8 research outputs found

    Differential Fault Attack on KASUMI Cipher Used in GSM Telephony

    Get PDF
    The confidentiality of GSM cellular telephony depends on the security of A5 family of cryptosystems. As an algorithm in this family survived from cryptanalysis, A5/3 is based on the block cipher KASUMI. This paper describes a novel differential fault attack on KAUSMI with a 64-bit key. Taking advantage of some mathematical observations on the FL, FO functions, and key schedule, only one 16-bit word fault is required to recover all information of the 64-bit key. The time complexity is only 232 encryptions. We have practically simulated the attack on a PC which takes only a few minutes to recover all the key bits. The simulation also experimentally verifies the correctness and complexity

    Efficient Methods for Exploiting Faults Induced at AES Middle Rounds

    Get PDF
    Faults occurred during the operations in a hardware device cause many problems such as performance deterioration, unreliable output, etc. If a fault occurs in a cryptographic hardware device, the effect can be even serious because an adversary may exploit it to find the secret information stored in the device. More precisely, the adversary can find the key of a block cipher using differential information between correct and faulty ciphertexts obtained by inducing faults during the computation of ciphertexts. This kind of attack is called \emph{Differential Fault Analysis} (DFA). Among many ciphers \emph{Advanced Encryption Standard} (AES) has been the main target of DFA due to its popularity. AES is widely used in different platforms and systems including Intel and AMD microprocessors. Normally DFA on AES exploits faults induced at the last few rounds. Hence, a general countermeasure is to recompute the last few rounds of AES and compare it with the original output. As redundancy is a costly countermeasure, one should ascertain exactly which rounds need to be protected. In 2006, Phan and Yen introduced a new type of DFA, so called Square-DFA, that works even when faults are induced into some middle rounds. However, it is impractical as it requires several hundreds of faulty ciphertexts as well as a bit fault model. In this article, we propose new attacks that need only dozens of faulty ciphertexts in a byte fault model. Normally it is believed that randomly corrupting a byte is easier than corrupting a specific bit. In addition, we extend the attacks to the AES-192 and AES-256, which is the first result in the literature

    Multiple Bytes Differential Fault Analysis on CLEFIA

    Get PDF
    This paper examines the strength of CLEFIA against multiple bytes differential fault attack. Firstly, it presents the principle of CLEFIA algorithm and differential fault analysis; then, according to injecting faults into the rth,r-1th,r-2th CLEFIA round three conditions, proposes three fault models and corresponding analysis methods; finally, all of the fault model and analysis methods above have been verified through software simulation. Experiment results demonstrate that: CLEFIA is vulnerable to differential fault attack due to its Feistel structure and S-box feature, 5-6,6-8,2 faults are needed to recover CLEFIA-128 based on the three fault models in this paper respectively, multiple byte faults model can greatly improve the attack practicality and even the attack efficiency, and the fault analysis methods in this paper can provide some fault analysis ideas on other block ciphers using S-box

    Differential Fault Analysis on SMS4 Using a Single Fault

    Get PDF
    Differential Fault Analysis (DFA) attack is a powerful cryptanalytic technique that could be used to retrieve the secret key by exploiting computational errors in the encryption (decryption) procedure. In the present paper, we propose a new DFA attack on SMS4 using a single fault. We show that if a random byte fault is induced into either the second, third, or fourth word register at the input of the 2828-th round, the 128-bit master key could be recovered with an exhaustive search of 22.1122.11 bits on average. The proposed attack makes use of the characteristic of the cipher\u27s structure, the speciality of the diffusion layer, and the differential property of the S-box. Furthermore, it can be tailored to any block cipher employing a similar structure and an SPN-style round function as that of SMS4

    An Improved Differential Fault Attack on Camellia

    Get PDF
    The S-box lookup is one of the most important operations in cipher algorithm design, and also is the most effective part to prevent traditional linear and differential attacks, however, when the physical implementation of the algorithm is considered, it becomes the weakest part of cryptosystems. This paper studies an active fault based implementation attack on block ciphers with S-box. Firstly, it proposes the basic DFA model and then presents two DFA models for Feistel and SPN structure block ciphers. Secondly, based on the Feistel DFA model, it presents several improved attacks on Camellia encryption and proposes new attacks on Camellia key schedule. By injecting one byte random fault into the r-1th round left register or the the r-1th round key, after solving 8 equations to recover 5 or 6 propagated differential fault of the rth round left register, 5 or 6 bytes of the rth equivalent subkey can be recovered at one time. Simulation experiments demonstrate that about 16 faulty ciphertexts are enough to obtain Camellia-128 key, and about 32, 24 ciphertexts are required to obtain both Camellia-192/256 key with and without FL/FL-1 layer respectively. Compared with the previous study by ZHOU Yongbin et. al. by injecting one byte fault into the rth round left register to recover 1 equivalent subkey byte and obtaining Camellia-128 and Camellia-192/256 with 64 and 96 faulty ciphertexts respectively, our attacks not only extend the fault location, but also improve the fault injection efficiency and decrease the faulty ciphertexts number, besides, our DFA model on Camellia encryption can be easily extended to DFA on Camellia key schedule case, while ZHOU’s can not. The attack model proposed in this paper can be adapted into most of the block ciphers with S-boxes. Finally, the contradictions between traditional cryptography and implementation attacks are analyzed, the state of the art and future directions of the DFA on Block ciphers with S-boxes are discussed

    ANALYSIS OF CRYPTOGRAPHIC ALGORITHMS AGAINST THEORETICAL AND IMPLEMENTATION ATTACKS

    Get PDF
    This thesis deals with theoretical and implementation analysis of cryptographic functions. Theoretical attacks exploit weaknesses in the mathematical structure of the cryptographic primitive, while implementation attacks leverage on information obtained by its physical implementation, such as leakage through physically observable parameters (side-channel analysis) or susceptibility to errors (fault analysis). In the area of theoretical cryptanalysis, we analyze the resistance of the Keccak-f permutations to differential cryptanalysis (DC). Keccak-f is used in different cryptographic primitives: Keccak (which defines the NIST standard SHA-3), Ketje and Keyak (which are currently at the third round of the CAESAR competition) and the authenticated encryption function Kravatte. In its basic version, DC makes use of differential trails, i.e. sequences of differences through the rounds of the primitive. The power of trails in attacks can be characterized by their weight. The existence of low-weight trails over all but a few rounds would imply a low resistance with respect to DC. We thus present new techniques to effciently generate all 6-round differential trails in Keccak-f up to a given weight, in order to improve known lower bounds. The limit weight we can reach with these new techniques is very high compared to previous attempts in literature for weakly aligned primitives. This allows us to improve the lower bound on 6 rounds from 74 to 92 for the four largest variants of Keccak-f. This result has been used by the authors of Kravatte to choose the number of rounds in their function. Thanks to their abstraction level, some of our techniques are actually more widely applicable than to Keccak-f. So, we formalize them in a generic way. The presented techniques have been integrated in the KeccakTools and are publicly available. In the area of fault analysis, we present several results on differential fault analysis (DFA) on the block cipher AES. Most DFA attacks exploit faults that modify the intermediate state or round key. Very few examples have been presented, that leverage changes in the sequence of operations by reducing the number of rounds. In this direction, we present four DFA attacks that exploit faults that alter the sequence of operations during the final round. In particular, we show how DFA can be conducted when the main operations that compose the AES round function are corrupted, skipped or repeated during the final round. Another aspect of DFA we analyze is the role of the fault model in attacks. We study it from an information theoretical point of view, showing that the knowledge that the attacker has on the injected fault is fundamental to mount a successful attack. In order to soften the a-priori knowledge on the injection technique needed by the attacker, we present a new approach for DFA based on clustering, called J-DFA. The experimental results show that J-DFA allows to successfully recover the key both in classical DFA scenario and when the model does not perfectly match the faults effect. A peculiar result of this method is that, besides the preferred candidate for the key, it also provides the preferred models for the fault. This is a quite remarkable ability because it furnishes precious information which can be used to analyze, compare and characterize different specific injection techniques on different devices. In the area of side-channel attacks, we improve and extend existing attacks against the RSA algorithm, known as partial key exposure attacks. These attacks on RSA show how it is possible to find the factorization of the modulus from the knowledge of some bits of the private key. We present new partial key exposure attacks when the countermeasure known as exponent blinding is used. We first improve known results for common RSA setting by reducing the number of bits or by simplifying the mathematical analysis. Then we present novel attacks for RSA implemented using the Chinese Remainder Theorem, a scenario that has never been analyzed before in this context
    corecore