
i ∈ {i; z(xi) = 1}.

These steps are repeated until convergence. For the log spline density f1, the maximum
likelihood estimation is applied. The data-driven knot locations in f1 are optimized as
described in Appendix 7. We use the k-means method to initialize a and f1. From the
observations that are separated by the k-means method, those having a larger mean are used
to initialize f1. It is possible that the stochastic EM algorithm may not converge but be stable
(Bordes et al., 2007; Celeux & Diebolt, 1992). Therefore, we use a large number of iterations

so as to stabilize the estimate of f . We then select f̂ as the final estimate, whose likelihood

∑
n
i=1 log f̂ (xi) is the maximum among the iterations.

B. Logspline density estimation

Let X be a random variable having a continuous and positive density function. The log density
of X is modeled by

g(x) = log( f (x)) = C(β) + β01x +
m

∑
i=1

β1i(x − ri)
3
+,

where β = (β01, β11, . . . , β1m) is a vector of coefficients, C(β) is a normalized constant,
rji are the knots, and (a)+ = max(a, 0). Let X1, . . . , Xn be independent random variables
having the same distribution as X. The log-likelihood function corresponding to the logspline
family is given by ℓ(β) = ∑

n
i=1 g(Xi). The maximum likelihood estimate β̂ is obtained by

maximizing the log-likelihood function. This methodology was introduced by Stone (1990)
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and the software was implemented by Kooperberg & Stone (1991). An ICA algorithm based
on the logspline density estimation was initiated by Kawaguchi & Truong (2011).

The knot selection methodology involves initial knot placement, stepwise knot addition,
stepwise knot deletion, and final model selection based on the information criterion. We
set the initial knot placement to be the minimum, median, and maximum values of the
distribution of data. At each addition step, we first find a good location for a new knot in
each of the intervals (L, r1), (r1, r2), . . . , (rK−1, rK), (rK , U) determined by the existing knots r1,
r2, . . . , rK and some constants L and U. Let X(1), . . . , X(n) be the data written in nondecreasing
order. Set l1 = 0 and uK = n. Define li and ui by

li = dmin + max{j : 1 ≤ j ≤ n and X(j) ≤ ri}, i = 2, . . . , K

and
ui = −dmin + max{j : 1 ≤ j ≤ n and X(j) ≥ ri}, i = 1, . . . , K − 1,

where dmin is the minimum distance between consecutive knots in order statistics.

For i = 0, . . . , K and for the model with Xji as a new knot where ji = [(li + ui)/2] with [x]
being the integer part of x, we compute the Rao statistics Ri defined by

Ri =
[S(β̂)]i√
[I−1(β̂)]ii

,

where S(β̂) is the score function, that is, the vector with entries ∂ℓ(β̂)/∂β j, and I(β̂) is the

matrix whose entry in row j and column k is given by −∂2ℓ(β̂)/∂β j∂βk. We place the potential
new knot in the interval [Xli∗

, Xui∗
] where i∗ = argmax Ri. Within this interval, we further

optimize the location of the new knot. To do this, we proceed by computing the Rao statistics
Rl for the model with X(l) as the knot with l = [(li∗ + ji∗ )/2] and Ru for the model with

X(u) as the knot with u = [(ji∗ + ui∗ )/2]. If Ri∗ ≥ Rl and Ri∗ ≥ Ru, we place the new knot
at X(i∗); if Ri∗ < Rl and Rl ≥ Ru, we continue searching for a knot location in the interval

[X(li∗ )
, X(ji∗ )

]; and if Ri∗ < Ru and Rl < Ru, we continue searching for a knot location in the

interval [X(ji∗ )
, X(ui∗ )

].

After a maximum number of knots Kmax = min(4n1/5, n/4, N, 30), where N is the number of
distinct Xi’s, we continue with stepwise knot deletion. During knot deletion, we successively
remove the knot that has minimum Wald statistics, defined by

Wi =
β̂i√

[I−1(β̂)]ii

of the existing knots.

Among all the models that are fit during the sequence of knot addition and knot deletion, we
choose the model that minimizes the Bayesian information criterion (BIC) defined by BIC =
−2ℓ(β̂) + m log(n).
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