3,692 research outputs found

    Improvements on coronal hole detection in SDO/AIA images using supervised classification

    Full text link
    We demonstrate the use of machine learning algorithms in combination with segmentation techniques in order to distinguish coronal holes and filaments in SDO/AIA EUV images of the Sun. Based on two coronal hole detection techniques (intensity-based thresholding, SPoCA), we prepared data sets of manually labeled coronal hole and filament channel regions present on the Sun during the time range 2011 - 2013. By mapping the extracted regions from EUV observations onto HMI line-of-sight magnetograms we also include their magnetic characteristics. We computed shape measures from the segmented binary maps as well as first order and second order texture statistics from the segmented regions in the EUV images and magnetograms. These attributes were used for data mining investigations to identify the most performant rule to differentiate between coronal holes and filament channels. We applied several classifiers, namely Support Vector Machine, Linear Support Vector Machine, Decision Tree, and Random Forest and found that all classification rules achieve good results in general, with linear SVM providing the best performances (with a true skill statistic of ~0.90). Additional information from magnetic field data systematically improves the performance across all four classifiers for the SPoCA detection. Since the calculation is inexpensive in computing time, this approach is well suited for applications on real-time data. This study demonstrates how a machine learning approach may help improve upon an unsupervised feature extraction method.Comment: in press for SWS

    QUANTITATIVE IMAGING FOR PRECISION MEDICINE IN HEAD AND NECK CANCER PATIENTS

    Get PDF
    The purpose of this work was to determine if prediction models using quantitative imaging measures in head and neck squamous cell carcinoma (HNSCC) patients could be improved when noise due to imaging was reduced. This was investigated separately for salivary gland function using dynamic contrast enhanced magnetic resonance imaging (DCE-MRI), overall survival using computed tomography (CT)-based radiomics, and overall survival using positron emission tomography (PET)-based radiomics. From DCE-MRI, where T1-weighted images are serially acquired after injection of contrast, quantitative measures of diffusion can be obtained from the series of images. Radiomics is the study of the relationship of voxels to one another providing measures of texture from the area of interest. Quantitative information obtained from imaging could help in radiation treatment planning by providing quantifiable spatial information with computational models for assigning dose to regions to improve patient outcome, both survival and quality of life. By reducing the noise within the quantitative data, the prediction accuracy could improve to move this type of work closer to clinical practice. For each imaging modality sources of noise that could impact the patient analysis were identified, quantified, and if possible minimized during the patient analysis. In MRI, a large potential source of uncertainty was the image registration. To evaluate this, both physical and synthetic phantoms were used, which showed that registration of MR images was high, with all root mean square errors below 3 mm. Then, 15 HNSCC patients with pre-, mid-, and post-treatment DCE-MRI scans were evaluated. However, differences in algorithm output were found to be a large source of noise as different algorithms could not consistently rank patients as above or below the median for quantitative metrics from DCE-MRI. Therefore, further analysis using this modality was not pursued. In CT, a large potential source of noise that could impact patient analysis was the inter-scanner variability. To investigate this a controlled protocol was designed and used to image, along with the local head and chest protocols, a radiomics phantom on 100 CT scanners. This demonstrated that the inter-scanner variability could be reduced by over 50% using a controlled protocol compared to local protocols. Additionally, it was shown that the reconstruction parameters impact feature values while most acquisition parameters do not, therefore, most of this benefit can be achieved using a radiomics reconstruction with no additional dose to the patient. Then to evaluate this impact in patient studies, 726 HNSCC patients with CT images were used to create and test a Cox proportional hazards model for overall survival. Those patients with the same imaging protocol were subset and a new Cox proportional hazards model was created and tested in order to determine if the reduction in noise due to controlling the imaging protocol translated into improved prediction. However, noise between patient populations from different institutions was shown to be larger than the reduction in noise due to a controlled imaging protocol. In PET, a large potential source of noise that could impact patient analysis was the imaging protocol. A phantom scanned on three different scanners and vendors demonstrated that on a single vendor, imaging parameter choices did not affect radiomics feature values, but inter-scanner variances could be large. Then, 686 HNSCC patients with PET images were used to create and test a Cox proportional hazards model for overall survival. Those patients with the same imaging protocol were subset and a new Cox proportional hazards model was created and tested in order to determine if the reduction in noise due to controlling the imaging protocol on a vendor translated into improved prediction. However, no predictive radiomics signature could be determined for any subset of the patient cohort that resulted in significant stratification of patients into high and low risk. This study demonstrated that the imaging variability could be quantified and controlled for in each modality. However, for each modality there were larger sources of noise identified that did not allow for improvement in prediction modeling of salivary gland function or overall survival using quantitative imaging metrics for MRI, CT, or PET

    LANDSAT-D investigations in snow hydrology

    Get PDF
    Work undertaken during the contract and its results are described. Many of the results from this investigation are available in journal or conference proceedings literature - published, accepted for publication, or submitted for publication. For these the reference and the abstract are given. Those results that have not yet been submitted separately for publication are described in detail. Accomplishments during the contract period are summarized as follows: (1) analysis of the snow reflectance characteristics of the LANDSAT Thematic Mapper, including spectral suitability, dynamic range, and spectral resolution; (2) development of a variety of atmospheric models for use with LANDSAT Thematic Mapper data. These include a simple but fast two-stream approximation for inhomogeneous atmospheres over irregular surfaces, and a doubling model for calculation of the angular distribution of spectral radiance at any level in an plane-parallel atmosphere; (3) incorporation of digital elevation data into the atmospheric models and into the analysis of the satellite data; and (4) textural analysis of the spatial distribution of snow cover

    SA-SVM based automated diagnostic System for Skin Cancer

    Full text link
    Early diagnosis of skin cancer is one of the greatest challenges due to lack of experience of general practitioners (GPs). This paper presents a clinical decision support system aimed to save time and resources in the diagnostic process. Segmentation, feature extraction, pattern recognition, and lesion classification are the important steps in the proposed decision support system. The system analyses the images to extract the affected area using a novel proposed segmentation method H-FCM-LS. The underlying features which indicate the difference between melanoma and benign lesions are obtained through intensity, spatial/frequency and texture based methods. For classification purpose, self-advising SVM is adapted which showed improved classification rate as compared to standard SVM. The presented work also considers analyzed performance of linear and kernel based SVM on the specific skin lesion diagnostic problem and discussed corresponding findings. The best diagnostic rates obtained through the proposed method are around 90.5 %

    Quantitative Ultrasound and B-mode Image Texture Features Correlate with Collagen and Myelin Content in Human Ulnar Nerve Fascicles

    Get PDF
    We investigate the usefulness of quantitative ultrasound (QUS) and B-mode texture features for characterization of ulnar nerve fascicles. Ultrasound data were acquired from cadaveric specimens using a nominal 30 MHz probe. Next, the nerves were extracted to prepare histology sections. 85 fascicles were matched between the B-mode images and the histology sections. For each fascicle image, we selected an intra-fascicular region of interest. We used histology sections to determine features related to the concentration of collagen and myelin, and ultrasound data to calculate backscatter coefficient (-24.89 dB ±\pm 8.31), attenuation coefficient (0.92 db/cm-MHz ±\pm 0.04), Nakagami parameter (1.01 ±\pm 0.18) and entropy (6.92 ±\pm 0.83), as well as B-mode texture features obtained via the gray level co-occurrence matrix algorithm. Significant Spearman's rank correlations between the combined collagen and myelin concentrations were obtained for the backscatter coefficient (R=-0.68), entropy (R=-0.51), and for several texture features. Our study demonstrates that QUS may potentially provide information on structural components of nerve fascicles

    An Extended Review on Fabric Defects and Its Detection Techniques

    Get PDF
    In Textile Industry, Quality of the Fabric is the main important factor. At the initial stage, it is very essential to identify and avoid the fabrics faults/defects and hence human perception consumes lot of time and cost to reveal the fabrics faults. Now-a-days Automated Inspection Systems are very useful to decrease the fault prediction time and gives best visualizing clarity- based on computer vision and image processing techniques. This paper made an extended review about the quality parameters in the fiber-to-fabric process, fabrics defects detection terminologies applied on major three clusters of fabric defects knitting, woven and sewing fabric defects. And this paper also explains about the statistical performance measures which are used to analyze the defect detection process. Also, comparison among the methods proposed in the field of fabric defect detection

    Automatic texture classification in manufactured paper

    Get PDF

    Adaptive Feature Engineering Modeling for Ultrasound Image Classification for Decision Support

    Get PDF
    Ultrasonography is considered a relatively safe option for the diagnosis of benign and malignant cancer lesions due to the low-energy sound waves used. However, the visual interpretation of the ultrasound images is time-consuming and usually has high false alerts due to speckle noise. Improved methods of collection image-based data have been proposed to reduce noise in the images; however, this has proved not to solve the problem due to the complex nature of images and the exponential growth of biomedical datasets. Secondly, the target class in real-world biomedical datasets, that is the focus of interest of a biopsy, is usually significantly underrepresented compared to the non-target class. This makes it difficult to train standard classification models like Support Vector Machine (SVM), Decision Trees, and Nearest Neighbor techniques on biomedical datasets because they assume an equal class distribution or an equal misclassification cost. Resampling techniques by either oversampling the minority class or under-sampling the majority class have been proposed to mitigate the class imbalance problem but with minimal success. We propose a method of resolving the class imbalance problem with the design of a novel data-adaptive feature engineering model for extracting, selecting, and transforming textural features into a feature space that is inherently relevant to the application domain. We hypothesize that by maximizing the variance and preserving as much variability in well-engineered features prior to applying a classifier model will boost the differentiation of the thyroid nodules (benign or malignant) through effective model building. Our proposed a hybrid approach of applying Regression and Rule-Based techniques to build our Feature Engineering and a Bayesian Classifier respectively. In the Feature Engineering model, we transformed images pixel intensity values into a high dimensional structured dataset and fitting a regression analysis model to estimate relevant kernel parameters to be applied to the proposed filter method. We adopted an Elastic Net Regularization path to control the maximum log-likelihood estimation of the Regression model. Finally, we applied a Bayesian network inference to estimate a subset for the textural features with a significant conditional dependency in the classification of the thyroid lesion. This is performed to establish the conditional influence on the textural feature to the random factors generated through our feature engineering model and to evaluate the success criterion of our approach. The proposed approach was tested and evaluated on a public dataset obtained from thyroid cancer ultrasound diagnostic data. The analyses of the results showed that the classification performance had a significant improvement overall for accuracy and area under the curve when then proposed feature engineering model was applied to the data. We show that a high performance of 96.00% accuracy with a sensitivity and specificity of 99.64%) and 90.23% respectively was achieved for a filter size of 13 × 13
    corecore