282 research outputs found

    On the Derivative Imbalance and Ambiguity of Functions

    Full text link
    In 2007, Carlet and Ding introduced two parameters, denoted by NbFNb_F and NBFNB_F, quantifying respectively the balancedness of general functions FF between finite Abelian groups and the (global) balancedness of their derivatives DaF(x)=F(x+a)F(x)D_a F(x)=F(x+a)-F(x), aG{0}a\in G\setminus\{0\} (providing an indicator of the nonlinearity of the functions). These authors studied the properties and cryptographic significance of these two measures. They provided for S-boxes inequalities relating the nonlinearity NL(F)\mathcal{NL}(F) to NBFNB_F, and obtained in particular an upper bound on the nonlinearity which unifies Sidelnikov-Chabaud-Vaudenay's bound and the covering radius bound. At the Workshop WCC 2009 and in its postproceedings in 2011, a further study of these parameters was made; in particular, the first parameter was applied to the functions F+LF+L where LL is affine, providing more nonlinearity parameters. In 2010, motivated by the study of Costas arrays, two parameters called ambiguity and deficiency were introduced by Panario \emph{et al.} for permutations over finite Abelian groups to measure the injectivity and surjectivity of the derivatives respectively. These authors also studied some fundamental properties and cryptographic significance of these two measures. Further studies followed without that the second pair of parameters be compared to the first one. In the present paper, we observe that ambiguity is the same parameter as NBFNB_F, up to additive and multiplicative constants (i.e. up to rescaling). We make the necessary work of comparison and unification of the results on NBFNB_F, respectively on ambiguity, which have been obtained in the five papers devoted to these parameters. We generalize some known results to any Abelian groups and we more importantly derive many new results on these parameters

    Problems on q-Analogs in Coding Theory

    Full text link
    The interest in qq-analogs of codes and designs has been increased in the last few years as a consequence of their new application in error-correction for random network coding. There are many interesting theoretical, algebraic, and combinatorial coding problems concerning these q-analogs which remained unsolved. The first goal of this paper is to make a short summary of the large amount of research which was done in the area mainly in the last few years and to provide most of the relevant references. The second goal of this paper is to present one hundred open questions and problems for future research, whose solution will advance the knowledge in this area. The third goal of this paper is to present and start some directions in solving some of these problems.Comment: arXiv admin note: text overlap with arXiv:0805.3528 by other author

    The Approximate Optimality of Simple Schedules for Half-Duplex Multi-Relay Networks

    Full text link
    In ISIT'12 Brahma, \"{O}zg\"{u}r and Fragouli conjectured that in a half-duplex diamond relay network (a Gaussian noise network without a direct source-destination link and with NN non-interfering relays) an approximately optimal relay scheduling (achieving the cut-set upper bound to within a constant gap uniformly over all channel gains) exists with at most N+1N+1 active states (only N+1N+1 out of the 2N2^N possible relay listen-transmit configurations have a strictly positive probability). Such relay scheduling policies are said to be simple. In ITW'13 we conjectured that simple relay policies are optimal for any half-duplex Gaussian multi-relay network, that is, simple schedules are not a consequence of the diamond network's sparse topology. In this paper we formally prove the conjecture beyond Gaussian networks. In particular, for any memoryless half-duplex NN-relay network with independent noises and for which independent inputs are approximately optimal in the cut-set upper bound, an optimal schedule exists with at most N+1N+1 active states. The key step of our proof is to write the minimum of a submodular function by means of its Lov\'{a}sz extension and use the greedy algorithm for submodular polyhedra to highlight structural properties of the optimal solution. This, together with the saddle-point property of min-max problems and the existence of optimal basic feasible solutions in linear programs, proves the claim.Comment: Submitted to IEEE Information Theory Workshop (ITW) 201

    Nearly Optimal Deterministic Algorithm for Sparse Walsh-Hadamard Transform

    Get PDF
    For every fixed constant α>0\alpha > 0, we design an algorithm for computing the kk-sparse Walsh-Hadamard transform of an NN-dimensional vector xRNx \in \mathbb{R}^N in time k1+α(logN)O(1)k^{1+\alpha} (\log N)^{O(1)}. Specifically, the algorithm is given query access to xx and computes a kk-sparse x~RN\tilde{x} \in \mathbb{R}^N satisfying x~x^1cx^Hk(x^)1\|\tilde{x} - \hat{x}\|_1 \leq c \|\hat{x} - H_k(\hat{x})\|_1, for an absolute constant c>0c > 0, where x^\hat{x} is the transform of xx and Hk(x^)H_k(\hat{x}) is its best kk-sparse approximation. Our algorithm is fully deterministic and only uses non-adaptive queries to xx (i.e., all queries are determined and performed in parallel when the algorithm starts). An important technical tool that we use is a construction of nearly optimal and linear lossless condensers which is a careful instantiation of the GUV condenser (Guruswami, Umans, Vadhan, JACM 2009). Moreover, we design a deterministic and non-adaptive 1/1\ell_1/\ell_1 compressed sensing scheme based on general lossless condensers that is equipped with a fast reconstruction algorithm running in time k1+α(logN)O(1)k^{1+\alpha} (\log N)^{O(1)} (for the GUV-based condenser) and is of independent interest. Our scheme significantly simplifies and improves an earlier expander-based construction due to Berinde, Gilbert, Indyk, Karloff, Strauss (Allerton 2008). Our methods use linear lossless condensers in a black box fashion; therefore, any future improvement on explicit constructions of such condensers would immediately translate to improved parameters in our framework (potentially leading to k(logN)O(1)k (\log N)^{O(1)} reconstruction time with a reduced exponent in the poly-logarithmic factor, and eliminating the extra parameter α\alpha). Finally, by allowing the algorithm to use randomness, while still using non-adaptive queries, the running time of the algorithm can be improved to O~(klog3N)\tilde{O}(k \log^3 N)

    Tailoring a coherent control solution landscape by linear transforms of spectral phase basis

    Get PDF
    Finding an optimal phase pattern in a multidimensional solution landscape becomes easier and faster if local optima are suppressed and contour lines are tailored towards closed convex patterns. Using wideband second harmonic generation as a coherent control test case, we show that a linear combination of spectral phase basis functions can result in such improvements and also in separable phase terms, each of which can be found independently. The improved shapes are attributed to a suppressed nonlinear shear, changing the relative orientation of contour lines. The first order approximation of the process shows a simple relation between input and output phase profiles, useful for pulse shaping at ultraviolet wavelengths

    Symmetries in algebraic Property Testing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 94-100).Modern computational tasks often involve large amounts of data, and efficiency is a very desirable feature of such algorithms. Local algorithms are especially attractive, since they can imply global properties by only inspecting a small window into the data. In Property Testing, a local algorithm should perform the task of distinguishing objects satisfying a given property from objects that require many modifications in order to satisfy the property. A special place in Property Testing is held by algebraic properties: they are some of the first properties to be tested, and have been heavily used in the PCP and LTC literature. We focus on conditions under which algebraic properties are testable, following the general goal of providing a more unified treatment of these properties. In particular, we explore the notion of symmetry in relation to testing, a direction initiated by Kaufman and Sudan. We investigate the interplay between local testing, symmetry and dual structure in linear codes, by showing both positive and negative results. On the negative side, we exhibit a counterexample to a conjecture proposed by Alon, Kaufman, Krivelevich, Litsyn, and Ron aimed at providing general sufficient conditions for testing. We show that a single codeword of small weight in the dual family together with the property of being invariant under a 2-transitive group of permutations do not necessarily imply testing. On the positive side, we exhibit a large class of codes whose duals possess a strong structural property ('the single orbit property'). Namely, they can be specified by a single codeword of small weight and the group of invariances of the code. Hence we show that sparsity and invariance under the affine group of permutations are sufficient conditions for a notion of very structured testing. These findings also reveal a new characterization of the extensively studied BCH codes. As a by-product, we obtain a more explicit description of structured tests for the special family of BCH codes of design distance 5.by Elena Grigorescu.Ph.D

    On Binary de Bruijn Sequences from LFSRs with Arbitrary Characteristic Polynomials

    Full text link
    We propose a construction of de Bruijn sequences by the cycle joining method from linear feedback shift registers (LFSRs) with arbitrary characteristic polynomial f(x)f(x). We study in detail the cycle structure of the set Ω(f(x))\Omega(f(x)) that contains all sequences produced by a specific LFSR on distinct inputs and provide a fast way to find a state of each cycle. This leads to an efficient algorithm to find all conjugate pairs between any two cycles, yielding the adjacency graph. The approach is practical to generate a large class of de Bruijn sequences up to order n20n \approx 20. Many previously proposed constructions of de Bruijn sequences are shown to be special cases of our construction
    corecore