145,987 research outputs found

    SAT Modulo Monotonic Theories

    Full text link
    We define the concept of a monotonic theory and show how to build efficient SMT (SAT Modulo Theory) solvers, including effective theory propagation and clause learning, for such theories. We present examples showing that monotonic theories arise from many common problems, e.g., graph properties such as reachability, shortest paths, connected components, minimum spanning tree, and max-flow/min-cut, and then demonstrate our framework by building SMT solvers for each of these theories. We apply these solvers to procedural content generation problems, demonstrating major speed-ups over state-of-the-art approaches based on SAT or Answer Set Programming, and easily solving several instances that were previously impractical to solve

    Enhanced LFR-toolbox for MATLAB and LFT-based gain scheduling

    Get PDF
    We describe recent developments and enhancements of the LFR-Toolbox for MATLAB for building LFT-based uncertainty models and for LFT-based gain scheduling. A major development is the new LFT-object definition supporting a large class of uncertainty descriptions: continuous- and discrete-time uncertain models, regular and singular parametric expressions, more general uncertainty blocks (nonlinear, time-varying, etc.). By associating names to uncertainty blocks the reusability of generated LFT-models and the user friendliness of manipulation of LFR-descriptions have been highly increased. Significant enhancements of the computational efficiency and of numerical accuracy have been achieved by employing efficient and numerically robust Fortran implementations of order reduction tools via mex-function interfaces. The new enhancements in conjunction with improved symbolical preprocessing lead generally to a faster generation of LFT-models with significantly lower orders. Scheduled gains can be viewed as LFT-objects. Two techniques for designing such gains are presented. Analysis tools are also considered

    Code improvements towards implementing HEVC decoder

    Get PDF

    Improved Quantum Algorithm for Triangle Finding via Combinatorial Arguments

    Full text link
    In this paper we present a quantum algorithm solving the triangle finding problem in unweighted graphs with query complexity O~(n5/4)\tilde O(n^{5/4}), where nn denotes the number of vertices in the graph. This improves the previous upper bound O(n9/7)=O(n1.285...)O(n^{9/7})=O(n^{1.285...}) recently obtained by Lee, Magniez and Santha. Our result shows, for the first time, that in the quantum query complexity setting unweighted triangle finding is easier than its edge-weighted version, since for finding an edge-weighted triangle Belovs and Rosmanis proved that any quantum algorithm requires Ω(n9/7/logn)\Omega(n^{9/7}/\sqrt{\log n}) queries. Our result also illustrates some limitations of the non-adaptive learning graph approach used to obtain the previous O(n9/7)O(n^{9/7}) upper bound since, even over unweighted graphs, any quantum algorithm for triangle finding obtained using this approach requires Ω(n9/7/logn)\Omega(n^{9/7}/\sqrt{\log n}) queries as well. To bypass the obstacles characterized by these lower bounds, our quantum algorithm uses combinatorial ideas exploiting the graph-theoretic properties of triangle finding, which cannot be used when considering edge-weighted graphs or the non-adaptive learning graph approach.Comment: 17 pages, to appear in FOCS'14; v2: minor correction

    The Voigt and complex error function: Huml\'i\v{c}ek's rational approximation generalized

    Get PDF
    Accurate yet efficient computation of the Voigt and complex error function is a challenge since decades in astrophysics and other areas of physics. Rational approximations have attracted considerable attention and are used in many codes, often in combination with other techniques. The 12-term code "cpf12" of Huml\'i\v{c}ek (1979) achieves an accuracy of five to six significant digits throughout the entire complex plane. Here we generalize this algorithm to a larger (even) number of terms. The n=16n=16 approximation has a relative accuracy better than 10510^{-5} for almost the entire complex plane except for very small imaginary values of the argument even without the correction term required for the cpf12 algorithm. With 20 terms the accuracy is better than 10610^{-6}. In addition to the accuracy assessment we discuss methods for optimization and propose a combination of the 16-term approximation with the asymptotic approximation of Huml\'i\v{c}ek (1982) for high efficiency.Comment: 9 pages, 5 figure
    corecore