15 research outputs found

    Improved Bounds on the Phase Transition for the Hard-Core Model in 2-Dimensions

    Full text link
    For the hard-core lattice gas model defined on independent sets weighted by an activity λ\lambda, we study the critical activity λc(Z2)\lambda_c(\mathbb{Z}^2) for the uniqueness/non-uniqueness threshold on the 2-dimensional integer lattice Z2\mathbb{Z}^2. The conjectured value of the critical activity is approximately 3.7963.796. Until recently, the best lower bound followed from algorithmic results of Weitz (2006). Weitz presented an FPTAS for approximating the partition function for graphs of constant maximum degree Δ\Delta when λ<λc(TΔ)\lambda<\lambda_c(\mathbb{T}_\Delta) where TΔ\mathbb{T}_\Delta is the infinite, regular tree of degree Δ\Delta. His result established a certain decay of correlations property called strong spatial mixing (SSM) on Z2\mathbb{Z}^2 by proving that SSM holds on its self-avoiding walk tree Tsawσ(Z2)T_{\mathrm{saw}}^\sigma(\mathbb{Z}^2) where σ=(σv)vZ2\sigma=(\sigma_v)_{v\in \mathbb{Z}^2} and σv\sigma_v is an ordering on the neighbors of vertex vv. As a consequence he obtained that λc(Z2)λc(T4)=1.675\lambda_c(\mathbb{Z}^2)\geq\lambda_c( \mathbb{T}_4) = 1.675. Restrepo et al. (2011) improved Weitz's approach for the particular case of Z2\mathbb{Z}^2 and obtained that λc(Z2)>2.388\lambda_c(\mathbb{Z}^2)>2.388. In this paper, we establish an upper bound for this approach, by showing that, for all σ\sigma, SSM does not hold on Tsawσ(Z2)T_{\mathrm{saw}}^\sigma(\mathbb{Z}^2) when λ>3.4\lambda>3.4. We also present a refinement of the approach of Restrepo et al. which improves the lower bound to λc(Z2)>2.48\lambda_c(\mathbb{Z}^2)>2.48.Comment: 19 pages, 1 figure. Polished proofs and examples compared to earlier versio

    Approximate Capacities of Two-Dimensional Codes by Spatial Mixing

    Full text link
    We apply several state-of-the-art techniques developed in recent advances of counting algorithms and statistical physics to study the spatial mixing property of the two-dimensional codes arising from local hard (independent set) constraints, including: hard-square, hard-hexagon, read/write isolated memory (RWIM), and non-attacking kings (NAK). For these constraints, the strong spatial mixing would imply the existence of polynomial-time approximation scheme (PTAS) for computing the capacity. It was previously known for the hard-square constraint the existence of strong spatial mixing and PTAS. We show the existence of strong spatial mixing for hard-hexagon and RWIM constraints by establishing the strong spatial mixing along self-avoiding walks, and consequently we give PTAS for computing the capacities of these codes. We also show that for the NAK constraint, the strong spatial mixing does not hold along self-avoiding walks

    Spatial mixing and approximation algorithms for graphs with bounded connective constant

    Full text link
    The hard core model in statistical physics is a probability distribution on independent sets in a graph in which the weight of any independent set I is proportional to lambda^(|I|), where lambda > 0 is the vertex activity. We show that there is an intimate connection between the connective constant of a graph and the phenomenon of strong spatial mixing (decay of correlations) for the hard core model; specifically, we prove that the hard core model with vertex activity lambda < lambda_c(Delta + 1) exhibits strong spatial mixing on any graph of connective constant Delta, irrespective of its maximum degree, and hence derive an FPTAS for the partition function of the hard core model on such graphs. Here lambda_c(d) := d^d/(d-1)^(d+1) is the critical activity for the uniqueness of the Gibbs measure of the hard core model on the infinite d-ary tree. As an application, we show that the partition function can be efficiently approximated with high probability on graphs drawn from the random graph model G(n,d/n) for all lambda < e/d, even though the maximum degree of such graphs is unbounded with high probability. We also improve upon Weitz's bounds for strong spatial mixing on bounded degree graphs (Weitz, 2006) by providing a computationally simple method which uses known estimates of the connective constant of a lattice to obtain bounds on the vertex activities lambda for which the hard core model on the lattice exhibits strong spatial mixing. Using this framework, we improve upon these bounds for several lattices including the Cartesian lattice in dimensions 3 and higher. Our techniques also allow us to relate the threshold for the uniqueness of the Gibbs measure on a general tree to its branching factor (Lyons, 1989).Comment: 26 pages. In October 2014, this paper was superseded by arxiv:1410.2595. Before that, an extended abstract of this paper appeared in Proc. IEEE Symposium on the Foundations of Computer Science (FOCS), 2013, pp. 300-30

    Analyticity for classical gasses via recursion

    Full text link
    We give a new criterion for a classical gas with a repulsive pair potential to exhibit uniqueness of the infinite volume Gibbs measure and analyticity of the pressure. Our improvement on the bound for analyticity is by a factor e2e^2 over the classical cluster expansion approach and a factor ee over the known limit of cluster expansion convergence. The criterion is based on a contractive property of a recursive computation of the density of a point process. The key ingredients in our proofs include an integral identity for the density of a Gibbs point process and an adaptation of the algorithmic correlation decay method from theoretical computer science. We also deduce from our results an improved bound for analyticity of the pressure as a function of the density

    Representation and poly-time approximation for pressure of Z2\mathbb{Z}^2 lattice models in the non-uniqueness region

    Full text link
    We develop a new pressure representation theorem for nearest-neighbour Gibbs interactions and apply this to obtain the existence of efficient algorithms for approximating the pressure in the 22-dimensional ferromagnetic Potts, multi-type Widom-Rowlinson and hard-core models. For Potts, our results apply to every inverse temperature but the critical. For Widom-Rowlinson and hard-core, they apply to certain subsets of both the subcritical and supercritical regions. The main novelty of our work is in the latter.Comment: 37 pages, 2 figure

    Spatial mixing and the connective constant: Optimal bounds

    Get PDF
    We study the problem of deterministic approximate counting of matchings and independent sets in graphs of bounded connective constant. More generally, we consider the problem of evaluating the partition functions of the monomer-dimer model (which is defined as a weighted sum over all matchings where each matching is given a weight γ^(|V| –2|M|) in terms of a fixed parameter γ called the monomer activity) and the hard core model (which is defined as a weighted sum over all independent sets where an independent set I is given a weight γ^(|I|) in terms of a fixed parameter γ called the vertex activity). The connective constant is a natural measure of the average degree of a graph which has been studied extensively in combinatorics and mathematical physics, and can be bounded by a constant even for certain unbounded degree graphs such as those sampled from the sparse Erdös-Rényi model (n, d/n). Our main technical contribution is to prove the best possible rates of decay of correlations in the natural probability distributions induced by both the hard core model and the monomer-dimer model in graphs with a given bound on the connective constant. These results on decay of correlations are obtained using a new framework based on the so-called message approach that has been extensively used recently to prove such results for bounded degree graphs. We then use these optimal decay of correlations results to obtain FPTASs for the two problems on graphs of bounded connective constant. In particular, for the monomer-dimer model, we give a deterministic FPTAS for the partition function on all graphs of bounded connective constant for any given value of the monomer activity. The best previously known deterministic algorithm was due to Bayati, Gamarnik, Katz, Nair and Tetali [STOC 2007], and gave the same runtime guarantees as our results but only for the case of bounded degree graphs. For the hard core model, we give an FPTAS for graphs of connective constant Δ whenever the vertex activity λ λ_c(Δ) would imply that NP=RP [Sly, FOCS 2010]. The previous best known result in this direction was a recent paper by a subset of the current authors [FOCS 2013], where the result was established under the suboptimal condition λ < λc(Δ + 1). Our techniques also allow us to improve upon known bounds for decay of correlations for the hard core model on various regular lattices, including those obtained by Restrepo, Shin, Vigoda and Tetali [FOCS 11] for the special case of ℤ^2 using sophisticated numerically intensive methods tailored to that special case

    Spatial mixing and the connective constant: optimal bounds

    Get PDF
    We study the problem of deterministic approximate counting of matchings and independent sets in graphs of bounded connective constant. More generally, we consider the problem of evaluating the partition functions of the monomer-dimer model (which is defined as a weighted sum over all matchings where each matching is given a weight γ|V|−2|M| in terms of a fixed parameter γ called the monomer activity) and the hard core model (which is defined as a weighted sum over all independent sets where an independent set I is given a weight λ^(|I|) in terms of a fixed parameter λ called the vertex activity). The connective constant is a natural measure of the average degree of a graph which has been studied extensively in combinatorics and mathematical physics, and can be bounded by a constant even for certain unbounded degree graphs such as those sampled from the sparse Erdős–Rényi model G(n,d/n). Our main technical contribution is to prove the best possible rates of decay of correlations in the natural probability distributions induced by both the hard core model and the monomer-dimer model in graphs with a given bound on the connective constant. These results on decay of correlations are obtained using a new framework based on the so-called message approach that has been extensively used recently to prove such results for bounded degree graphs. We then use these optimal decay of correlations results to obtain fully polynomial time approximation schemes (FPTASs) for the two problems on graphs of bounded connective constant. In particular, for the monomer-dimer model, we give a deterministic FPTAS for the partition function on all graphs of bounded connective constant for any given value of the monomer activity. The best previously known deterministic algorithm was due to Bayati et al. (Proc. 39th ACM Symp. Theory Comput., pp. 122–127, 2007), and gave the same runtime guarantees as our results but only for the case of bounded degree graphs. For the hard core model, we give an FPTAS for graphs of connective constant Δ whenever the vertex activity λ λ_c(Δ) would imply that NP=RP (Sly and Sun, Ann. Probab. 42(6):2383–2416, 2014). The previous best known result in this direction was in a recent manuscript by a subset of the current authors (Proc. 54th IEEE Symp. Found. Comput. Sci., pp 300–309, 2013), where the result was established under the sub-optimal condition λ < λ_c(Δ+1). Our techniques also allow us to improve upon known bounds for decay of correlations for the hard core model on various regular lattices, including those obtained by Restrepo et al. (Probab Theory Relat Fields 156(1–2):75–99, 2013) for the special case of Z^2 using sophisticated numerically intensive methods tailored to that special case
    corecore