324 research outputs found

    Loss Diagnosis and Indoor Position Location System based on IEEE 802.11 WLANs

    Get PDF
    Wireless local area networks (WLANs) have been widely deployed to provide short range broadband communications. Due to the fast evolvement of IEEE 802.11 based WLAN standards and various relevant applications, many research efforts have been focused on the optimization of WLAN data rate, power and channel utilization efficiency. On the other hand, many emerging applications based on WLANs have been introduced. Indoor position location (IPL) system is one of such applications which turns IEEE 802.11 from a wireless communications infrastructure into a position location network. This thesis mainly focuses on data transmission rate enhancement techniques and the development of IEEE 802.11 WLAN based IPL system with improved locationing accuracy. In IEEE 802.11 systems, rate adaptation algorithms (RAAs) are employed to improve transmission efficiency by choosing an appropriate modulation and coding scheme accord­ ing to point-to-point channel conditions. However, due to the resource-sharing nature of WLANs, co-channel interferences and frame collisions cannot be avoided, which further complicates the wireless environment and makes the RAA design a more challenging task. As WLAN performance depends on many dynamic factors such as multipath fading and co-channel interferences, differentiating the cause of performance degradation such as frame losses, which is known as loss diagnosis techniques, is essential for performance enhance­ ments of existing rate adaptation schemes. In this thesis, we propose a fast and reliable collision detection scheme for frame loss diagnosis in IEEE 802.11 WLANs. Collisions are detected by tracking changes of the signal-to-interference-and-noise-ratio (SINR) in IEEE 802.11 WLANs with a nonparametric order-based cumulative sum (CUSUM) algorithm for rapid loss diagnosis. Numerical simulations are conducted to evaluate the effectiveness of the proposed collision detection scheme. The other aspect of this thesis is the investigation of an IEEE 802.11 WLAN based IPL system. WLAN based IPL systems have received increasing attentions due to their variety of potential applications. Instead of relying on dedicated locationing networks and devices, IEEE 802.11 WLAN based IPL systems utilize widely deployed IEEE 802.11 WLAN infrastructures and standardized wireless stations to determine the position of a target station in indoor environments. iii Abstract In this thesis, a WLAN protocol-based distance measurement technique is investigated, which takes advantages of existing IEEE 802.11 data/ACK frame exchange sequences. In the proposed distance measurement technique, neither dedicated hardware nor hardware modifications is required. Thus it can be easily integrated into off-the-shelf commercial, inexpensive WLAN stations for IPL system implementation. Field test results confirm the efficacy of the proposed protocol-based distance measurement technique. Furthermore, a preliminary IPL system based on the proposed method is also developed to evaluate the feasibility of the proposed technique in realistic indoor wireless environments

    Ultra-Wideband Technology: Characteristcs, Applications and Challenges

    Full text link
    Ultra-wideband (UWB) technology is a wireless communication technology designed for short-range applications. It is characterized by its ability to generate and transmit radio-frequency energy over an extensive frequency range. This paper provides an overview of UWB technology including its definition, two representative schemes and some key characteristics distinguished from other types of communication. Besides, this paper also analyses some widely used applications of UWB technology and highlights some of the challenges associated with implementing UWB in real-world scenarios. Furthermore, this paper expands upon UWB technology to encompass terahertz technology, providing an overview of the current status of terahertz communication, and conducting an analysis of the advantages, challenges, and certain corresponding solutions pertaining to ultra-wideband THz communication

    UWB in 3D Indoor Positioning and Base Station Calibration

    Get PDF
    There are several technologies available for object locating and tracking in outdoor and indoor environments but performance requirements are getting tighter and precise object tracking is still largely an open challenge for researchers. Ultra wideband technology (UWB) has been identified as one of the most promising techniques to enhance a mobile node with accurate ranging and tracking capabilities. For indoor applications almost all positioning technologies require physical installation of fixed infrastructure. This infrastructure is usually expensive to deploy and maintain. The aim of this thesis is to improve the accessibility of the RF-positioning systems by lowering the configuration cost. Real time localisation and tracking systems (RTLS) based on RF technologies pose challenges especially for the deployment of positioning system over large areas or throughout buildings within a number of rooms. If calibration is done manually by providing information about the exact position of the base stations, the initial set-up is particularly time consuming and laborious. In this thesis a method for estimating the position and orientation (x, y, z, yaw, pitch and roll) of a base station of a real time localization system is presented. The algorithm uses two-dimensional Angle of Arrival information (i.e. azimuth and elevation measurements). This allows more inaccurate manual initial survey of the base stations and improves the final accuracy of the positioning. The thesis presents an implementation of the algorithm, simulations and empirical results. In the experiments, hardware and software procured from Ubisense was used. The Ubisense RTLS bases on UWB technology and utilises Angle of Arrival and Time Difference of Arrival techniques. Performance and functionality of the Ubisense RTLS were measured in various radio environments as well as the implementation of the calibration algorithm. Simulations and experiment studies showed that camera calibration method can be successfully adapted to position systems based on UWB technology and that the base stations can be calibrated in a sufficient accuracy. Because of more flexible calibration, the final positioning accuracy of the Ubisense system was as whole in average better.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Wireless Positioning Applications in Multipath Environments

    Get PDF
    Funklokalisierung in der Umgebung mit der Mehrwegeausbreitung In den vergangenen Jahren wurde zunehmend Forschung im Bereich drahtlose Sensornetzwerk (engl. „Wireless Sensor Network“) betrieben. Lokalisierung im Innenraum ist ein vielversprechendes Forschungsthema, das in den Literaturen vielfältig diskutiert wird. Jedoch berücksichtigen die meisten Arbeiten einen wichtigen Faktor nicht, nämlich die Mehrwegeausbreitung, welche die Genauigkeit der Lokalisierung beeinflusst. Diese Arbeit bezieht sich auf Lokalisierungsanwendungen in UWB (Ultra-Breitband-Technologie)- und WLAN (drahtloses lokales Netzwerk)- Systemen im Fall von Mehrwegeausbreitung. Zur Steigerung der Robustheit der Lokalisierungsanwendungen bei Mehrwegeausbreitung wurden neuartige Lokalisierungsalgorithmen, die auf der Auswertung der Ankunftszeit (engl. „Time of Arrival“, ToA), der empfangenen Signalstärke (engl. „Received Signal Strength“, RSS) und dem Einfallswinkel (engl. „Angle of Arrival“, AoA) basieren, vorgestellt und untersucht. Bei Mehrwegeausbreitung ist die Fragen den direkten Pfad zu lösen, da der direkte Pfad (engl. „Direct Path“, DP) schwächer als anderer Pfad sein kann. In dieser Arbeit werden daher neuartige Algorithmen zur Flankendetektion der empfangenen Signale für UWB Systeme entwickelt, um die Positionsbestimmung zu verbessern: Es gibt die kooperative Flankendetektion (engl. „Joint Leading Edge Detection“, JLED), die erweiterte maximalwahrscheinlichkeitbasierte Kanalschätzung (engl. „Improved Maximum Likelihood Channel Estimation“, IMLCE) und die Flankendetektion mit untervektorraumbasiertem Verfahren (engl. „Subspace based Approaches“, SbA). Bei der kooperativen Flankendetektion werden zwei Kriterien herangezogen nämlich die minimale Fläche und das minimale mittlere Quadrat des Schätzfehlers (engl. „Minimum Mean Squared Error“, MMSE). Weiterhin wird ein monopulsbasierter Kanalschätzer (engl. „Monopulse based Channel Estimator“, MCE) entwickelt, um die möglicherweise falsche Kombinationen der Flanken (engl. „Leading Edge Combination“, LEC) auszuschließen. Zudem wird in der Arbeit der erweiterte MLCE vorgestellt, der aus einem groben und einem genauen Schätzungsschritt besteht. Bei dem neuartigen untervektorraumbasierten Verfahren werden ein statischer und ein Schwundkanal untersucht. Im ersten Fall wird die Kombination der Rückwärtssuchalgorithmus mit untervektorraumbasierten Verfahren untersucht. Zudem wird im zweiten Fall ein untervektorraumbasierte Verfahren im Frequenzbereich vorgestellt. Für die RSS-basierte Lokalisierung wird ein Fingerabdruckverfahren (engl. „Fingerprint Approach“) und ein neuartiger Entfernungsschätzer basierend auf der Kanalenergie entwickelt und implementiert. Schließlich wird in der Arbeit ein Lokalisierungssystem mit Winkelschätzern inklusive einer entsprechenden Kalibrierung auf einer 802.11a/g Hardwareplattform vorgestellt. Dazu wird ein neuartiger Trägerschätzer und Kanalschätzer entwickelt.In the past several years there has been more growing research on Wireless Sensor Network (WSN). The indoor localization is a promising research topic, which is discussed variously in some literatures. However, the most work does not consider an important factor, i.e. the multi-path propagation, which affects the accuracy of the indoor localization. This work dealt with the indoor localization applied in UWB (Ultra Wide Band) and WLAN (Wireless Local Area Network) systems in the case of multi-path propagation. To improve the robustness of the applications of localization in the case of multi-path propagation, novel localization algorithms based on the evaluation of the Time of Arrival (ToA), the Received Signal Strength (RSS) and the Angle of Arrival (AoA) were proposed and investigated. In the ToA based localization systems, the detection of shortest signal propagation time plays a critical role. In the case of multi-path propagation, the Direct Path (DP) needs to be resolved because the DP may be weaker than Multi Path Components (MPC). Thus the novel algorithms for leading edge detection were developed in this work in order to improve the accuracy of localization, namely Joint Leading Edge Detection (JLED), Improved Maximum Likelihood Channel Estimation (IMLCE) and the leading edge detection with Subspace based Approaches (SbA). Two criteria were proposed and referenced for the JLED, namely Minimum Area (MA) and Minimum Mean Squared Error (MMSE). Furthermore, a monocycle-based channel estimator was developed to mitigate the fake LECs (Leading Edge Combination). The estimation error of JLED was theoretically analyzed and simulated for evaluation of the estimator. IMLCE consists of a coarse and a fine estimation step. The coarse position of the first correlation peak shall be found with the Search Back Algorithms (SBA), which is followed by MLCE-algorithms. The novel SbA was investigated in a static and a fading channel. In the former case, the iterative algorithm, which combines SbA with SBA, was investigated. In the latter case, the FD-SbA (Frequency Domain - SbA) was proposed, which requires to calculate the covariance matrix in the FD. For the RSS based localization, fingerprint approach and the novel channel energy based distance estimator were investigated and developed in this dissertation. Finally, a localization system using AoA estimation and the initial calibration was presented on an 802.11a/g hardware platform. A novel Carrier Frequency Offset (CFO) estimator and channel estimator were investigated and developed. The measurement campaigns were made for one, two and four fixed stations, respectivel

    Performance analysis of time of arrival estimation on OFDM signals

    Get PDF
    This letter characterizes the error performance of realistically modelled orthogonal frequency division multiplexing (OFDM) signals, when their time of arrival has to be estimated in an additive white Gaussian noise channel. In particular, different power distributions on the available sub-carriers of the OFDM signal are considered, and bounds on the corresponding root mean square estimation error (RMSEE) are evaluated. The tools used for such purpose are the widely adopted Cram\ue9r-Rao bound and the Ziv-Zakai bound, which is tight in a wide range of signal-to-noise ratio (SNR) values. The presented analysis reveals that, for a given signal bandwidth, a proper power distribution on the OFDM sub-carriers is crucial for achieving a good performance in the low to medium SNR region, where the RMSEE curve exhibits the typical threshold behavior. Moreover, a trade-off between asymptotic and threshold performance is identified, thanks to the adoption of a novel performance figure, which directly describes the threshold RMSEE behavior

    Research on port AGV composite positioning based on UWB/RFID

    Get PDF
    In recent years, ports in various countries have successively carried out research and application of fully automated terminal. The terminal adopts the "Double car shore bridge + AGV + ARMG" automation process, which is the most widely used and relatively mature fully automated solution. At present, the AGV navigation of the terminal is based on RFID magnetic nail positioning and the accuracy is good. However, nowadays UWB technology has become the most popular technology in ranging and positioning. The research in this work is based on UWB/RFID composite positioning, which is mainly used for the specific localization tasks in the port and it can accurately locate the position of the AGV. This MSc work studies the UWB positioning system first and then researches the traditional 3D positioning algorithm. Importance contribution expressed by 3D TOA localization algorithm. For RFID system, this connection between the reader and the carrier is designed, and the reference tag is buried. At last, data-based on RFID localization algorithm in scene analysis method is adopted for positioning. Secondly, the basis of the composite positioning system is data fusion technology. The most widely used and mature fusion algorithm is the Kalman filter algorithm and Particle filter. Finally, the experimental analysis of UWB and RFID composite positioning system is implemented. The results indicate that UWB and RFID composite positioning system can reduce the cost of the positioning system. Higher positioning accuracy and robustness are characterizing the developed system.Nos últimos anos, portos de vários países realizaram sucessivamente pesquisas e aplicações de terminais totalmente automatizados. O terminal adota o processo de automação "Double car shore bridge + AGV + ARMG", que é a solução totalmente automatizada mais amplamente utilizada e relativamente madura. Atualmente, a navegação AGV do terminal é baseada no posicionamento da etiqueta RFID e a precisão é boa. No entanto, hoje em dia, a tecnologia UWB tornou-se na tecnologia mais popular relativamente ao alcance e posicionamento. A pesquisa neste trabalho é baseada no posicionamento composto por UWB / RFID, usado principalmente para tarefas de localização específicas nos portos, podendo desta forma localizar-se com precisão a posição do AGV. Este projeto de mestrado estuda em primeiro lugar o sistema de posicionamento UWB, e depois um algoritmo tradicional de posicionamento 3D. A contribuição da importância expressa pelo algoritmo de posicionamento “time of arrival” (TOA) 3D foi proposta. Para o sistema de posicionamento RFID, a conexão entre o leitor e a transportadora é projetada e a etiqueta de referência é ocultada. Por fim, o algoritmo de “k-nearest neighbor” baseado numa base de dados e no método de análise de cena é adotado para realizar o posicionamento. Em segundo lugar, a base do sistema de posicionamento composto é a tecnologia de fusão de dados. O algoritmo de fusão mais amplamente utilizado e maduro é o algoritmo de filtro Kalman e o filtro de partículas. Finalmente, é realizada a análise experimental do sistema de posicionamento composto UWB e RFID. Os resultados experimentais mostram que o sistema de posicionamento composto UWB e RFID pode reduzir o custo do sistema de posicionamento. O sistema desenvolvido é caracterizado por uma maior precisão de posicionamento e robustez

    Low-complexity hardware and algorithm for joint communication and sensing

    Full text link
    Joint Communication and Sensing (JCAS) is foreseen as one very distinctive feature of the emerging 6G systems providing, in addition to fast end reliable communication, the ability to obtain an accurate perception of the physical environment. In this paper, we propose a JCAS algorithm that exploits a novel beamforming architecture, which features a combination of wideband analog and narrowband digital beamforming. This allows accurate estimation of Time of Arrival (ToA), exploiting the large bandwidth and Angle of Arrival (AoA), exploiting the high-rank digital beamforming. In our proposal, we separately estimate the ToA and AoA. The association between ToA and AoA is solved by acquiring multiple non-coherent frames and adding up the signal from each frame such that a specific component is combined coherently before the AoA estimation. Consequently, this removes the need to use 2D and 3D joint estimation methods, thus significantly lowering complexity. The resolution performance of the method is compared with that of 2D MUltiple SIgnal Classification (2D-MUSIC) algorithm, using a fully-digital wideband beamforming architecture. The results show that the proposed method can achieve performance similar to a fully-digital high-bandwidth system, while requiring a fraction of the total aggregate sampling rate and having much lower complexity.Comment: 13 pages, 9 figures. Submitted to IEEE Transactions on Wireless Communication
    • …
    corecore