
Improved (Pseudo) Preimage Attacks on Reduced-Round GOST

and Grøstl-256 and Studies on Several Truncation Patterns for
AES-like Compression Functions (Full Version)?

Bingke Ma1,2,3, Bao Li1,2, Ronglin Hao1,2,4, and Xiaoqian Li1,2,3

1State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, 100093, China

2Data Assurance and Communication Security Research Center,
Chinese Academy of Sciences, Beijing, 100093, China

{bkma,lb,xqli}@is.ac.cn
3University of Chinese Academy of Sciences, Beijing, China

4Department of Electronic Engineering and Information Science,
University of Science and Technology of China, Hefei, 230027, China

haorl@mail.ustc.edu.cn

Abstract. In this paper, we present improved preimage attacks on the reduced-round GOST hash
function family, which serves as the new Russian hash standard, with the aid of techniques such as the
rebound attack, the Meet-in-the-Middle preimage attack and the multicollisions. Firstly, the preimage
attack on 5-round GOST-256 is proposed which is the first preimage attack for GOST-256 at the hash
function level. Then we extend the (previous) attacks on 5-round GOST-256 and 6-round GOST-512 to 6.5
and 7.5 rounds respectively by exploiting the involution property of the GOST transposition operation.
Secondly, inspired by the preimage attack on GOST-256, we also study the impacts of four representa-
tive truncation patterns on the resistance of the Meet-in-the-Middle preimage attack against AES-like
compression functions, and propose two stronger truncation patterns which make it more difficult to
launch this type of attack. Based on our investigations, we are able to slightly improve the previous
pseudo preimage attacks on reduced-round Grøstl-256.

Keywords: hash function, cryptanalysis, preimage, GOST, Grøstl-256, the Meet-in-the-Middle preim-
age attack, truncation patterns

1 Introduction

Cryptographic hash function is one of the fundamental building blocks in modern cryptography. A hash
function takes a message of arbitrary length as input and outputs a bit string of fixed length. For a secure
hash function, three classical security properties are mainly concerned, namely, the collision resistance, the
second preimage resistance, and the preimage resistance. Many state-of-the-art hash functions divide the
input messages into short blocks and process each block with the compression function iteratively, such
as the classical Merkle-Damg̊ard [14,38] construction. Due to the generic attacks on the Merkle-Damg̊ard
construction [25,28,27], several new domain extension schemes are proposed to fix the inherent weaknesses of
the Merkle-Damg̊ard construction. One popular instance of these new constructions is the HAIFA framework
proposed by Biham and Dunkelman in [9]. It adds a salt value and a counter which denotes the number
of message bits hashed so far as extra input parameters to the compression function, thus makes each
compression iteration distinct and is believed to resist certain generic attacks [28,27]. In practice, it has been
adopted by several SHA-3 candidates including BLAKE [5], ECHO [7], SHAvite-3 [10], and also the new Russian
hash standard GOST R 34.11-2012, to name but a few.

The old GOST R 34.11-94 hash function [17] was theoretically broken in 2008 [35,36]. As a consequence,
the new GOST R 34.11-2012 hash function [15,18,26] has replaced GOST R 34.11-94 as the new Russian
national hash standard since January 1, 2013, and it is also included by IETF as RFC 6986 [16]. The new GOST

hash function family consists of two members: GOST-256 and GOST-512, which correspond to two different
output lengths. It adopts the HAIFA construction with a unique output transformation, and its compression

? This article is the full version of the paper published at IWSEC 2015.

2 B. Ma et al.

function contains two parallel AES-like permutations in the Miyaguchi-Preneel mode, which is very similar
to the Whirlpool hash function [6,23]. Several cryptanalytic results have already been presented since the
announcement of the new GOST hash function. Interesting results on the GOST compression function are shown
in [1,43], but they seem to have limited impacts on the GOST hash function. The first cryptanalytic result
at the hash function level was given by Zou et al. at Inscrypt 2013 [45], which presented collision attacks
on 5-round GOST-256/512 and a preimage attack on 6-round GOST-512. The recent preimage attack in [2]
is similar to the one in [45]. Ma et al. proposed several improved attacks on GOST [33], including improved
(memoryless) preimage attacks on 6-round GOST-512, collision attacks on 6.5/7.5-round GOST-256/512, and
the limited-birthday distinguisher [24] on 9.5-round GOST-512. More recently, Guo et al. presented generic
second preimage attacks on the full GOST-512 hash function [22] by exploiting the misuse of the counter in
the HAIFA mode of GOST. However, their attacks cannot be extended to preimage attacks which allow to
invert the hash function. Due to the truncation, their attacks do not work for GOST-256 either.

To the best of our knowledge, there are no preimage attacks on the GOST-256 hash function except for
the trivial brute-force attack. One of the crucial reasons that prevent the preimage attack on GOST-256 is
the ChopMD-like mode adopted in the GOST-256 output transformation. The ChopMD mode [12], which
truncates a fraction of the final output chaining value, is proven to be indifferentiable from a random oracle
[12,11]. However, the specific truncation patterns in it have not been well studied yet. Many instances in
practice just truncate the MSBs (or LSBs) of the chaining value as the digest, such as some of the most
acknowledged hash functions SHA-3 [8], SHA-224/384 [39], GOST-256, Grøstl [20] and many other SHA-3

candidates. Although this type of truncation pattern is convenient to be implemented in both software and
hardware, its concrete impacts on the security properties of the hash functions are less evaluated in literature.
Hence, evaluating different truncation patterns and seeking for an optimal one is a very meaningful issue in
cryptographic research.

Our Contributions. Firstly, we present improved preimage attacks on the reduced-round GOST hash func-
tion family. With the aid of the Meet-in-the-Middle (MitM) preimage attack [4] and the multicollisions [25]
which are constructed with dedicated collisions, we overcome the obstacle of the ChopMD mode and present
a preimage attack on 5-round GOST-256. Furthermore, by exploiting the weaknesses of the GOST transposition
operation, if the MixRow operation of the last round is omitted, we are able to extend the 5-round preimage
attack on GOST-256 and the previous preimage attack on 6-round GOST-512 [33] to 6.5 rounds and 7.5 rounds
respectively. Although it is not natural to omit the MixRow operation in a single round for a hash function
like GOST because it certainly disturbs the wide trail strategy [13], these attacks are theoretically meaningful
since they show that any operations with the involution property (i.e., the matrix transposition operation of
GOST) would facilitate the attackers with more attacked rounds, thus further demonstrate that such opera-
tions with the involution property should be cautiously considered as candidates for achieving transposition
in AES-like hash primitives. The results are summarized in Table 1. However, due to the limited number of
rounds attacked, our results do not pose any threats to the practical use of the GOST hash function family.

Secondly, motivated by the preimage attack on GOST-256, we discuss the impacts of the truncation
patterns on the resistance of the MitM preimage attack against AES-like compression functions with the
ChopMD mode. We investigate four representative truncation patterns, and show that two of them certainly
make it more difficult to launch this type of attack. Moreover, the last pattern studied even resists the
6-round MitM preimage attack for certain digest sizes. Based on the investigations, we are able to slightly
improve the previous pseudo preimage attacks on the reduced-round SHA-3 finalist Grøstl-256.

Organization of the Paper. In Section 2, we give brief descriptions of the GOST hash function. Section 3
presents the improved preimage attacks on the reduced-round GOST hash function family. Section 4 discusses
the impacts of four representative truncation patterns on the resistance of the MitM preimage attack against
AES-like compression functions. Section 5 concludes and summarizes the paper. [34].

2 The GOST Hash Function Family

The GOST hash function takes any message up to 2512 bits as input, and outputs a 256- or 512-bit digest,
i.e., GOST-256 and GOST-512. These two variants are almost the same, except that they have different initial

Improved (Pseudo) Preimage Attacks on Reduced-Round GOST and Grøstl-256 3

Table 1. Summary of previous and our (second) preimage attacks on GOST

Target
Rounds

Time Memory Reference
Attacked

GOST-256

(12 Rounds)

5
2192 264

Section 32208 § 212

6.5 † 2232 2120

GOST-512

(12 Rounds)

6

2505 2256 [2]

2505 264 [45]

2496 264

[33]
2504 § 211

7.5 † 2496 264

Section 3
2504 § 211

Full ‡ 2x · 2512−x, for x < 178.67 Not given
[22]

2523−x, for x < 259 Not given

† : Require the omission of the last MixRow operation.
‡ : Only work as second preimage attacks.
§ : The memory minimized attacks.

values, and GOST-256 only preserves the 256 MSBs of the final 512-bit chaining value as the digest. As
depicted in Fig. 1, the GOST hash function family adopts the HAIFA construction with a unique output
transformation. The hash computation contains three stages. Before we give specific descriptions of each
stage, we define several notations.

A||B The concatenation of two bit strings A and B.
M The input message, which is divided into 512-bit blocks.
Mi The i-th 512-bit message block of M.
|M | The bit length of M.
Len The bit length of the last message block of M.
Σ The 512-bit checksum of all message blocks.

CF The compression function.
hi The i-th 512-bit chaining variable.

CTi The i-th 512-bit counter which denotes the total message
bits processed before the i-th CF call.

CFh0

M0

Σ

|M|

M1

CFh1 CFh2

M2

CFhN-2

MN-2

512512 512 512

CFhN-1

MN-1
*

Len

CFhN

0

CFhN+1

0

hN+2

Initialization

Σ= |M| = 0

h0 = 0512, for GOST-512

h0 = (00000001)64, for GOST-256

Compression

Len = |M| mod 512

MN-1
* = MN-1||1||0511-Len

Finalization

h = hN+2, for GOST-512

h = MSB256(hN+2), for GOST-256

|M| Σ

CT0 CT1 CT2 CTN-2 CTN-1

Fig. 1. Three stages of the GOST hash function

4 B. Ma et al.

In the initialization stage, M is padded into a multiple of 512 bits, i.e., M ||1||0∗ is the padded mes-
sage, which is then divided into N 512-bit blocks M0||M1||...||MN−1. h0 is assigned to the predefined IV
of GOST-256 or GOST-512. |M |, Σ and CT0 are assigned to 0. In the compression stage, each block Mi

is processed iteratively, i.e., hi+1 = CF (hi,Mi, CTi) for i = 0, 1, ..., N − 1. After each computation of
the compression function, |M |, Σ and CTi+1 are updated accordingly. In the finalization stage, the out-
put chaining value of the last message block hN goes through the output transformation, i.e., hN+1 =
CF (hN , |M |, 0), hN+2 = CF (hN+1, Σ, 0). For GOST-512 (resp. GOST-256), hN+2 (resp. MSB256(hN+2)) is
the digest of M .

The compression function CF (hi,Mi, CTi) can be seen as an AES-like block cipher EK used in a Miyaguchi-
Preneel-like mode, i.e., CF (hi,Mi, CTi) = Ehi⊕CTi

(Mi)⊕Mi ⊕ hi. As for the block cipher EK , the 512-bit
internal state is denoted as an 8× 8 byte matrix. For the key schedule part, hi ⊕CTi is assigned as the key
K, then K0 is computed from K as follows:

K0 = L ◦ P ◦ S(K).

The round keys K1,K2, ...,K12 are generated as follows:

Kj+1 = L ◦ P ◦ S ◦XC(Kj) for j = 0, 1, 2, ...11,

where K12 is used as the post-whitening key:

– AddRoundConstant(XC): XOR a 512-bit constant predefined by the designers.
– SubBytes(S): process each byte of the state through the SBox layer.
– Transposition(P): transpose the k-th column to be the k-th row for k = 0, 1, 2, ..., 7, i.e., transposition

of the state matrix.
– MixRows(L): multiply each row of the state matrix by an MDS matrix.

For the data processing part, Mi is the plaintext, and is assigned to the initial state S0. Then the state is
updated 12 times with the round function as follows:

Sj+1 = L ◦ P ◦ S ◦X(Sj), for j = 0, 1, 2, ...11,

where AddRoundKey(X) XOR the state with the round key Kj . Finally, the ciphertext EK(Mi) is com-
puted with S12 ⊕K12.

3 Improved Preimage Attacks on Reduced-Round GOST

This section illustrates improved preimage attacks on the reduced-round GOST hash function family. Firstly,
we present the preimage attack on 5-round GOST-256. This attack overcomes the obstacles of the output
transformation and the truncation operation of GOST-256 by combining the dedicated collision and preimage
attacks on the compression function, and is the first preimage attack on GOST-256 in literature except
for the trivial brute-force attack. Then by exploiting the weaknesses of the GOST transposition operation
P , if the MixRow operation L in the last round is omitted, we are able to extend the 5-round preimage
attack on GOST-256 and the previous 6-round preimage attack on GOST-512 to 6.5 rounds and 7.5 rounds
respectively. Although such an omission seems unnatural for a construction like GOST since it certainly
disturbs the wide trail strategy1, the improved preimage attacks with more attacked rounds are of some
theoretical interests since they further demonstrate that any operations with the involution property should
be cautiously considered to achieve transposition in AES-like hash primitives from the aspect of preimage
resistance, as similar deductions have already been presented from the aspect of collision-like attacks in [33].

3.1 Overview of the Preimage Attack on 5-Round GOST-256

Based on the preimage attacks on 6-round GOST-512 [33], a very straightforward strategy is to find a (pseudo)
preimage2 on the last compression function call of the output transformation, and convert it to a preimage

1 Actually, similar observations have already been adopted [40], in which preimage attack on 7-round AES hashing
modes was constructed by omitting the last MixColumn operation, but it is natural for AES since there is no
MixColumn operation in the last round of AES. However, the omission of MixColumn/MixRow in the last round
is mainly adopted by block ciphers to achieve implementation advantage in the decryption algorithm, but such
omission might be improper under the hash function setting since inverse computation is commonly not required
for hash functions.

2 A pseudo preimage is a preimage whose input chaining value is not equal to the given chaining value.

Improved (Pseudo) Preimage Attacks on Reduced-Round GOST and Grøstl-256 5

attack on the GOST-256 hash function with the aid of tactfully constructed multicollisions. However, if the
multicollisions are constructed with cascaded collisions which are generated with the birthday attack, the
time complexity would be worse than the brute-force preimage attack on GOST-256. Moreover, the final
truncation operation of GOST-256 also makes it more complex to launch the MitM preimage attack on the
last compression function call of the output transformation.

To overcome the first obstacle, we could use dedicated methods to generate the collisions rather than
the birthday attack, and construct the multicollisions with these dedicated cascaded collisions with unique
structures. For the second problem, by a deeper look into the original MitM preimage attack framework
on AES-like compression functions, we are able to find the optimal attack parameters for reduced-round
GOST-256 although it performs the final truncation. Motivated by the preimage attack on reduced-round
GOST-256, more studies on the MitM preimage attack for AES-like compression functions with truncation are
discussed in Section 4.

Phase 1. Build 21024-multicollisions

M2

M2'

h1 h2

M1

M0

M0'

h0=IV h3

M3i+2

M3i+2'

h3i+1 h3i+2

M3i+1

M3i

M3i'

h3i h3i+3

M1535

M1535'

h1534 h1535

M1534

M1533

M1533'

h1533 h1536 hX

Phase 2. MitM preimage attack

M1536
h1537 h1538

|M| Σ(M)

Phase 3. Solve the checksum

M3i - M3i' = M3i+2' - M3i+2 + 2511-i

Fig. 2. Three phases of the preimage attack on reduced-round GOST-256

As depicted in Fig. 2, the preimage attack on 5-round GOST-256 consists of three phases. We briefly
introduce the main thoughts of each phase which help to understand the whole attack.

Phase 1. 21024-multicollisions are constructed with 512 cascaded 4-multicollisions pairs, namely,
(M3i,M

′
3i)||M3i+1||(M3i+2,M

′
3i+2) for i = 0, 1, ..., 511. We choose a 3-block message pair from each of

the 4-multicollisions, i.e.,
(M3i||M3i+1||M3i+2,M

′
3i||M3i+1||M ′3i+2) for i = 0, 1, ..., 511, which satisfy that

M3i +M3i+2 = M ′3i +M ′3i+2 + 2511−i. (1)

Since the size of the message checksum is 512 bits, and 4-multicollisions are required for each i =
0, 1, ..., 511 to make Equation (1) hold, thus we need to build 21024-multicollisions. Any possible value of
the message checksum can be constructed with the 512 3-block message pairs for i = 0, 1, ..., 511 selected
from the 21024-multicollisions due to the unique structures of the collision pairs. In order to build the
cascaded collisions which form the multicollisions, we utilize the dedicated collision attacks on 5-round
GOST-256 compression function [45] which will be illustrated later.

Phase 2. With the output chaining value of the 21024-multicollisions h1536, we randomly choose one more
message block M1536 which satisfies padding and derive the message bit length |M | as well. The value
of h1538 can then be computed. Let hX denote the given target, the last compression function call of
the output transformation is then inverted with the MitM preimage attack, and the preimage Σ(M)
generated in this phase is the message checksum desired. Since the collision attack in phase 1 can only
reach 5 rounds, we only focus on the preimage attack on 5-round GOST-256 compression function. The
exact procedures of this phase will be provided later as well.

Phase 3. After phase 1 and phase 2, we get hold of the 21024-multicollisions, and also have the message
checksum desired. In order to produce the desired checksum, we make use of the methods of [19,33],
which first write the desired checksum in binary form and then use the unique structure of the cascaded
collision pairs to produce each item of the binary expression. We refer to [33] for details of this phase.

After all three phases succeed, we manage to generate a preimage for 5-round GOST-256.

3.2 Phase 1. Construct the Multicollisions

This phase needs to generate 21024-multicollisions which can be decomposed into 512 pairs of 4-multicollisions,
namely, (M3i,M

′
3i)||M3i+1||(M3i+2,M

′
3i+2) for i = 0, 1, ..., 511 which satisfy Equation (1). In order to do so,

6 B. Ma et al.

we need to utilize the collision attack on 5-round GOST-256 compression function in [45]. The truncated
differential trail is depicted in Fig. 3, and the rebound attack [37] is used to derive the collisions. The layers
of the inbound phase, which are covered with the SuperSBox technique [21,32], are denoted in red, while the
layers of the outbound phase are denoted in blue. We refer to [45] for more descriptions, and only present
the results: it requires 2120 time and 264 memory to find a collision, and the expected number of collisions
with a fixed input chaining value is 28.

Now we show how to generate the 4-multicollisions
(M3i,M

′
3i)||M3i+1||(M3i+2,M

′
3i+2) for a specific i. As depicted in Fig. 2, the exact procedures are as follows:

1. From the chaining value h3i, with the aid of the rebound attack and the SuperSBox technique, we find
a collision pair (M3i,M

′
3i) on 5-round GOST-256 at the cost of 2120 time and 264 memory. Notice that

the only difference between M3i and M ′3i lies in a single cell whose exact position is determined by the
value of i, and the difference can take at most 28 possible values.

2. From h3i+1, we randomly choose the value of M3i+1 and compute the output chaining value h3i+2.
3. From h3i+2, we find a collision pair (M3i+2,M

′
3i+2) on 5-round GOST-256. Then we check whether

M3i−M ′3i = M ′3i+2−M3i+2 + 2511−i holds. Note that the only difference between M3i+2 and M ′3i+2 lies
in the same active cell as well, thus this condition holds with probability 2−8.

4. From a fixed h3i+2, 28 collision pairs (M3i+2,M
′
3i+2) can be generated, thus we expect to find one such

pair which makes Equation (1) hold. However, if no desired pair is found for the fixed h3i+2, we can
utilize the two-block strategy, and go to step 2 with another value of M3i+1, then redo step 3. As a
result, step 3 will eventually succeed and the 4-multicollisions can be constructed.

S4 S5S0 S1 S2 S3
X

S

P

L

X

S

P

L

X

S

P

L

X

S

P

L

X

S

P

L

r0 r1 r2 r3 r4

Fig. 3. Collision attack on 5-round GOST-256 compression function

Since the position of the active cell can be placed in any cell from the 64 possible positions, we can generate
the 4-multicollisions for any item 2511−i where i = 0, 1, ..., 511. For instance, the differential trail in Fig. 3 is
adopted to generate the 4-multicollisions for the item 2511−i where i = 0, 1, ..., 7. Finally, after enumerating
all 64 positions of the active cell and repeating the above procedures 512 times, the 21024-multicollisions are
constructed with 512× (2120 + 2120+8) ≈ 2137 time and 264 memory.

3.3 Phase 2. Invert the Output Transformation

As depicted in Fig. 2, given the target digest hX and the chaining value h1538, this phase inverts the last
compression function call of the output transformation and derives the value of the message checksum Σ(M).
In order to do so, we utilize the MitM preimage attack on AES-like compression functions. Due to the close
relevances, we give brief descriptions of the MitM preimage attack on AES-like compression functions. Then
we discuss how the truncation pattern of GOST-256 influences our attack. Finally, we provide the optimal
attack parameters derived.

The MitM Preimage Attack Framework on AES-like Compression Functions. The MitM preimage
attack was first introduced by Aoki and Sasaki in [4]. The basic idea of this technique, which is known as
splice-and-cut, aims to divide the target cipher into two sub-ciphers which can be computed independently.
Several advanced techniques to further improve the basic attack are developed, such as partial matching [4],
initial structure [41], indirect partial matching [3], bicliques [30] and differential MitM attack [31].

In [40], Sasaki proposed the first MitM preimage attack on AES-like compression functions. Two main
techniques were presented, namely, initial structure in an AES-like compression function and indirect partial
matching through an MixColumn layer. This work was later improved by Wu et al. in [44]. Thanks to the
delicate descriptions of the MitM preimage attack framework on AES-like compression functions presented
in [44], the chunk separations can be easily represented by introducing several essential integer parameters,

Improved (Pseudo) Preimage Attacks on Reduced-Round GOST and Grøstl-256 7

and the best attack parameters can be easily derived through an exhaustive search. In [42], Sasaki et al.
introduced the guess-and-determine approach to extend the basic attack by one more round. Based on these
previous results, the basic MitM preimage attack framework on AES-like compression functions is achieved.

As shown in Fig. 4, without loss of generality, we use the chunk separation of 5-round GOST-256 in order
to further illustrate the details of the attack framework. We first define several necessary notations which
are used throughout this paper. These notations are also depicted in Fig. 4 for instance.

n Bit size of the digest.
Nc Bit size of the cell.
Nt Number of columns (or rows) in the state.
b Number of blue rows (or columns) in the initial structure.
r Number of red rows (or columns) in the initial structure.
c Number of constant cells in each row (or column) in the initial structure.
g Number of guessed rows (or columns) in the backward (or forward)

computation, which are denoted in purple. See Fig. 6 for instance.
Db Freedom degrees of the blue chunk in bits.
Dr Freedom degrees of the red chunk in bits.
Dg Bit size of the guessed cells.
Dm Bit size of the match point.
TIME Time complexity of the preimage attack.

MEMORY Memory requirement of the preimage attack.

The attack procedures can be further divided into five steps which are illustrated as follows, and the
interested readers are referred to [40,44] for more details of the construction of the initial-structure and
indirect-partial-matching through the MixRow layer, and [42] for the illustrations of the guess-and-determine
strategy.

L

X

S

P

L

X

S

P

Initial Structure

Match Point

L

X

S

P

h

L

X

S

P

L

X

S

P

Truncated

b

cr

Freedom in Blue: Db=NcNt(b-r)

Freedom in Red: Dr=Nc(Nt-c)(Nt-b)

Match Size: Dm=NcNt(r+c-Nt)

(b, r, c)=(4, 3, 6)

#1 #2 #3 #4

#5 #8

#7

#6

Fig. 4. Preimage attack on 5-round GOST-256 compression function

Step 1. Initial Structure. Choose random values for the constants which are used in the transformations
between states #1 ↔ #2, and states #3 ↔ #4. Following the linear relations of the MixRow operation,
compute the values for the forward chunk (in blue) which has Db freedom degrees and the backward chunk (in
red) which has Dr freedom degrees. After this step, the compression function is divided into two independent
chunks thanks to the initial structure.
Step 2. Forward Computation. For all the blue and grey cells at state #4, the forward chunk can be
computed forwards independently until state #5.
Step 3. Backward Computation. For all the red cells at #1, the backward chunk can be computed
backwards independently until state #8. Although not shown in Fig. 4, the guess-and-determine strategy
can be utilized at state #7 in order to extend the attack by one more round. Note that we do not consider
the truncation operation currently when describing this general attack framework. The impacts brought by

8 B. Ma et al.

the truncation pattern through the feed-forward operation during the backward computation phase will be
discussed later.
Step 4. Indirect-Partial-Matching through the MixRow Layer. The indirect-partial-matching is
performed between states #5 ↔ #8 with partial known information of the red and blue cells from both
directions by exploiting linear relations of the MixRow operation.
Step 5. Recheck. Check whether the guessed cells of the partial match derived in step 4 are guessed
correctly. If so, check whether the partial match is also a full match. Repeat the above steps 1-5 until a
preimage is found.

Deriving the Attack Parameters. As discussed in previous works, the attack parameters, e.g., the free-
dom degrees of the forward chunk Db and the backward chunk Dr can be easily represented and enumerated
with several predefined integer parameters (b, r, c) as shown in Fig. 4. However, the size of the match point
Dm is rather ad-hoc, and needs to be treated carefully mainly due to impacts introduced by the truncation
operation and the feed-forward operation.

On the Match Point. For narrow pipe constructions, the state size equals with the digest size, and
the indirect-partial-matching contributes to the match of the entire digest. As studied in previous works
[40,44,42], the complexities can be denoted as follows (n denotes the digest size):

TIME = 2n(2−Dr + 2−Db + 2−Dm),
MEMORY = min{2Dr , 2Db}. (2)

However, since GOST-256 is a wide pipe design which adopts the ChopMD mode, we have to ensure that the
indirect-partial-matching operation between the forward blue chunk and the backward red chunk is only
carried on the preserved grey cells at state #9, and is not related to the truncated green cells at state #9.
As can be seen from Fig. 4, the red cells at state #7 are fully determined after the feed-forward operation
of state #6 and state #9, and only the grey preserved cells at state #9 are involved in this feed-forward
process, while the green truncated cells are totally irrelevant. Consequently, only the grey preserved cells of
the digest at state #9 are matched through the indirect-partial-matching layer, and the attack complexities
for narrow pipe constructions still hold for the GOST-256 case. Hence, for the GOST-256 case, the attack
complexities can still be represented as Equation (2).

Impacts of the Truncation. As depicted in Fig. 4, the truncation operation has direct influences on
the matching part of the attack. More precisely, in the backward computation of the red chunks, the feed-
forward operation can be conducted at state #6 or #7, and different selections will result in different attacks.
However, note that the attack complexities still depend on the quartets, i.e., (n,Dr, Db, Dm), and thus the
expressions of the complexities are the same as Equation (2).

Case 1. Feed-forward at State #6. After the feed-forward operation with state #6, all information of
the r red rows at #6 will be preserved due to the row-wise truncation as long as r ≤ 4. Consequently,
the backward computation would proceed by one more round and the original attack framework would
still work as long as r ≤ 4 is satisfied. We exhaustively search all possible attack parameters for case 1,
and the optimal parameters offer the attack with time complexity 2192 which is optimal.

Case 2. Feed-forward at State #7. After the feed-forward operation with state #7, only the first four
rows of the r red columns at #7 will be preserved due to the truncation. Although the number of attacked
rounds remains unchanged, the size of the match point3 is reduced by half which might have negative
impacts on the overall complexity. Actually, we exhaustively search all possible attack parameters for
case 2, and the optimal parameters offer the attack with time complexity 2208 which is not optimal.

3 Similar to the pseudo preimage attack on Grøstl [44], although the match point is cut to half by the feed-forward
operation, the indirect-partial-matching is still only related to the preserved parts of the digest, and contains no
information of the truncated parts.

Improved (Pseudo) Preimage Attacks on Reduced-Round GOST and Grøstl-256 9

Optimize Phase 2. Based on the previous discussions on the generic attack framework and the impacts
introduced by the truncation, we choose state #6 as the position where the feed-forward operation is per-
formed. Because (Db, Dr, Dm) can be represented with (b, r, c), we can easily enumerate all possible values of
(b, r, c) and search for the optimal attack parameters. The optimal chunk separation for 5-round GOST-256

is denoted in Fig. 4. Since the size of the target digest hX is 256 bits, and we have 512 bits freedom degrees
in Σ(M), phase 2 will succeed with probability 1. Finally, according to the specific attack parameters in Fig.
4, we need 2192 time and 264 memory to generate a preimage for 5-round GOST-256 compression function.

3.4 Phase 3. Generate the Preimage

We omit the details of this phase, since it follows almost the same procedures of the preimage attack in [33].
Note that this phase only needs several simple operations, thus the complexities are negligible.

3.5 Summarize the 5-Round Attack

Minimize the Memory Requirement. We can also minimize the memory requirement after a deeper look
into the above attack. Since we have to store the 21024-multicollisions, the memory requirement is at least
212 512-bit blocks. We can launch the memoryless MitM preimage attack [29,42] in phase 2, and generate a
preimage with 2208 time and negligible memory using the parameters (b, r, c) = (5, 4, 6)4. As for phase 1, the
standard time/memory tradeoff can be utilized to reduce the memory requirement of the inbound phase as
stated in [32, Appendix]. More precisely, referring to Fig. 3, the exact attack steps are as follows:

1. We choose 2s differences at S4 and propagate the differences to P−1◦L−1(S4), then save the 2s differences
in sorted lists for each SuperSBox.

2. We choose a random difference of P−1 ◦ L−1(S3), and compute the corresponding difference of X(S3).
3. For each specific SuperSBox, we enumerate all 264 values according to the difference of X(S3), and

compute the corresponding output differences. There are 2s differences in the saved list, thus we expect
to generate 2s solutions (one solution average for each difference in the list) for this SuperSBox since we
need to match a 64-bit difference. We can repeat step 3 for each SuperSBox independently.

Finally, we can generate 2s solutions for the inbound phase with 264 time and 2s memory, or equivalently a
single solution can be generated with 264−s time and 2s memory. Combining the outbound phase, it takes
264−s+120 = 2184−s time and 2s memory to derive a 5-round collision. The standard SuperSBox technique
sets s = 64, and we could find a solution for the inbound phase with average time complexity one. But now
we set s = 12, and we need 264 time to find 212 solutions for the inbound phase and 2172 time for a 5-round
collision. Finally, in order to build and store the 21024-multicollisions, we need 512× (2172 + 2172+8) ≈ 2189

time and 212 memory which is still not the bottleneck of the time complexity.

Complexity Analysis. Combining the complexities of the three phases, the preimage attack on 5-round
GOST-256 requires 2192 time and 264 memory. If we aim to minimize the memory requirement, the attack
requires 2208 time and 212 memory.

3.6 Extend the Preimage Attack to More Rounds

The transposition operation P of GOST is an involution, namely, P (St) = P−1(St) holds for any 512-bit
state St. The collision and distinguishing attacks on GOST in [33] benefits from this fact with more attacked
rounds. Now we show that the preimage attacks can also be extended by 1.5 more rounds by exploiting this
property. More precisely, if we omit the MixRow operation L in the last round, due to the fact that the
other round operations, namely, X,S, P are cell-independent operations, the backward computation can be
further extended by 1.5 more rounds, and we are able to launch preimage attacks on 6.5-round GOST-256

and 7.5-round GOST-512. Although these improved attacks require the omission of the MixRow operation
L in the last round which seems inappropriate for a primitive like GOST, they are worth mentioning since
they further clarify that any operations with the involution property are not optimal candidates as the
transposition operation of AES-like hash primitives. As a counter-example, we cannot extend the previous
preimage attacks on 6-round Whirlpool [42] to 7.5 rounds by omitting the last MixRow operation, because
the ShiftColumn operation of Whirlpool is not an involution.

4 Note that r = 4 satisfy the above requirement r ≤ 4 of Case 1.

10 B. Ma et al.

Preimage Attack on 6.5-Round GOST-256. There are three phases in the preimage attack on 6.5-round
GOST-256. The main ideas of each phase are identical to the 5-round attack, thus we only provide brief
descriptions of the attack, and omit more specified details.

In phase 1, we generate 21024-multicollisions which can be decomposed into 512 pairs of 4-multicollisions
similar to the 5-round preimage attack. In order to do so, we need to utilize the collision attack on 6.5-round
GOST-256 compression function in [33]. The truncated differential trail is depicted in Fig. 5. By choosing
different locations of the active column, we can build the 21024-multicollisions with 512 × 2184 = 2193 time
and 264 memory by repeating the collision attack on the compression function 512 times.

S4 S5 S6S0 S1 S2 S3 S6
P

X

S

P

L

X

S

P

L

X

S

P

L

X

S

P

L

X

S

P

L

X

S

P

L

X

S

P

r0 r1 r2 r3 r4 r5 r5.5

Fig. 5. Collision attack on 6.5-round GOST-256 compression function

In phase 2, we invert the last compression function call in the output transformation. We remove the
MixRow operation L in the last round, and the optimal chunk separation for the 6.5-round MitM preimage at-
tack is depicted in Fig. 6, and we can find a preimage Σ(M) with complexities (TIME,MEMORY) = (2232, 2120).

Phase 3 is the same as the third phase of the 5-round preimage attack. Combining all 3 phases, it would
require 2232 time and 2120 memory to generate a preimage for 6.5-round GOST-256. It is notable that although
there exists a collision attack on 7.5-round GOST compression function [33] which can be utilized to build the
21024-multicollisions adopted in phase 1, we are not able to launch a preimage attack on 7.5-round GOST-256

due to its truncation operation.

L

X

S

P

L

X

S

P

c

b

h1026 hX

L

X

X

S

P

Initial Structure

Match Point

Freedom in Blue: Db=NcNt(b-r)

Freedom in Red: Dr=Nc(Nt-c)(Nt-b)

Guess Cells: Dg=gNcNt/2

Match Size: Dm=NcNt(g+c-Nt)

(b, r, c,g)=(5, 3, 7, 3)

#2#1

r

L

X

S

P

S

P

L

X

L

S

P

S

P

X

g

#3

Truncated

Fig. 6. Preimage attack on 6.5-round GOST-256 compression function

Preimage Attack on 7.5-Round GOST-512. The preimage attack on 7.5-round GOST-512 consists of three
phases as well. The first and the last phases are the same as [33], while the improvement is carried out on
the second phase. We remove the MixRow operation L in the last round, and the chunk separation for the
second phase is depicted in Fig. 7. Finally, It requires 2496 time and 264 memory to generate a preimage for
7.5-round GOST-512. We can also launch a memoryless variant of this attack following the methods in [33],
and it requires 2504 time and 211 memory to generate a preimage for 7.5-round GOST-512.

4 Discussions: Impacts of the Truncation

As indicated in Section 3.3, the truncation pattern has impacts on the optimal position of the feed-forward
operation, thus influences the size of the match point and results in different attack complexities. In this
section, we further look into this problem, and evaluate the impacts of four representative truncation patterns
on the resistance of the MitM preimage attack against AES-like compression functions (with 8× 8-byte state

Improved (Pseudo) Preimage Attacks on Reduced-Round GOST and Grøstl-256 11

L

X

c

b

h1026 hX
Initial Structure

Match Point

Freedom in Blue: Db=NcNt(b-r)

Freedom in Red: Dr=Nc(Nt-c)(Nt-b)

Guess Cells: Dg=gNc(Nt-r)

Match Size: Dm=NcNt(g+c-N)

(b,r,c,g)=(6,5,7,2)

#2

L

X

S

P

#3

L

X

S

P

gL

X

X

S

P

r

L

X

S

P

S

P

L

X

S

P

L

X

S

P

#1

S

P

Fig. 7. Preimage attack on 7.5-round GOST-512 compression function

and the ChopMD mode). We need to stress that only the truncation patterns which truncate 512-bit chaining
values to 224, 256 or 384 bits digests are considered, since they are recommended by NIST in the SHA-3

competition, and have many instances in practice. For each investigated truncation pattern, we choose
carefully the position of the feed-forward operation in order to maximize the match point and derive the
optimal attack. As applications of our investigations, we slightly improve the previous pseudo preimage
attacks on reduced-round Grøstl-256.

4.1 The Generic MitM Preimage Attack Framework on AES-like Compression Functions

AES-like Compression Functions. We first define what we call an AES-like block cipher (or permutation).
An AES-like block cipher applies Nr rounds of a round function to update a plaintext represented as a matrix
of Nt columns and Nt rows, where each of the N2

t cells has a size of Nc bits. Since the key of the block
cipher is always fixed in the presented analysis model, we omit specification of the key schedule and denote
the round keys as constants. The round function consists 4 sequent operations, the AddRoundConstant
operation (AC), the SubBytes operation (SB) which applies a Nc×Nc nonlinear bijective SBox to each cell,
the ShiftRow operation (SR)5 which rotationally moves each cell in the x-th row by x positions to the left in
its own row, and the MixColumn operation (MC) which mixes all the columns with an MDS matrix. Note
that for the AES-like block ciphers considered in this paper, Nt = 8, Nc = 8.

When an AES-like block cipher is adopted as the underlying block cipher to build a compression function
with the PGV modes, we call such a compression function an AES-like compression function.

The Attack Model. We have checked that for all the 12 PGV modes, either a preimage or a pseudo
preimage attack on the specific AES-like compression function can be derived with the MitM preimage attack.
Hence, without loss of generality, we only study the pseudo preimage resistance of AES-like compression
functions with the Davies-Meyer mode. Similar analyses can be carried on the remaining PGV modes.

As briefly summarized in Section 3.3, the MitM preimage attack on AES-like compression functions can
reach 5 and 6 rounds combining several techniques like initial structure, the guess-and-determine strategy
and indirect-partial matching. We first focus on the 6-round MitM preimage attack, and the typical chunk
separation for the 6-round attack is depicted in Fig. 8. If the size of the digest is n bits, then the time
complexity for the 6-round attack is computed as follows:

T = 2n(2−Dr + 2Dg−Db + 2Dg−Dm).

5 There are many alternatives to achieve transposition, such as the matrix transposing operation of GOST which is
found to be non-optimal in [33] and this paper. For the sake of simplicity, we only consider the AES-like ShiftRow
operation (SR).

12 B. Ma et al.

MC

AK

SB

SR

MC

AK

SB

SR

MC

AK

SB

SR

MC

AK

SB

SR

Initial Structure

Match Point

MC

AK

SB

SR

MC

AK

SB

SR

#1 #2

b : blue columns at #2

r : red columns at #3

c : constant bytes in each column at #2

g : purple columns at #4

Freedom in Blue: Db=NcNt(b-r)

Freedom in Red: Dr=Nc(Nt-c)(Nt-b)

Guess Cells: Dg=gNc(Nt-r)

Match Size: Dm=NcNt(g+c-Nt)
#3

#5

#6

Case 4: Bit-wise

feed-forward
with

#5

#6

h

#4

384-bit: 6 bits per cell

256-bit: 4 bits per cell

224-bit: 4 bits per cell in the first 4 rows,

 3 bits per cell in the last 4 rows

#5

h
feed-forward

with

#5

Case 1: InverseShiftRow-wise

#6 #5

Case 3: Row-wise

feed-forward
with

#5

#5

h

#6

feed-forward

with

#4

Case 2: Column-wise

#4

h

#5#6

after

feed-forward

and

 guess

#4

Fig. 8. MitM preimage attack on 6-round AES-like compression function

Assessment Criterion. In order to measure the impacts of different truncation patterns on the resistance
of the MitM preimage attack, we define the advantage Adv of the time complexity for the dedicated
MitM preimage attack over the brute-force attack as follows:

Adv = log(TMitM)− log(TBrute).

Thus, the advantage for the 6-round attack can be denoted as follows:

Adv = min{Dr, Db −Dg, Dm −Dg}.

If no truncation is performed, the corresponding advantage is denoted with AdvFull6R . We search for all possible
chunk separations, and derive that AdvFull6R = 16.

For an AES-like compression function truncating from 512 bits to n bits, we denote the corresponding
advantage for the 6-round attack with Advn6R. For a specific truncation pattern, if Advn6R < AdvFull6R holds, it
certainly narrows (even eliminates) the gap between the brute-force attack and the dedicated MitM preimage
attack, thus strengthens the compression function in terms of the resistance of this type of attack. Based
on this observation, we expect to find the optimal truncation patterns among all the possible patterns.
However, the search space is to large6, and we do not come up with advanced techniques to significantly
reduce the search space at the moment. Instead of enumerating all possible truncation patterns, we study
4 representative patterns which are convenient in both software and hardware implementations, and show
that 2 of the 4 patterns provide extra strength against the MitM preimage attack.

4.2 Case Study: Preimage Resistance of Four Truncation Patterns

Firstly, we would like to point out two observations which are crucial in our analyses as shown in Fig. 8. The
first observation comes from the simple fact that the actual positions of the red cells can be freely chosen to
a certain extent in the backward computation. For instance, the attacker can freely choose the positions of
the r red columns from the eight columns at state #3. The second observation comes from the fact that the
feed-forward operation can be performed at the start of any round in the backward computation. In fact,
these observations have already been adopted in our preimage attack on 5-round GOST-256.

6 For example, if we truncate from 512 bits to 256 bits, there are a total C256
512 ≈ 2507 patterns. If we consider byte-wise

truncation, there are still C32
64 ≈ 260.67 patterns. Although we find several trivial methods to further classify all the

truncation patterns, the search space is still too large for a practical implementation.

Improved (Pseudo) Preimage Attacks on Reduced-Round GOST and Grøstl-256 13

Observation 1. As depicted in Fig. 8, if there are r (resp. g) red (resp. purple) columns at state #3 (resp.
#4), then the r (resp. g) red (resp. purple) columns can be randomly chosen from the Nt columns of state
#3 (resp. #4), and there are overall Cr

Nt
(resp. Cg

Nt
) possible patterns for the positions of the red (resp.

purple) columns.

Observation 2. In the chunk separation denoted in Fig. 8, the feed-forward operation can be carried out at
the begining of any round in the backward computation, namely, state #3, #4 or #5.

Security Analyses of the Four Representative Truncation Patterns. The 4 truncation patterns
considered are denoted in Fig. 8. For the first three cases, the grey cells of h are preserved while the white
cells of h are truncated. For the last case, only partial bits of each cell of h are preserved while the remaining
bits are truncated. Due to the space limit, we only provide detailed analyses of the situation where the 512-
bit state is truncated to the 256-bit digest. The 384-bit and the 224-bit cases can be analyzed analogously,
and the details are hence omitted. The overall results are summarized in Table 2.

Case 1 performs the InverseShiftRow -wise truncation, and there are overall C
Nt/2
Nt

specific InverseShiftRow -
wise truncation patterns. As depicted in Fig. 8, according to Observation 2, if the feed-forward operation is
carried out at state #5, no information of the red cells will be lost after the feed-forward, and the backward

computation can proceed to the match point at state #6. One may say that there are C
Nt/2
Nt

truncation
patterns for the InverseShiftRow truncations, and a different selection of these patterns may not preserve
this property. However, as identified in Observation 1, if Nt/2 ≥ g, we can choose the positions of the
purple columns at state #4 according to the specific truncation pattern adopted, so that we do not miss
any information of the red cells after the feed-forward. In other words, since the positions of the purple
columns can be adaptively chosen, all the InverseShiftRow -wise truncation patterns are equivalent in this
sense. Consequently, the values of (Db, Dr, Dg, Dm) for the InverseShiftRow truncations remain unchanged
as the case when no truncation is performed, and we can directly conclude that

Adv256Case1,6R = AdvFull6R = 16.

The truncation patterns of case 1 do not narrow the gap between the 6-round MitM preimage attack and
the brute-force attack.

Case 2 performs the Column-wise truncation. Similar to case 1, if the feed-forward operation is carried out
at state #4, we can adaptively choose the corresponding positions of the purple columns at state #4 from
all Cg

Nt
patterns according to the specific truncation pattern, and make sure that no information of the red

cells will be lost after the feed-forward if Nt/2 ≥ g. Then we are able to proceed the backward computation
by one more round to the match point at state #6 (which is also state #5 in this case). We conclude that

Adv256Case2,6R = AdvFull6R = 16,

and the truncation patterns of case 2 do not narrow the gap between the 6-round MitM preimage attack
and the brute-force attack either.

Case 3 performs the Row -wise truncation. The feed-forward should be carried out at state #5 instead of
state #4 and #3, since it requires full columns to compute a full round backwards, and the feed-forward
operation certainly disturbs the full columns. By easily and exhaustively enumerating the values of (b, r, c, g),
we can directly compute the values of (Db, Dr, Dg). However, the matching part is affected by the truncation,
and therefore the size of the match point Dm is rather ad-hoc. More precisely, as can be seen from Case 3 of
Fig. 8, we lose partial information of the red cells at state #6 compared to state #5 due to the truncation
after the feed-forward operation at state #5. Luckily, the overall number of the positions for the purple
columns of state #4 is only Cg

Nt
which can be exhaustively searched. Moreover, since the purple columns of

state #4 can be adaptively chosen, all the C
Nt/2
Nt

Row-wise truncation patterns are equivalent. Consequently,
for each valid quartet (b, r, c, g), we can enumerate all possible positions of the purple columns, derive the

14 B. Ma et al.

maximum size of the match point Dm, and then compute the corresponding time complexity for the specific
quartet (b, r, c, g). After testing all valid values of (b, r, c, g), we obtain the optimal chunk separations and
the minimized time complexity which are summarized in Table 2, and derive that

Adv256Case3,6R = 8 < AdvFull6R = 16.

Based on this result, it is obvious that all the truncation patterns of case 3 do narrow the gap between the
6-round MitM preimage attack and the brute-force attack, thus provide extra strength against this type of
attack.

Case 4 performs the Bit-wise truncation, i.e., 4 bits are selected from each cell. Due to the same reason
in case 3, the feed-forward should be carried out at state #5, and the backward computation proceeds until
reaching the match point at state #6. We denote the known cells at #6 in pink since only partial bits are
preserved due to the bit-wise truncation. The size of the match point7 can be denoted as Nt(gNc/2 + cNc−
NtNc) if gNc/2+cNc−NtNc > 0, otherwise no match point will be derived. We search for all possible values
of (b, r, c, g), and compute the corresponding time complexities. However, no chunk separation is obtained
which would make the MitM preimage attack faster than exhaustive search. Thus we conclude that

Adv256Case3,6R = 0,

and the truncation pattern of case 4 effectively prevents the 6-round MitM preimage attack for the 256-bit
digest.

Influences on Other Types of Attacks. A wide range of collision-like attacks on AES-like hash primitives
are based on multi-block procedures, and mainly focus on the prior message blocks. The collisions of these
attacks are derived by appending identical message blocks which satisfy padding to the previous colliding
message blocks. However, the truncation operation is normally performed only once at the last message block,
and therefore have no impacts on these collision-like attacks which mainly target prior message blocks. Thus,
the stronger truncation patterns discussed above do not weaken the resistance against these typical collision-
like attacks. Regarding other types of attacks, the discussions seem to be rather ad-hoc, and depend on the
specific structures of the underlying primitives. However, we find that the stronger truncation patterns do
not weaken the security properties of GOST-256, Grøstl-256 and the truncated variants of Whirlpool with
respect to existing attacks on these primitives, and we believe this fact should hold for a wide range of other
primitives with similar structures.

Overview of the Four Cases. Due to the fact that the truncation operation is normally much simpler than
the compression functions, and is most commonly processed only once at the end of the hash computation,
the extra efforts to implement these stronger truncation patterns are negligible (especially when processing
long input messages). Taking both security properties and implementation issues into account, the truncation
patterns of case 3 and case 4 are promising alternatives in future designs of AES-like hash primitives where
truncation needs to be performed.

Applications to Grøstl-256. For Grøstl-256, the column-wise truncation operation in the output trans-
formation corresponds to case 2. As depicted in Fig. 9, we can carry out the feed-forward operation earlier in
the backward computation without losing any information of the red cells. As a result, the time complexity
of the previous 6-round (resp. 5-round) attack can be decreased from 2248 [46] (resp. 2208 [44]) to 2240 (re-
sp. 2192) output transformation computations. The complexities of the pseudo preimage attacks on 5- and
6-round Grøstl-256 in [44,46] can also be slightly improved, we omit these details. Based on these slightly
improved attacks, we recommend Grøstl-256 to perform the stronger row-wise or bit-wise truncations.

7 We find that the relations between the red and blue cells which are utilized in the indirect-partial-matching can
be written in bit-wise forms.

Improved (Pseudo) Preimage Attacks on Reduced-Round GOST and Grøstl-256 15

Table 2. Summary of the results for the four truncation cases, the truncation patterns which

resist the MitM preimage attack are denoted in red.

Case
Rounds Digest

Advantage
Parameters I Parameters II

Time Memory
Attacked Size #(b, r, c, g) #(Db, Dr, Dg, Dm)

No

Truncation

6 512 16 (6,5,7,2) (64,16,48,64) 2496 264

5 512 64 (4,3,6,-) (64,64,-,64) 2448 264

Case 1 and

Case 2

6
384 16 (6,5,7,2) (64,16,48,64) 2368 264

256 16 (6,5,7,2) (64,16,48,64) 2240 264

224 16 (6,5,7,2) (64,16,48,64) 2208 264

5
384 64 (4,3,6,-) (64,64,-,64) 2320 264

256 64 (4,3,6,-) (64,64,-,64) 2192 264

224 64 (4,3,6,-) (64,64,-,64) 2160 264

Case 3

6
384 8 (7,6,7,2) (64,8,32,48) 2376 240

256 8 (7,6,7,3) (64,8,48,64) 2248 256

224 8 (7,6,7,3) (64,8,48,64) 2216 256

5
384 48 (5,4,6,-) (64,48,-,128) 2336 248

256 48 (5,4,6,-) (64,48,-,64) 2208 248

224 48 (5,4,6,-) (64,48,-,64) 2176 248

Case 4

6
384 8 (7,6,7,3) (64,8,48,80) 2376 256

256 - - - 2256 O(1)

224 - - - 2224 O(1)

5
384 48 (5,4,6,-) (64,48,-,64) 2336 248

256 32 (4,3,7,-) (64,32,-,32) 2224 232

224 24 (5,4,7,-) (64,24,-,48) 2200 224

MC

AK

SB

SR

MC

AK

SB

SR

Initial Structure

Match Point

MC

AK

SB

SR

MC

AK

SB

SR

MC

AK

SB

SR

MC

AK

SB

SR
h

Truncated

Fig. 9. Pseudo preimage attack on 6-round Grøstl-256 output tansformation

5 Conclusion and Open Problems

In this paper, we present improved preimage attacks on the reduced-round GOST hash function family by
combining the dedicated collision attack and the MitM preimage attack on the GOST compression function.
As far as we know, our result is the first preimage attack on GOST-256 at the hash function level. We also
investigate the impacts of four representative truncation patterns on the resistance of the MitM preimage
attack against AES-like compression functions, and propose two strengthened truncation patterns, which
make it more difficult to launch the MitM preimage attack.

However, due to the large search space, we are not able to study the impacts of all possible truncation
patterns at the moment. An interesting and open problem is to seek for advanced approaches to efficiently
enumerate all possible truncation patterns, and investigate their impacts on various security properties of
many AES-based hash primitives.

References

1. AlTawy, R., Kircanski, A., Youssef, A.: Rebound Attacks on Stribog. In: Lee, H.S., Han, D.G. (eds.) ICISC 2013.
LNCS, vol. 8565, pp. 175–188. Springer International Publishing (2014), also available at http://eprint.iacr.

org/2013/539

http://eprint.iacr.org/2013/539
http://eprint.iacr.org/2013/539

16 B. Ma et al.

2. AlTawy, R., Youssef, A.: Preimage Attacks on Reduced-Round Stribog. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT 2014. LNCS, vol. 8469, pp. 109–125. Springer International Publishing (2014)

3. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., Wang, L.: Preimages for Step-Reduced SHA-2. In: Matsui, M.
(ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 578–597. Springer, Heidelberg (2009)

4. Aoki, K., Sasaki, Y.: Preimage Attacks on One-Block MD4, 63-Step MD5 and More. In: Avanzi, R., Keliher, L.,
Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 103–119. Springer, Heidelberg (2009)

5. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 Proposal BLAKE. Submission to NIST (Round
3) (2010), http://131002.net/blake/

6. Barreto, P., Rijmen, V.: The Whirlpool Hashing Function. Submitted to NESSIE (September 2000) (2000),
http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html

7. Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw, M., Seurin, Y.: SHA-3 Proposal:
ECHO. Submission to NIST (updated) (2009), http://crypto.rd.francetelecom.com/ECHO/

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak Reference. Submission to NIST (Round 3)
(2011), http://keccak.noekeon.org/Keccak-reference-3.0.pdf

9. Biham, E., Dunkelman, O.: A Framework for Iterative Hash Functions - HAIFA. Cryptology ePrint Archive,
Report 2007/278 (2007), http://eprint.iacr.org/2007/278

10. Biham, E., Dunkelman, O.: The SHAvite-3 Hash Function. Submission to NIST (Round 2) (2009), http://www.
cs.technion.ac.il/~orrd/SHAvite-3/

11. Chang, D., Nandi, M.: Improved Indifferentiability Security Analysis of chopMD Hash Function. In: Nyberg, K.
(ed.) FSE 2008, LNCS, vol. 5086, pp. 429–443. Springer, Heidelberg (2008)

12. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard Revisited: How to Construct a Hash Function.
In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (2005)

13. Daemen, J., Rijmen, V.: The Wide Trail Design Strategy. In: Honary, B. (ed.) IMACC 2001, LNCS, vol. 2260,
pp. 222–238. Springer, Heidelberg (2001)

14. Damg̊ard, I.B.: A Design Principle for Hash Functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435,
pp. 416–427. Springer, New York (1990)

15. Dolmatov, V., Degtyarev, A.: GOST R 34.11-2012: Hash Function (2013)
16. Dolmatov, V., Degtyarev, A.: Request for Comments 6986: GOST R 34.11-2012: Hash Function. Internet Engi-

neering Task Force (IETF) (2013), http://www.ietf.org/rfc/rfc6986.txt
17. Information Protection and Special Communications of the Federal Security Service of the Russian Federation:

GOST R 34.11-94, Information Technology Cryptographic Data Security Hashing Function (1994), in Russian
18. Information Protection and Special Communications of the Federal Security Service of the Russian Federation:

GOST R 34.11-2012, Information Technology Cryptographic Data Security Hashing Function (2012), http:

//www.tc26.ru/en/GOSTR3411-2012/GOST_R_34_11-2012_eng.pdf

19. Gauravaram, P., Kelsey, J.: Linear-XOR and Additive Checksums Don’t Protect Damg̊ard-Merkle Hashes from
Generic Attacks. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 36–51. Springer, Heidelberg (2008)

20. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.:
Grøstl–a SHA-3 Candidate. Submission to NIST (Round 3) (2011), http://www.groestl.info/Groestl.pdf

21. Gilbert, H., Peyrin, T.: Super-Sbox Cryptanalysis: Improved Attacks for AES-like Permutations. In: Hong, S.,
Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365–383. Springer, Heidelberg (2010)

22. Guo, J., Jean, J., Leurent, G., Peyrin, T., Wang, L.: The Usage of Counter Revisited: Second-Preimage Attack
on New Russian Standardized Hash Function. In: Joux, A., Youssef, A. (eds.) SAC 2014, LNCS, vol. 8781, pp.
195–211. Springer International Publishing (2014), also available at http://eprint.iacr.org/2014/675

23. International Organization for Standardization: ISO/IEC 10118-3:2004: Information technology - Security tech-
niques - Hash-functions - Part 3: Dedicated hash-functions (2004)

24. Iwamoto, M., Peyrin, T., Sasaki, Y.: Limited-Birthday Distinguishers for Hash Functions. In: Sako, K., Sarkar,
P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 504–523. Springer, Heidelberg (2013)

25. Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Constructions. In: Franklin, M.
(ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316. Springer, Heidelberg (2004)

26. Kazymyrov, O., Kazymyrova, V.: Algebraic Aspects of the Russian Hash Standard GOST R 34.11-2012. Cryp-
tology ePrint Archive, Report 2013/556 (2013), http://eprint.iacr.org/2013/556

27. Kelsey, J., Kohno, T.: Herding Hash Functions and the Nostradamus Attack. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 183–200. Springer, Heidelberg (2006)

28. Kelsey, J., Schneier, B.: Second Preimages on n-bit Hash Functions for Much Less than 2n Work. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 474–490. Springer, Heidelberg (2005)

29. Khovratovich, D., Nikolić, I., Weinmann, R.P.: Meet-in-the-Middle Attacks on SHA-3 Candidates. In: Dunkelman,
O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 228–245. Springer, Heidelberg (2009)

30. Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for Preimages: Attacks on Skein-512 and the SHA-2
Family. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 244–263. Springer, Heidelberg (2012)

http://131002.net/blake/
http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
http://crypto.rd.francetelecom.com/ECHO/
http://keccak.noekeon.org/Keccak-reference-3.0.pdf
http://eprint.iacr.org/2007/278
http://www.cs.technion.ac.il/~orrd/SHAvite-3/
http://www.cs.technion.ac.il/~orrd/SHAvite-3/
http://www.ietf.org/rfc/rfc6986.txt
http://www.tc26.ru/en/GOSTR3411-2012/GOST_R_34_11-2012_eng.pdf
http://www.tc26.ru/en/GOSTR3411-2012/GOST_R_34_11-2012_eng.pdf
http://www.groestl.info/Groestl.pdf
http://eprint.iacr.org/2014/675
http://eprint.iacr.org/2013/556

Improved (Pseudo) Preimage Attacks on Reduced-Round GOST and Grøstl-256 17

31. Knellwolf, S., Khovratovich, D.: New Preimage Attacks against Reduced SHA-1. In: Safavi-Naini, R., Canetti,
R. (eds.) CRYPTO 2012, LNCS, vol. 7417, pp. 367–383. Springer, Heidelberg (2012)

32. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound Distinguishers: Results on the
Full Whirlpool Compression Function. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143.
Springer, Heidelberg (2009)

33. Ma, B., Li, B., Hao, R., Li, X.: Improved Cryptanalysis on Reduced-Round GOST and Whirlpool Hash Func-
tion. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 289–307. Springer
International Publishing (2014), full version available at http://eprint.iacr.org/2014/375

34. Ma, B., Li, B., Hao, R., Li, X.: Improved (Pseudo) Preimage Attacks on Reduced-Round GOST and Grøstl-256

and Studies on Several Truncation Patterns for AES-like Compression Functions (Full Version). Cryptology ePrint
Archive (2015)

35. Mendel, F., Pramstaller, N., Rechberger, C.: A (Second) Preimage Attack on the GOST Hash Function. In:
Nyberg, K. (ed.) FSE 2008, LNCS, vol. 5086, pp. 224–234. Springer, Heidelberg (2008)

36. Mendel, F., Pramstaller, N., Rechberger, C., Kontak, M., Szmidt, J.: Cryptanalysis of the GOST Hash Function.
In: Wagner, D. (ed.) CRYPTO 2008, LNCS, vol. 5157, pp. 162–178. Springer, Heidelberg (2008)

37. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack: Cryptanalysis of Reduced
Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg
(2009)

38. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp.
428–446. Springer, New York (1990)

39. National Institute of Standards and Technology (NIST): FIPS PUB 180-3: Secure Hash Standard. Federal
Information Processing Standards Publication 180-3, U.S. Department of Commerce (October 2008), http:

//csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

40. Sasaki, Y.: Meet-in-the-Middle Preimage Attacks on AES Hashing Modes and an Application to Whirlpool. In:
Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 378–396. Springer, Heidelberg (2011)

41. Sasaki, Y., Aoki, K.: Finding Preimages in Full MD5 Faster Than Exhaustive Search. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 134–152. Springer, Heidelberg (2009)

42. Sasaki, Y., Wang, L., Wu, S., Wu, W.: Investigating Fundamental Security Requirements on Whirlpool: Improved
Preimage and Collision Attacks. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 562–579.
Springer, Heidelberg (2012)

43. Wang, Z., Yu, H., Wang, X.: Cryptanalysis of GOST R Hash Function. Cryptology ePrint Archive, Report
2013/584 (2013), http://eprint.iacr.org/2013/584

44. Wu, S., Feng, D., Wu, W., Guo, J., Dong, L., Zou, J.: (Pseudo) Preimage Attack on Round-reduced Grøstl Hash
Function and Others. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 127–145. Springer, Heidelberg (2012)

45. Zou, J., Wu, W., Wu, S.: Cryptanalysis of the Round-Reduced GOST Hash Function. In: Lin, D., Xu, S., Yung,
M. (eds.) Inscrypt 2013. LNCS, vol. 8567, pp. 309–322. Springer International Publishing (2014)

46. Zou, J., Wu, W., Wu, S., Dong, L.: Improved (Pseudo) Preimage Attack and Second Preimage Attack on Round-
Reduced Grøstl. Cryptology ePrint Archive, Report 2012/686 (2012), http://eprint.iacr.org/2012/686

http://eprint.iacr.org/2014/375
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://eprint.iacr.org/2013/584
http://eprint.iacr.org/2012/686

	Improved (Pseudo) Preimage Attacks on Reduced-Round GOST and Grøstl-256 and Studies on Several Truncation Patterns for AES-like Compression Functions (Full Version)
	Introduction
	The GOST Hash Function Family
	Improved Preimage Attacks on Reduced-Round GOST
	Overview of the Preimage Attack on 5-Round GOST-256
	Phase 1. Construct the Multicollisions
	Phase 2. Invert the Output Transformation
	Phase 3. Generate the Preimage
	Summarize the 5-Round Attack
	Extend the Preimage Attack to More Rounds

	Discussions: Impacts of the Truncation
	The Generic MitM Preimage Attack Framework on AES-like Compression Functions
	Case Study: Preimage Resistance of Four Truncation Patterns

	Conclusion and Open Problems

