30,665 research outputs found

    Region-based Skin Color Detection.

    Get PDF
    Skin color provides a powerful cue for complex computer vision applications. Although skin color detection has been an active research area for decades, the mainstream technology is based on the individual pixels. This paper presents a new region-based technique for skin color detection which outperforms the current state-of-the-art pixel-based skin color detection method on the popular Compaq dataset (Jones and Rehg, 2002). Color and spatial distance based clustering technique is used to extract the regions from the images, also known as superpixels. In the first step, our technique uses the state-of-the-art non-parametric pixel-based skin color classifier (Jones and Rehg, 2002) which we call the basic skin color classifier. The pixel-based skin color evidence is then aggregated to classify the superpixels. Finally, the Conditional Random Field (CRF) is applied to further improve the results. As CRF operates over superpixels, the computational overhead is minimal. Our technique achieves 91.17% true positive rate with 13.12% false negative rate on the Compaq dataset tested over approximately 14,000 web images

    Approximate Lesion Localization in Dermoscopy Images

    Full text link
    Background: Dermoscopy is one of the major imaging modalities used in the diagnosis of melanoma and other pigmented skin lesions. Due to the difficulty and subjectivity of human interpretation, automated analysis of dermoscopy images has become an important research area. Border detection is often the first step in this analysis. Methods: In this article, we present an approximate lesion localization method that serves as a preprocessing step for detecting borders in dermoscopy images. In this method, first the black frame around the image is removed using an iterative algorithm. The approximate location of the lesion is then determined using an ensemble of thresholding algorithms. Results: The method is tested on a set of 428 dermoscopy images. The localization error is quantified by a metric that uses dermatologist determined borders as the ground truth. Conclusion: The results demonstrate that the method presented here achieves both fast and accurate localization of lesions in dermoscopy images
    • …
    corecore