1,037 research outputs found

    Algebraic properties of generalized Rijndael-like ciphers

    Full text link
    We provide conditions under which the set of Rijndael functions considered as permutations of the state space and based on operations of the finite field \GF (p^k) (p2p\geq 2 a prime number) is not closed under functional composition. These conditions justify using a sequential multiple encryption to strengthen the AES (Rijndael block cipher with specific block sizes) in case AES became practically insecure. In Sparr and Wernsdorf (2008), R. Sparr and R. Wernsdorf provided conditions under which the group generated by the Rijndael-like round functions based on operations of the finite field \GF (2^k) is equal to the alternating group on the state space. In this paper we provide conditions under which the group generated by the Rijndael-like round functions based on operations of the finite field \GF (p^k) (p2p\geq 2) is equal to the symmetric group or the alternating group on the state space.Comment: 22 pages; Prelim0

    Reed-Muller codes for random erasures and errors

    Full text link
    This paper studies the parameters for which Reed-Muller (RM) codes over GF(2)GF(2) can correct random erasures and random errors with high probability, and in particular when can they achieve capacity for these two classical channels. Necessarily, the paper also studies properties of evaluations of multi-variate GF(2)GF(2) polynomials on random sets of inputs. For erasures, we prove that RM codes achieve capacity both for very high rate and very low rate regimes. For errors, we prove that RM codes achieve capacity for very low rate regimes, and for very high rates, we show that they can uniquely decode at about square root of the number of errors at capacity. The proofs of these four results are based on different techniques, which we find interesting in their own right. In particular, we study the following questions about E(m,r)E(m,r), the matrix whose rows are truth tables of all monomials of degree r\leq r in mm variables. What is the most (resp. least) number of random columns in E(m,r)E(m,r) that define a submatrix having full column rank (resp. full row rank) with high probability? We obtain tight bounds for very small (resp. very large) degrees rr, which we use to show that RM codes achieve capacity for erasures in these regimes. Our decoding from random errors follows from the following novel reduction. For every linear code CC of sufficiently high rate we construct a new code CC', also of very high rate, such that for every subset SS of coordinates, if CC can recover from erasures in SS, then CC' can recover from errors in SS. Specializing this to RM codes and using our results for erasures imply our result on unique decoding of RM codes at high rate. Finally, two of our capacity achieving results require tight bounds on the weight distribution of RM codes. We obtain such bounds extending the recent \cite{KLP} bounds from constant degree to linear degree polynomials

    Algorithms for improved performance in cryptographic protocols.

    Full text link

    On joint detection and decoding of linear block codes on Gaussian vector channels

    Get PDF
    Optimal receivers recovering signals transmitted across noisy communication channels employ a maximum-likelihood (ML) criterion to minimize the probability of error. The problem of finding the most likely transmitted symbol is often equivalent to finding the closest lattice point to a given point and is known to be NP-hard. In systems that employ error-correcting coding for data protection, the symbol space forms a sparse lattice, where the sparsity structure is determined by the code. In such systems, ML data recovery may be geometrically interpreted as a search for the closest point in the sparse lattice. In this paper, motivated by the idea of the "sphere decoding" algorithm of Fincke and Pohst, we propose an algorithm that finds the closest point in the sparse lattice to the given vector. This given vector is not arbitrary, but rather is an unknown sparse lattice point that has been perturbed by an additive noise vector whose statistical properties are known. The complexity of the proposed algorithm is thus a random variable. We study its expected value, averaged over the noise and over the lattice. For binary linear block codes, we find the expected complexity in closed form. Simulation results indicate significant performance gains over systems employing separate detection and decoding, yet are obtained at a complexity that is practically feasible over a wide range of system parameters

    Cryptanalytic Applications of the Polynomial Method for Solving Multivariate Equation Systems over GF(2)

    Get PDF
    At SODA 2017 Lokshtanov et al. presented the first worst-case algorithms with exponential speedup over exhaustive search for solving polynomial equation systems of degree dd in nn variables over finite fields. These algorithms were based on the polynomial method in circuit complexity which is a technique for proving circuit lower bounds that has recently been applied in algorithm design. Subsequent works further improved the asymptotic complexity of polynomial method-based algorithms for solving equations over the field F2\mathbb{F}_2. However, the asymptotic complexity formulas of these algorithms hide significant low-order terms, and hence they outperform exhaustive search only for very large values of nn. In this paper, we devise a concretely efficient polynomial method-based algorithm for solving multivariate equation systems over F2\mathbb{F}_2. We analyze our algorithm\u27s performance for solving random equation systems, and bound its complexity by about n220.815nn^2 \cdot 2^{0.815n} bit operations for d=2d = 2 and n22(11/2.7d)nn^2 \cdot 2^{\left(1 - 1/2.7d\right) n} for any d2d \geq 2. We apply our algorithm in cryptanalysis of recently proposed instances of the Picnic signature scheme (an alternate third-round candidate in NIST\u27s post-quantum standardization project) that are based on the security of the LowMC block cipher. Consequently, we show that 2 out of 3 new instances do not achieve their claimed security level. As a secondary application, we also improve the best-known preimage attacks on several round-reduced variants of the Keccak hash function. Our algorithm combines various techniques used in previous polynomial method-based algorithms with new optimizations, some of which exploit randomness assumptions about the system of equations. In its cryptanalytic application to Picnic, we demonstrate how to further optimize the algorithm for solving structured equation systems that are constructed from specific cryptosystems

    Finding Hamiltonian Cycle in Graphs of Bounded Treewidth: Experimental Evaluation

    Get PDF
    The notion of treewidth, introduced by Robertson and Seymour in their seminal Graph Minors series, turned out to have tremendous impact on graph algorithmics. Many hard computational problems on graphs turn out to be efficiently solvable in graphs of bounded treewidth: graphs that can be sweeped with separators of bounded size. These efficient algorithms usually follow the dynamic programming paradigm. In the recent years, we have seen a rapid and quite unexpected development of involved techniques for solving various computational problems in graphs of bounded treewidth. One of the most surprising directions is the development of algorithms for connectivity problems that have only single-exponential dependency (i.e., 2^{{O}(t)}) on the treewidth in the running time bound, as opposed to slightly superexponential (i.e., 2^{{O}(t log t)}) stemming from more naive approaches. In this work, we perform a thorough experimental evaluation of these approaches in the context of one of the most classic connectivity problem, namely Hamiltonian Cycle

    A STUDY OF LINEAR ERROR CORRECTING CODES

    Get PDF
    Since Shannon's ground-breaking work in 1948, there have been two main development streams of channel coding in approaching the limit of communication channels, namely classical coding theory which aims at designing codes with large minimum Hamming distance and probabilistic coding which places the emphasis on low complexity probabilistic decoding using long codes built from simple constituent codes. This work presents some further investigations in these two channel coding development streams. Low-density parity-check (LDPC) codes form a class of capacity-approaching codes with sparse parity-check matrix and low-complexity decoder Two novel methods of constructing algebraic binary LDPC codes are presented. These methods are based on the theory of cyclotomic cosets, idempotents and Mattson-Solomon polynomials, and are complementary to each other. The two methods generate in addition to some new cyclic iteratively decodable codes, the well-known Euclidean and projective geometry codes. Their extension to non binary fields is shown to be straightforward. These algebraic cyclic LDPC codes, for short block lengths, converge considerably well under iterative decoding. It is also shown that for some of these codes, maximum likelihood performance may be achieved by a modified belief propagation decoder which uses a different subset of 7^ codewords of the dual code for each iteration. Following a property of the revolving-door combination generator, multi-threaded minimum Hamming distance computation algorithms are developed. Using these algorithms, the previously unknown, minimum Hamming distance of the quadratic residue code for prime 199 has been evaluated. In addition, the highest minimum Hamming distance attainable by all binary cyclic codes of odd lengths from 129 to 189 has been determined, and as many as 901 new binary linear codes which have higher minimum Hamming distance than the previously considered best known linear code have been found. It is shown that by exploiting the structure of circulant matrices, the number of codewords required, to compute the minimum Hamming distance and the number of codewords of a given Hamming weight of binary double-circulant codes based on primes, may be reduced. A means of independently verifying the exhaustively computed number of codewords of a given Hamming weight of these double-circulant codes is developed and in coiyunction with this, it is proved that some published results are incorrect and the correct weight spectra are presented. Moreover, it is shown that it is possible to estimate the minimum Hamming distance of this family of prime-based double-circulant codes. It is shown that linear codes may be efficiently decoded using the incremental correlation Dorsch algorithm. By extending this algorithm, a list decoder is derived and a novel, CRC-less error detection mechanism that offers much better throughput and performance than the conventional ORG scheme is described. Using the same method it is shown that the performance of conventional CRC scheme may be considerably enhanced. Error detection is an integral part of an incremental redundancy communications system and it is shown that sequences of good error correction codes, suitable for use in incremental redundancy communications systems may be obtained using the Constructions X and XX. Examples are given and their performances presented in comparison to conventional CRC schemes
    corecore