67 research outputs found

    Improved (Pseudo) Preimage Attacks on Reduced-Round GOST and Grøstl-256 and Studies on Several Truncation Patterns for AES-like Compression Functions (Full Version)

    Get PDF
    In this paper, we present improved preimage attacks on the reduced-round \texttt{GOST} hash function family, which serves as the new Russian hash standard, with the aid of techniques such as the rebound attack, the Meet-in-the-Middle preimage attack and the multicollisions. Firstly, the preimage attack on 5-round \texttt{GOST-256} is proposed which is the first preimage attack for \texttt{GOST-256} at the hash function level. Then we extend the (previous) attacks on 5-round \texttt{GOST-256} and 6-round \texttt{GOST-512} to 6.5 and 7.5 rounds respectively by exploiting the involution property of the \texttt{GOST} transposition operation. Secondly, inspired by the preimage attack on \texttt{GOST-256}, we also study the impacts of four representative truncation patterns on the resistance of the Meet-in-the-Middle preimage attack against \texttt{AES}-like compression functions, and propose two stronger truncation patterns which make it more difficult to launch this type of attack. Based on our investigations, we are able to slightly improve the previous pseudo preimage attacks on reduced-round \texttt{Grøstl-256}

    (Pseudo) Preimage Attack on Round-Reduced Grøstl Hash Function and Others (Extended Version)

    Get PDF
    The Grøstl hash function is one of the 5 final round candidates of the SHA-3 competition hosted by NIST. In this paper, we study the preimage resistance of the Grøstl hash function. We propose pseudo preimage attacks on Grøstl hash function for both 256-bit and 512-bit versions, i.e. we need to choose the initial value in order to invert the hash function. Pseudo preimage attack on 5(out of 10)-round Grøstl-256 has a complexity of (2244.85,2230.13)(2^{244.85},2^{230.13}) (in time and memory) and pseudo preimage attack on 8(out of 14)-round Grøstl-512 has a complexity of (2507.32,2507.00)(2^{507.32},2^{507.00}). To the best of our knowledge, our attacks are the first (pseudo) preimage attacks on round-reduced Grøstl hash function, including its compression function and output transformation. These results are obtained by a variant of meet-in-the-middle preimage attack framework by Aoki and Sasaki. We also improve the time complexities of the preimage attacks against 5-round Whirlpool and 7-round AES hashes by Sasaki in FSE~2011

    Bicliques for permutations: collision and preimage attacks in stronger settings

    Get PDF
    We extend and improve biclique attacks, which were recently introduced for the cryptanalysis of block ciphers and hash functions. While previous attacks required a primitive to have a key or a message schedule, we show how to mount attacks on the primitives with these parameters fixed, i.e. on permutations. We introduce the concept of sliced bicliques, which is a translation of regular bicliques to the framework with permutations. The new framework allows to convert preimage attacks into collision attacks and derive the first collision attacks on the reduced SHA-3 finalist Skein in the hash function setting up to 11 rounds. We also demonstrate new preimage attacks on the reduced Skein and the output transformation of the reduced Grøstl. Finally, the sophisticated technique of message compensation gets a simple explanation with bicliques

    Cryptanalysis of the Round-Reduced Kupyna Hash Function

    Get PDF
    The Kupyna hash function was selected as the new Ukrainian standard DSTU 7564:2014 in 2015. It is designed to replace the old Independent States (CIS) standard GOST 34.311-95. The Kupyna hash function is an AES-based primitive, which uses Merkle-DamgĂĄrd compression function based on Even-Mansour design. In this paper, we show the first cryptanalytic attacks on the round-reduced Kupyna hash function. Using the rebound attack, we present a collision attack on 5-round of the Kupyna-256 hash function. The complexity of this collision attack is (2120,2642^{120},2^{64}) (in time and memory). Furthermore, we use guess-and-determine MitM attack to construct pseudo-preimage attacks on 6-round Kupyna-256 and Kupyna-512 hash function, respectively. The complexity of these preimage attacks are (2250.33,2250.332^{250.33},2^{250.33}) and (2498.33,2498.332^{498.33},2^{498.33}) (in time and memory), respectively

    Superposition Meet-in-the-Middle Attacks: Updates on Fundamental Security of AES-like Hashing

    Get PDF
    The Meet-in-the-Middle approach is one of the most powerful cryptanalysis techniques, demonstrated by its applications in preimage attacks on the full MD4, MD5, Tiger, HAVAL, and Haraka-512 v2 hash functions, and key recovery of the full block cipher KTANTAN. The success relies on the separation of a primitive into two independent chunks, where each active cell of the state is used to represent only one chunk or is otherwise considered unusable once mixed. We observe that some of such cells are linearly mixed and can be as useful as the independent ones. This leads to the introduction of superposition states and a whole suite of accompanied techniques, which we incorporate into the MILP-based search framework proposed by Bao et al. at EUROCRYPT 2021 and Dong et al. at CRYPTO 2021, and find applications on a wide range of AES-like hash functions and block ciphers

    Meet-in-the-Middle Attacks Revisited: Key-recovery, Collision, and Preimage Attacks

    Get PDF
    At EUROCRYPT 2021, Bao et al. proposed an automatic method for systematically exploring the configuration space of meet-in-the-middle (MITM) preimage attacks. We further extend it into a constraint-based framework for finding exploitable MITM characteristics in the context of key-recovery and collision attacks by taking the subtle peculiarities of both scenarios into account. Moreover, to perform attacks based on MITM characteristics with nonlinear constrained neutral words, which have not been seen before, we present a procedure for deriving the solution spaces of neutral words without solving the corresponding nonlinear equations or increasing the overall time complexities of the attack. We apply our method to concrete symmetric-key primitives, including SKINNY, ForkSkinny, Romulus, Saturnin, Grostl, Whirlpool, and hashing modes with AES-256. As a result, we identify the first 23-round key-recovery attack on SKINNY-nn-3n3n and the first 24-round key-recovery attack on ForkSkinny-nn-3n3n in the single-key model. Moreover, improved (pseudo) preimage or collision attacks on round-reduced Whirlpool, Grostl, and hashing modes with AES-256 are obtained. In particular, employing the new representation of the AES key schedule due to Leurent and Pernot (EUROCRYPT 2021), we identify the first preimage attack on 10-round AES-256 hashing

    Cryptanalysis of Reduced-Round Whirlwind (Full Version)

    Get PDF
    The \texttt{Whirlwind} hash function, which outputs a 512-bit digest, was designed by Barreto et al.et\ al. and published by \textit{Design, Codes and Cryptography} in 2010. In this paper, we provide a thorough cryptanalysis on \texttt{Whirlwind}. Firstly, we focus on security properties at the hash function level by presenting (second) preimage, collision and distinguishing attacks on reduced-round \texttt{Whirlwind}. In order to launch the preimage attack, we have to slightly tweak the original Meet-in-the-Middle preimage attack framework on \texttt{AES}-like compression functions by partially fixing the values of the state. Based on this slightly tweaked framework, we are able to construct several new and interesting preimage attacks on reduced-round \texttt{Whirlpool} and \texttt{AES} hashing modes as well. Secondly, we investigate security properties of the reduced-round components of \texttt{Whirlwind}, including semi-free-start and free-start (near) collision attacks on the compression function, and a limited-birthday distinguisher on the inner permutation. As far as we know, our results are currently the best cryptanalysis on \texttt{Whirlwind}

    Security of the SHA-3 candidates Keccak and Blue Midnight Wish: Zero-sum property

    Get PDF
    The SHA-3 competition for the new cryptographic standard was initiated by National Institute of Standards and Technology (NIST) in 2007. In the following years, the event grew to one of the top areas currently being researched by the CS and cryptographic communities. The first objective of this thesis is to overview, analyse, and critique the SHA-3 competition. The second one is to perform an in-depth study of the security of two candidate hash functions, the finalist Keccak and the second round candidate Blue Midnight Wish. The study shall primarily focus on zero-sum distinguishers. First we attempt to attack reduced versions of these hash functions and see if any vulnerabilities can be detected. This is followed by attacks on their full versions. In the process, a novel approach is utilized in the search of zero-sum distinguishers by employing SAT solvers. We conclude that while such complex attacks can theoretically uncover undesired properties of the two hash functions presented, such attacks are still far from being fully realized due to current limitations in computing power
    • …
    corecore