167 research outputs found

    Improved Delsarte bounds for spherical codes in small dimensions

    Full text link
    We present an extension of the Delsarte linear programming method. For several dimensions it yields improved upper bounds for kissing numbers and for spherical codes. Musin's recent work on kissing numbers in dimensions three and four can be viewed in our framework.Comment: 16 pages, 3 figures. Substantial changes after referee's comments, one new lemm

    Bounds on three- and higher-distance sets

    Get PDF
    A finite set X in a metric space M is called an s-distance set if the set of distances between any two distinct points of X has size s. The main problem for s-distance sets is to determine the maximum cardinality of s-distance sets for fixed s and M. In this paper, we improve the known upper bound for s-distance sets in n-sphere for s=3,4. In particular, we determine the maximum cardinalities of three-distance sets for n=7 and 21. We also give the maximum cardinalities of s-distance sets in the Hamming space and the Johnson space for several s and dimensions.Comment: 12 page

    Unitary designs and codes

    Full text link
    A unitary design is a collection of unitary matrices that approximate the entire unitary group, much like a spherical design approximates the entire unit sphere. In this paper, we use irreducible representations of the unitary group to find a general lower bound on the size of a unitary t-design in U(d), for any d and t. We also introduce the notion of a unitary code - a subset of U(d) in which the trace inner product of any pair of matrices is restricted to only a small number of distinct values - and give an upper bound for the size of a code of degree s in U(d) for any d and s. These bounds can be strengthened when the particular inner product values that occur in the code or design are known. Finally, we describe some constructions of designs: we give an upper bound on the size of the smallest weighted unitary t-design in U(d), and we catalogue some t-designs that arise from finite groups.Comment: 25 pages, no figure

    Sphere packing bounds via spherical codes

    Full text link
    The sphere packing problem asks for the greatest density of a packing of congruent balls in Euclidean space. The current best upper bound in all sufficiently high dimensions is due to Kabatiansky and Levenshtein in 1978. We revisit their argument and improve their bound by a constant factor using a simple geometric argument, and we extend the argument to packings in hyperbolic space, for which it gives an exponential improvement over the previously known bounds. Additionally, we show that the Cohn-Elkies linear programming bound is always at least as strong as the Kabatiansky-Levenshtein bound; this result is analogous to Rodemich's theorem in coding theory. Finally, we develop hyperbolic linear programming bounds and prove the analogue of Rodemich's theorem there as well.Comment: 30 pages, 2 figure

    New upper bounds for kissing numbers from semidefinite programming

    Get PDF
    Recently A. Schrijver derived new upper bounds for binary codes using semidefinite programming. In this paper we adapt this approach to codes on the unit sphere and we compute new upper bounds for the kissing number in several dimensions. In particular our computations give the (known) values for the cases n = 3, 4, 8, 24.Comment: 17 pages, (v4) references updated, accepted in Journal of the American Mathematical Societ

    On kissing numbers and spherical codes in high dimensions

    Get PDF
    We prove a lower bound of Ω(d3/2⋅(2/3)d)\Omega (d^{3/2} \cdot (2/\sqrt{3})^d) on the kissing number in dimension dd. This improves the classical lower bound of Chabauty, Shannon, and Wyner by a linear factor in the dimension. We obtain a similar linear factor improvement to the best known lower bound on the maximal size of a spherical code of acute angle θ\theta in high dimensions
    • …
    corecore