
Meet-in-the-Middle Attacks Revisited:
Key-recovery, Collision, and Preimage Attacks

Xiaoyang Dong1, Jialiang Hua1(B), Siwei Sun2,3(B), Zheng Li4,7,
Xiaoyun Wang1,5,6, Lei Hu2,3

1 Institute for Advanced Study, BNRist, Tsinghua University, Beijing, China
{xiaoyangdong,huajl18,xiaoyunwang}@tsinghua.edu.cn

2 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, China

3 University of Chinese Academy of Sciences, China
siweisun.isaac@gmail.com

4 Faculty of Information Technology, Beijing University of Technology,
China lizhengcn@bjut.edu.cn

5 Key Laboratory of Cryptologic Technology and Information Security, Ministry of
Education, Shandong University, Jinan, China

6 School of Cyber Science and Technology, Shandong University, Qingdao, China
7 Beijing Key Laboratory of Trusted Computing, Beijing University of Technology,

Beijing, China

Abstract. At EUROCRYPT 2021, Bao et al. proposed an automatic
method for systematically exploring the configuration space of meet-
in-the-middle (MITM) preimage attacks. We further extend it into a
constraint-based framework for finding exploitable MITM characteris-
tics in the context of key-recovery and collision attacks by taking the
subtle peculiarities of both scenarios into account. Moreover, to perform
attacks based on MITM characteristics with nonlinear constrained neu-
tral words, which have not been seen before, we present a procedure
for deriving the solution spaces of neutral words without solving the
corresponding nonlinear equations or increasing the overall time com-
plexities of the attack. We apply our method to concrete symmetric-key
primitives, including SKINNY, ForkSkinny, Romulus-H, Saturnin, Grøstl,
WHIRLPOOL, and hashing modes with AES-256. As a result, we identify the
first 23-round key-recovery attack on SKINNY-n-3n and the first 24-round
key-recovery attack on ForkSkinny-n-3n in the single-key model. More-
over, improved (pseudo) preimage or collision attacks on round-reduced
WHIRLPOOL, Grøstl, and hashing modes with AES-256 are obtained. In
particular, employing the new representation of the AES key schedule
due to Leurent and Pernot (EUROCRYPT 2021), we identify the first
preimage attack on 10-round AES-256 hashing.

Keywords: Meet-in-the-Middle · Three-subset MITM · Preimage at-
tack · Collision Attack · AES-256 · MILP

2 Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, Lei Hu

1 Introduction

The meet-in-the-middle (MITM) approach is a generic technique for cryptanaly-
sis of symmetric-key primitives, which was first introduced by Diffie and Hellman
in 1977 for attacking block ciphers [19]. Many variants of this technique can be
found in the literature [22,21,20,25,11]. Its basic idea is best illustrated by per-
forming an MITM attack on a block cipher deliberately made susceptible to this
type of attacks. Let EK(·) be a block cipher whose block size is n-bit such that
C = EK(P) = FK2

(FK1
(P)), where K = K1||K2, and K1 and K2 are inde-

pendent key materials. Therefore, for a given pair of plaintext-ciphertext pair
(P,C), the intermediate value V can be computed independently as FK1(P) and
F−1
K2

(C) with independent guesses of K1 and K2. The correct key guess nec-

essarily satisfies FK1
(P) = F−1

K2
(C). Therefore, by searching collisions on the

intermediate values computed from P and C, one can reduce the search space
from 2|K| = 2|K1|+|K2| to 2|K1|+|K2|−n with time complexity 2|K1| + 2|K2|. The
remaining key space with 2|K1|+|K2|−n candidates can be tested against several
known plaintext-ciphertext pairs to identify the unique secret key.

However, in practice, it is rare that a target cipher can be clearly separated
into two independent halves as the above doubly cascaded F with indepen-
dent key materials. When a clear separation into two independent chunks is not
possible, a variant of the basic MITM strategy (known as three-subset MITM
attack) is available. This method was originally proposed by Bogdanov and Rech-
berger [13], applied to many ciphers [13,54,36,50], and was well summarized by
Isobe [34]. Again, let us briefly demonstrate this technique on an ill-designed
example with respect the three-subset MITM attack. Let EK(·) be a block ci-
pher whose block size is n-bit such that it can be divided into three chunks as
C = EK(P) = HK3||K2

(GK1||K2||K3
(FK1||K2

(P))), where K = K1||K2||K3 and
K1, K2, K3 are independent. Moreover, some m-bit (m < n) information of a
state value inside G can be partially computed along the forward direction from
FK1||K2

(P) without the knowledge of K3, or computed along the backward di-

rection from H−1
K3||K2

(C) without the knowledge of K1. The three-subset MITM

attack partitions the search space with 2|K| = 2|K1|+|K2|+|K3| elements into 2|K2|

subspaces of equal size according to the value of |K2|. For each subspace, where
the value of |K2| is fixed, one can perform the basic MITM attack with partial
match to reduce the size of the search space from 2|K1|+|K3| to 2|K1|+|K3|−m

with time complexity 2|K1| + 2|K3|. Under our terminology, which will be in-
troduced in Section 2, one run of the basic version of the MITM attack with a
fixed K2 is called one MITM episode. To identify the correct key, 2|K2| episodes
have to be performed. Therefore, the overall time complexity can be estimated
as 2|K2|(2|K1| + 2|K3| + 2|K1|+|K3|−m). This technique has been applied to many
block ciphers [54,50,13,11,34,35].

Although the MITM technique was originally introduced for attacking block
ciphers, its development seems to be largely cultivated and promoted in the
cryptanalysis of hash functions. In 2008, Sasaki and Aoki successfully achieved
preimage attacks on several full versions of HAVAL by combining the MITM

Meet-in-the-Middle Attacks Revisited 3

approach with the local collision technique [51]. From then on, many MITM
preimage attacks together with their enhancements and improvements targeting
various hash functions emerged in the literature [4,52,30,59,5,41,3,32,60,1,49,7].
Along the way, several important techniques arise which significantly enhance
and enrich the MITM methodology, including the splice-and-cut technique [4],
the concept of initial structure [52], (indirect-)partial matching [52,4], sieve-in-
the-middle [16] and match-box technique [27]. Some techniques are formalized
as bicliques [40,12] and further perceived from differential views [41,26]. These
developments in the context of cryptanalysis of hash functions were finally found
to be applicable in the MITM attacks on block ciphers. In [61], Wei et al. first
applied the splice-and-cut technique to the MITM attacks on block ciphers by
connecting the plaintext and ciphertext states with encryption or decryption
oracles.

Despite that the principle of how to combine all these techniques in MITM at-
tacks is quite clear, to actually apply them in practice effectively and efficiently
is complicated, tedious, and error-prone. Recently, (semi) automatic tools are
developed to explore the configuration space of MITM attacks in a more sys-
tematic approach. In [50], Sasaki proposed an MILP-based method to search
for optimal independent key bits used in the three-subset MITM key-recovery
attacks on GIFT [6]. However, Sasaki’s model is not general enough and the pos-
sible positions of neutral words are prefixed. At EUROCRYPT 2021, the MITM
preimage attacks on AES-like hashing was throughly modeled as constrained op-
timization problems which were solved with MILP techniques [7]. This approach
outperforms previous work done manually, and many attacks on AES-like hash-
ing [49,62,42] are shown to have room to be further improved. However, this
method is described in a way specific to preimage attacks and do not translate
directly to MITM-based key-recovery or collision attacks.

Our contribution. We describe the MITM attacks 8 in a unified way as MITM
attacks on the so-called closed computation path. This view has been long known
to our community. Nevertheless, we believe that our treatment is more formal
and general. In particular, by introducing some new concepts, we make the
description of MITM attacks more expressive and accurate.

Then, we focus our attention on MITM key-recovery and collision attacks
on block ciphers and hash functions. We identify the peculiarities specific to
these scenarios and show how to deal with them automatically. For the MITM
characteristics employed in key-recovery attacks, the degrees of freedom orig-
inated from the states in the key schedule data path must not be depleted,
while the degrees of freedom originated from the encryption data path must
be used up. Also, when searching for candidate configurations for the MITM
key-recovery attacks, we should avoid those configurations that lead to attacks
requiring the full codebook. We apply our methods to concrete block ciphers
SKINNY and ForkSkinny. and we identify the first 23-round attack on SKINNY-n-
3n in the single-key model, penetrating one more round than the designers have

8 We do not consider the Demirci-Selçuk MITM attacks [17,24,18,57] in this paper,
which is a quite different technique.

4 Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, Lei Hu

expected: We conclude that meet-in-the-middle attack may work up to at most
22 rounds [10, Sect. 4.2, page 22]. Interestingly, the characteristics we employed
in these attacks impose nontrivial constraints on the neutral words from the key
states, which has not been seen before. For collision attacks, they are based on a
generalized version of the t-cell partial target preimage attacks, where the words
of the target value fulfill t (word-oriented) equations.

Finally, we perform MITM preimage and collision attacks on concrete hash
functions (e.g., Romulus-H [37], Saturnin [15], WHIRLPOOL [9], and Grøstl [28]).
In the attacks on certain hash functions, we encounter some special MITM
characteristics where the neutral words are nonlinearly constrained. In previ-
ous work, the neutral words are linearly constrained and thus the solution space
of the neutral words can be obtained efficiently by solving the corresponding
system of linear equations. For nonlinear equations, this approach would sig-
nificantly increase the complexities. We propose a technique that is applicable
to both the non-linearly and linearly constrained neutral words, overcoming
this difficulty without increasing the time complexity of the attacks. Based on
this technique, we improve the (pseudo) preimage attacks on round-reduced
Grøstl-256 and its output transformation by one round. For collision attacks,
the first 6-round classical collision attack on WHIRLPOOL is provided, breaking a
10-year record for collision attacks on WHIRLPOOL in the classical setting. Also,
we give the first 6-round collision attack and 8-round collision attack on the
output transformations of Grøstl-256 and Grøstl-512, respectively. Interest-
ingly, we notice that all competitive collision attacks on these AES-like hash-
ings are based on the rebound technique [46]. In addition, we offer the first
third-party cryptanalysis of Saturnin-Hash [15], a second round candidate of
the NIST LWC project. A summary of our results on concrete primitives is
given in Table 1 and Table 2. The source code of the paper is available at
https://github.com/siweisun/mitm-attacks-revisited.

Table 1: Single-key attacks (SK) on SKINNY-n-3n and ForkSkinny-n-3n, where
ID and DS-MITM denote impossible differential and Demirci-Selçuk MITM at-
tacks, respectively.

SKINNY

Version Rounds Data Time Memory Attack Setting Ref.

64-192
22 247.84 2183.97 274.84 ID SK [58]
23 252 2188 24 MITM SK Sect. 4

128-384
22 296 2382.46 2330.99 DS-MITM SK [57]
22 292.22 2373.48 2147.22 ID SK [58]
23 2104 2376 28 MITM SK Sect. 4

ForkSkinny

64-192 24 252 2188 24 MITM SK Sect. B

128-384 24 2104 2376 28 MITM SK Sect. B

128-256
24 2122.5 2124.5 297.5 ID RK [8]
26 2127 2250.3 2160 ID RK [8]

https://github.com/siweisun/mitm-attacks-revisited

Meet-in-the-Middle Attacks Revisited 5

Table 2: A Summary of the results. Note that we only consider preimage and
collision attacks. Distinguishing attacks [38,43,53,14] are not included. Also, note
that the complexity of the preimage attack on Romulus-H is 2248. This attack does
not break 23-round Romulus-H since the designers only claim 128-bit security.
However, this complexity is better than an exhaustive search, whose complexity
is 2256. Similarly, Saturnin claims only 224-bit security.

WHIRLPOOL

Target Attack Rounds Time Memory Setting Ref.

Hash function

Collision

4 2120 216 Classic [46]
5 2120 264 Classic [29,43]
6 2228 - Quantum [33]
6 2248 2248 Classic Sect. 6.2

Preimage
5 2504 28

Classic
[49]

5 2481.5 264 [62]
6 2481 2256 [55]

Compression function (Semi-) free-start
5 2120 216

Classic
[46]

7 2184 28 [43]
8 2120 28 [55]

Grøstl-256

Hash function
Collision

3 264 -
Classic

[56]
5 2120 264 [47]

Pseudo preimage
5 2244.8 2230

Classic
[62]

6 2252 2251 Sect. D

Compression function Semi-free-start 6 2112 264 Classic [56]

Output Transformation
Preimage

5 2206 248
Classic

[62]
6 2240 2152 Sect. D

Collision 6 2124 2124 Classic Sect. F.1

Grøstl-512

Hash function
Collision

5 2240 264 Quantum [23]
Compression function 7 2152 256 Classic [53]
Output Transformation 8 2248 2248 Classic Sect. F.2

Hash function Pseudo preimage 8 2507.3 2507 Classic [62]

Saturnin-Hash

Compression function
Preimage

7 2208 248
Classic Sect. E

Hash function 7 2232 248

SKINNY-128-384, Romulus-H, and AES hashing mode

SKINNY-128-384-DM/MMO

Preimage

23 2120 28

Classic

Sect. C
Romulus-H 23 2248 28 Sect. C
AES-256 9 2120 28 [7]
AES-256 10 2120 256 Sect. G

Romulus-H compression function Free-start 23 2124 2124 Sect. C

6 Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, Lei Hu

Key schedule

Encryption
#SENC

Match
#E+ #E−

Public or Oracle computation

#SKSA

Fig. 1: A high-level overview of the MITM attacks

2 A Formal Description of the MITM Technique

We now formally describe the MITM attacks with the notations introduced by
Bao et al.’s work [7] in a more unified way. We encourage the readers to carefully
go through this section since it not only serves as a recall of Bao et al.’s work,
but also introduces some new terminologies that enhance the expressiveness and
accuracy of the descriptions of MITM attacks.

Given a computation path that forms a “closed loop”, the ultimate goal of
the meet-in-the-middle attack is to find a particular value for some intermediate
states with which the values for all the states involved in the computation path
can be determined, such that the values are compatible with the whole compu-
tation path (there are no conflicts between the values due to the involved com-
putation). Let us descend from the abstract highland and consider the closed
computation path shown in Figure 1. The upper segment of the computation
path constitutes an iterative block cipher with an iterative key schedule, and we
assume that the states involved in the encryption data path and key schedule
data path contains n and n̄ w-bit words respectively, which are typically visu-
alized as rectangles with n and n̄ cells, respectively. The lower segment of the
computation path can be arbitrary. In our context, it can be an oracle of the
block cipher appearing in the upper segment of the computation path when we
consider an MITM key-recovery attack, or a simple exclusive-or of a given tar-
get value when we consider preimage attacks. Before we can perform an MITM
attack on the computation path, a configuration or an MITM characteristic has
to be identified.

MITM Characteristics and Their Visualization. The MITM attack entails
the identification of several special states: the starting state #SENC (see Figure 1)
in the encryption data path, the starting state #SKSA in the key schedule data
path, the ending state #E+ for the forward computation (the computation path
starting from (#SENC,#SKSA) leading to #E+), and the ending state #E− for
the backward computation (the computation path starting from (#SENC,#SKSA)
leading to #E−). Moreover, the cells of (#SENC,#SKSA) are partitioned into
different subsets with different meanings. Let BENC, BKSA, RENC, RKSA, M+, and
M− be some ordered subsets of N = {0, 1, · · · , n− 1} or N = {0, 1, · · · , n̄− 1}
such that BENC ∩ RENC = ∅, BKSA ∩ RKSA = ∅, GENC = N − BENC ∪ RENC and
GKSA = N − BKSA ∪ RKSA. We will use these index sets to reference the cells of

Meet-in-the-Middle Attacks Revisited 7

the states. For example, for a 16-cell state #S and M+ = [0, 1, 3], we have
#S[M+] = #S[0, 1, 3] = (#S[0],#S[1],#S[3]).

The cells (#SENC[BENC],#SKSA[BKSA]), visualized as cells, are called neutral
words of the forward computation, and the cells (#SENC[RENC],#SKSA[RKSA]), vi-
sualized as cells, are called neutral words of the backward computation. The
initial degrees of freedom for the forward and backward computation are de-
fined as λ+ = |BENC| + |BKSA| and λ− = |RENC| + |RKSA| respectively, that is, the
numbers of cells and cells in the starting states. In addition, E+[M+] are
visualized as cells, and E−[M−] are visualized as cells. Finally, #SENC[GENC]
and #SKSA[GKSA] are visualized as cells.

We then define a sequence of l+ functions π+ = (π+
1 , · · · , π+

l+) whose values
can be computed with the knowledge of the cells (#SENC[GENC],#SKSA[GKSA])
and cells (#SENC[BENC],#SKSA[BKSA]) in the starting states, where

π+
i : Fw·(|GENC|+|GKSA|+|BENC|+|BKSA|)

2 → Fw
2

is a function mapping (#SENC[GENC],#SKSA[GKSA],#SENC[BENC],#SKSA[BKSA]) to a
w-bit word π+

i (#SENC[GENC],#SKSA[GKSA],#SENC[BENC],#SKSA[BKSA]). Similarly, we
define a sequence of l− functions π− = (π−

1 , · · · , π−
l−) whose values can be

computed with the knowledge of the cells (#SENC[GENC],#SKSA[GKSA]) and
cells (#SENC[RENC],#SKSA[RKSA]). π+ and π− will be used to represent certain
constraints on the neutral words of the forward and backward computations,
respectively. A valid MITM characteristic satisfies the following property.

Property 1. For any fixed c+ = (a1, · · · , al+) ∈ Fw·l+
2 and c− = (b1, · · · , bl−) ∈

Fw·l−
2 , when the cells (#SENC[GENC],#SKSA[GKSA]) are fixed to an arbitrary con-

stant, and the neutral words for the forward computation and backward com-
putation paths fulfill the following systems of equations:

π+
1 (#SENC[GENC],#SKSA[GKSA],#SENC[BENC],#SKSA[BKSA]) = a1

π+
2 (#SENC[GENC],#SKSA[GKSA],#SENC[BENC],#SKSA[BKSA]) = a2

· · · · · ·
π+
l+
(#SENC[GENC],#SKSA[GKSA],#SENC[BENC],#SKSA[BKSA]) = al+

(1)

and 
π−
1 (#SENC[GENC],#SKSA[GKSA],#SENC[RENC],#SKSA[RKSA]) = b1

π−
2 (#SENC[GENC],#SKSA[GKSA],#SENC[RENC],#SKSA[RKSA]) = b2

· · · · · ·
π−
l−(#SENC[GENC],#SKSA[GKSA],#SENC[RENC],#SKSA[RKSA]) = bl−

(2)

respectively, then the values of the cells #E+[M+] can be derived from the
starting states (#SENC,#SKSA) along the forward computation path without the
knowledge of the neutral words for the backward computation, and the values of
the cells #E−[M−] can be derived from the starting states (#SENC,#SKSA) along
the backward computation path without the knowledge of the neutral words for
the forward computation. In short, computations for deriving #E−[M+] and
#E−[M−] can be carried out independently.

8 Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, Lei Hu

Let us talk more about Property 1. For any given (#SENC[GENC],#SKSA[GKSA])
and c+ = (a1, · · · , al+), the solution space of (#SENC[BENC],#SKSA[BKSA]) induced
by Equation (1) is denoted by

B(#SENC[GENC],#SKSA[GKSA], c+).

Since there are λ+ = |BENC|+ |BKSA| w-bit variables and l+ equations, we expect

2w·(λ+−l+) solutions, and we call DoF+ = λ+− l+ the degrees of freedom for the
forward computation. Similarly, the solution space of (#SENC[RENC],#SKSA[RKSA])
induced by Equation (2) is denoted by R(#SENC[GENC],#SKSA[GKSA], c−). Since
there are λ− = |RENC| + |RKSA| w-bit variables and l− equations, we expect

2w·(λ−−l−) solutions, and we call DoF− = λ−− l− the degrees of freedom for the
backward computation.

Let F+ be the function computing #E+[M+] from (#SENC,#SKSA), that is,
#E+[M+] can be computed as

F+(#SENC[GENC], #SKSA[GKSA], #SENC[BENC],#SKSA[BKSA],#SENC[RENC],#SKSA[RKSA]),

and similarly, #E−[M−] can be computed as

F−(#SENC[GENC],#SKSA[GKSA],#SENC[BENC],#SKSA[BKSA],#SENC[RENC],#SKSA[RKSA).

Property 1 implies that

F−(α, x,#SENC[RENC],#SKSA[RKSA]) = F−(α, y,#SENC[RENC],#SKSA[RKSA])

for any given x, y ∈ B(#SENC[GENC],#SKSA[GKSA], c+) and α ∈ F|GENC|+|GKSA|
2 . Simi-

larly, for any u, v ∈ R(#SENC[GENC],#SKSA[GKSA], c−), we have

F+(α,#SENC[BENC],#SKSA[BKSA], u) = F+(α,#SENC[BENC],#SKSA[BKSA], v).

Consequently, for any given (#SENC[GENC],#SKSA[GKSA]) = α, and c+, and c−, we
can perform a matching process given in Algorithm 1.

In real MITM attacks, Algorithm 1 will be performed multiple times for many
different α, c+, and c−, each time is called one MITM episode. Variables that
remain constant within each episode are called episodic constants, and variables
remain constant in the whole life cycle of an attack (remaining constant across
different episodes) are called global constants. Thus global constants are always
episodic constants. The cells used in [7] and this work capture the episodic
constants, whose values can change across different episodes.

Within each episode, (2w)DoF+

times of forward computation are carried out,

and (2w)DoF−
times of backward computations are carried out, which are referred

to as forward threads and backward threads. Each forward thread and backward
thread within the same episode gives a pair of values for (#E+[M+],#E−[M−])
which are computed along the forward and backward computation paths from a
common value of the starting states (#SENC,#SKSA), and thus can be tested for
match according to the computation connecting #E+ and #E− in the closed
loop. Note that testing pairs computed from different values of the starting point

Meet-in-the-Middle Attacks Revisited 9

Algorithm 1: One MITM episode

1 Fix (#SENC[GENC],#SKSA[GKSA]) to a constant α
2 Fix c+, and c− to some constants
3 Fix x∗ to be an element in B(#SENC[GENC],#SKSA[GKSA], c+)
4 Fix u∗ to be an element in R(#SENC[GENC],#SKSA[GKSA], c−)
5 L← []

6 for all (#SENC[BENC],#SKSA[BKSA]) ∈ B(#SENC[GENC],#SKSA[GKSA], c+) do
7 E+[M+]← F+(α,#SENC[BENC],#SKSA[BKSA], u∗)
8 Insert E+[M+] into L

9 for all (#SENC[RENC],#SKSA[RKSA]) ∈ R(#SENC[GENC],#SKSA[GKSA], c−) do
10 E−[M−]← F−(α, x∗,#SENC[RENC],#SKSA[RKSA])
11 for E+[M+] in L matching with E−[M−] do
12 Test for full match between E+[M+] and E−[M−]

(e.g., pairs formed from different episodes) is meaningless. In each episode, we

have (2w)DoF++DoF−
paired threads. If the computation connecting #E+[M+]

and #E−[M−] forms an m-cell filter, then there are about (2w)DoF++DoF−−m

paired threads will pass the filter and be tested for a full match. We call DoM =
m the degrees of match or the strength of the filter. Finally, we emphasize again
that the MITM procedure given in Algorithm 1 is performed for some fixed
(#SENC[GENC],#SKSA[GKSA], c+, c−), and we say (#SENC[GENC],#SKSA[GKSA], c+, c−)
defines the context of the MITM episode.

Automatic Search for MITM Characteristics. For a given closed compu-
tation path shown in Figure 1, a configuration of the states #SENC, #SKSA, #E+,
#E−, and the parameters BENC, BKSA, RENC, RKSA,M+,M−, DoF+, DoF−, π+,
π−, and DoM satisfying Property 1 is called an MITM characteristic. At EURO-
CRYPT 2021, Bao et al. presented an MILP-based method for finding optimal
MITM characteristics for preimage attacks, and we refer the reader to [7] for
more details. Here, we only mention that an MILP characteristic can be visual-
ized with the following coloring scheme on the states of the closed computation
path and the ith cell of a state #S is encoded with a pair of 0-1 variables
(x#S

i , y#S
i) in the MILP models according to the following rule:

Gray (G), (x#S
i , y#S

i) = (1, 1): known episodic constants.

Red (R), (x#S
i , y#S

i) = (0, 1): neutral words for backward computation or
dependent on cells and neutral words for backward computation.

Blue (B), (x#S
i , y#S

i) = (1, 0): neutral words for forward computation or
dependent on cells and neutral words for forward computation.

White (W), (x#S
i , y#S

i) = (0, 0): dependent on cells in the backward com-
putation or dependent on cells in the forward computation.

10 Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, Lei Hu

3 Automatic MITM Key-recovery Attacks

We describe the MITM key-recovery attack on a block cipher based on Figure 1
with the lower segment being an encryption or decryption oracle. Before going
any further, we introduce some new notations. The initial degrees of freedom
from the encryption and key schedule data paths for the forward computation
are defined as λ+

ENC = |BENC| and λ+
KSA = |BKSA|, respectively. Similarly, The initial

degrees of freedom from the encryption and key schedule data paths for the back-
ward computation are defined as λ−

ENC = |RENC| and λ−
KSA = |RKSA|, respectively.

Under these notations, we have λ+ = λ+
ENC + λ+

KSA and λ− = λ−
ENC + λ−

KSA.

For an MITM characteristic, we say that the degrees of freedom from the
encryption data path for the forward computation is used up if for any given
(#SENC[GENC],#SKSA[GKSA], c+), we partition the solution space

B(#SENC[GENC],#SKSA[GKSA], c+)

of (#SENC[BENC],#SKSA[BKSA]) due to Equation (1) into subspaces according to
the value of #SKSA[BKSA], then each space contains exactly one element. That is,
the values of the cells in #SENC can be fully determined by the cells in #SKSA

for a given (#SENC[GENC],#SKSA[GKSA], c+). Similarly, we say that the degrees of
freedom from the encryption data path for the backward computation is used
up if the values of the cells in #SENC can be fully determined by the cells in
#SKSA for a given (#SENC[GENC],#SKSA[GKSA], c−).

Now, Let us recall from Section 2 that the goal of the MITM attack is to find
a particular value for some intermediate states in the closed computation path
shown in Figure 1 with which the values for all the states involved in the compu-
tation path can be determined, such that the values derived are compatible with
the whole computation path. Specifically, in the context of MITM key-recovery
attacks, our goal can be formulated as follows.

Goal 1. Identify a value K for the key register hosting the master key, and a
value for one full state in the encryption data path, with which we can derive
the values of all states involved. We require that the values for all states are
compatible and K equals to the secret key hiding in the oracle.

The above goal indicates that in the MITM key-recovery attack, the full key
space must be (implicitly) tested, since a compatible assignment of values to
the states is not enough (unlike MITM preimage attacks), and we must identify
the unique secret key. Secondly, in the key-recovery attack, we prefer not to
exhaust the full codebook of the targeted cipher. These particularities result in
the following requirements for the MITM characteristic:

I. The degrees of freedom for the forward computation or backward computa-
tion from #SKSA cannot be depleted (i.e., DoF+ > 0 and DoF− > 0), while
the degrees of freedom for both the forward computation and backward com-
putation from #SENC should be used up.

Meet-in-the-Middle Attacks Revisited 11

II. In the MITM characteristic, we require that there is at least one cell
(episodic constant) in the plaintext state, which will be set to global constant
in the actual attack to avoid using the full codebook.

To ensure (I), we require the corresponding systems of equations of the MITM
characteristic given in Equation (1) and (2) to satisfy the following conditions.
For Equation (1), there are l+KSA equations (without loss of generality, we assume
these are the first l+KSA equations) do not involve #SENC[GENC] and SENC[BENC]. The
remaining l+−l+KSA equations are used to exhaust the degrees of freedom from the
encryption data path, and thus |λ+

ENC| = |BENC| = l+ − l+KSA. Under this, we have
DoF+ = λ+

KSA− l+KSA. In addition, for each constant (#SENC[GENC],#SKSA[GKSA], c+),
and each solution for #SKSA[BKSA] of the first l+KSA equations, we can derive one
and only one solution for #SENC[BENC] by solving the remaining equations. For
Equation (2), there are l−KSA equations (without loss of generality, we assume
these are the first l−KSA equations) do not involve #SENC[GENC] and SENC[RENC]. The
remaining l−−l−KSA equations are used to exhaust the degrees of freedom from the
encryption data path, and thus |λ−

ENC| = |RENC| = l− − l−KSA. Under this, we have
DoF− = λ−

KSA− l−KSA. In addition, for each constant (#SENC[GENC],#SKSA[GKSA], c−),
and each solution for #SKSA[RKSA] of the first l−KSA equations, we can derive one
and only one solution for #SENC[RENC] by solving the remaining equations.

Requirement (I) may be less obvious than (II), and we will explain it by
looking into the algorithmic framework given in Algorithm 2. But before we go
into the details, we emphasize that due to these peculiarities, almost all MITM
characteristics found by the the method presented in [7] are useless in the context
of key-recovery attacks.

From now on, we use |#S| denote the number of cells in a state #S. In
Line 1 of Algorithm 2, we set |#SENC| gray cells, including all the gray cells in
the plaintext state to global constants, where |#SENC| denotes the number of cells
in #SENC. Since the gray cells in the plaintext states are set to global constant,
the attack will not use the full codebook. These |#SENC| gray cells are not neces-
sarily within one single state along the computation path. Instead, they can be
distributed over multiple states. Moreover, we require that the values of these
cells can be set independently to arbitrary values without leading to a conflict
along the computation path (excluding the computations connecting the ending
states). When these constants are set, for any given key, we can derive the values
of all the states (including #SENC), along the computation path (excluding the
computation connecting the ending states), which indicates that if the degrees
of freedom of #SENC are not exhausted, this constant setting process may lead
to conflicts, which is equivalent to setting more than |#SENC| cells of #SENC to
constants. Then, each MITM episode is performed within the context defined by
the outer loops surrounding the code segment from Line 8 to Line 15.

Complexity Analysis. In Line 2 of Algorithm 2, suppose there are ε gray cells
in the plaintext state, then the data complexity (2w)n−ε. Suppose the states in
the encryption data and key schedule data paths contains n and n̄ cells, respec-
tively, and the matching part forms anm-cell filter. According Algorithm 2, there

12 Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, Lei Hu

Algorithm 2: The MITM key-recovery attack on block ciphers

1 Set |#SENC| independent gray cells to constants, which should contain all the
gray cells in the plaintext state

2 Collecting a structure of plaintext-ciphertext pairs and store them in a table
H, which traverses the non-constant cells in the plaintext

3 for #SKSA[GKSA] ∈ Fw·|GKSA|
2 do

4 for c+KSA = (a1, · · · , al+KSA
) ∈ Fw·l+KSA

2 do

5 for c−KSA = (b1, · · · , bl−KSA) ∈ Fw·l−KSA
2 do

6 Derive the the value of #SENC[GENC]
7 L← []

8 for #SKSA[BKSA] ∈ BKSA(#SKSA[GKSA], c+KSA) do
9 Derive the the value of #SENC[BENC] and compute E+[M+]

along the forward computation path
10 Insert #SKSA[BKSA] into L indexed by E+[M+]

11 for #SKSA[RKSA] ∈ RKSA(#SKSA[GKSA], c−KSA) do
12 Derive the the value of #SENC[RENC] and Compute E−[M−]

along the backward computation path by accessing H

13 for #SKSA[BKSA] ∈ L[E−[M−]] do
14 Reconstruct the (guessed) key value K′ from #SKSA[BKSA],

#SKSA[RKSA], and #SKSA[GKSA]
15 Test K′ against several plaintext-ciphertext pairs

are (2w)n̄−λ+
KSA−λ−

KSA ·(2w)l+KSA ·(2w)l−KSA = (2w)n̄−(DoF++DoF−) MITM episodes, and in

each episode (2w)DoF++DoF−
different keys are tested, where (2w)DoF++DoF−−m

of them will pass the m-cell filter. Therefore, the overall time complexity can
be estimated as (2w)n̄−DoF+−DoF+

((2w)DoF+

+ (2w)DoF−
+ (2w)DoF++DoF−−m),

which is approximately

(2w)n̄−min{DoF+,DoF−,m}. (3)

4 MITM Attacks on SKINNY and ForkSkinny

SKINNY is a family of lightweight block ciphers designed by Beierle et al. [10]
based on the TWEAKEY framework [39]. In this section, we apply our method to
SKINNY-n-3n (The version with an n-bit block size, a 3n-bit key, and a 0-bit
tweak) with n ∈ {64, 128}. The overall structure of SKINNY-n-3n and its round
function are given in Figure 2.

The internal state is viewed as a 4 × 4 square with 16 cells. In each round,
the state is updated with five operations: SubCells (SC), AddConstants (AC),
AddRoundTweakey (ART), ShiftRows (SR) and MixColumns (MC). The key reg-
ister is arranged into three 4×4 squares denoted as TK1, TK2, and TK3 respec-

Meet-in-the-Middle Attacks Revisited 13

TK

XOR C0 XOR C1

. . .

. . .

. . .

XOR C2

. . .

XOR Cr−1 XOR Cr

8 9 10 11

4 5 6 7

0 1 2 3

12 13 14 15

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Fig. 2: The hight-level structure of SKINNY-n-3n and its round function (Thanks
to https://www.iacr.org/authors/tikz/).

tively. Note that the in each round only the first two rows of the internal state
are affected by ART, and the MC operation is non-MDS and thus quite different
from the AES-like structures analyzed in [7]. Specifically, we have

MC


a
b
c
d

 =


a⊕ c⊕ d

a
b⊕ c
a⊕ c

 and MC
−1


α
β
γ
δ

 =


β

β ⊕ γ ⊕ δ
β ⊕ δ
α⊕ δ

 . (4)

4.1 Programming the MITM Attacks on SKINNY-n-3n with MILP

Based on the analysis of Section 3, we show how to build the MILP model
for finding MITM characteristics of SKINNY-n-3n in the context of key-recovery
attacks. We employ the same encoding scheme from [7], where the ith cell of

a state #S is encoded with a pair of 0-1 variables (x#S
i , y#S

i) according to
the rule given in Section 2. Firstly, due to the complexity estimation given by
Equation (3), min{DoF+,DoF−,DoM} should be maximized in our model. To
this end, we introduce an auxiliary variable vObj, impose the constraints

{vObj ≤ DoF+, vObj ≤ DoF−, vObj ≤ DoM}

and set the objective function to maximize vObj. In what follows, we describe the
constraints for the starting states, ending states, and the states in the compu-
tation paths with a special focus on what is different from Bao et al.’s work [7].
First of all, the tweakey schedule algorithm of SKINNY-n-3n only involves in-cell
operations and permutations changing the positions of the cells in the tweakey
register, which will not alter the color of a cell in our model (only their positions
are changed). Therefore, we will not discuss the constraints imposed solely by
the tweakey schedule algorithm in the following.

Constraints for the Starting States.As discussed in Section 3, we distinguish
the sources of degrees of freedom from the encryption data path (denoted by λ+

ENC

https://www.iacr.org/authors/tikz/

14 Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, Lei Hu

and λ−
ENC) and the key schedule data path (denoted by λ+

KSA and λ−
KSA), and the

initial degrees of freedom satisfies λ+ = λ+
ENC + λ+

KSA and λ− = λ−
ENC + λ−

KSA, where
λ+
ENC = |BENC|, λ+

KSA = |BKSA|, λ−
ENC = |RENC|, and λ−

KSA = |RKSA|. We introduce two
variables αi and βi for each cell in (#SENC,#SKSA), where αi = 1 if and only if

(x#S
i , y#S

i) = (1, 0) and βi = 1 if and only if (x#S
i , y#S

i) = (0, 1). Then we have
the following constraints:

λ+
ENC =

∑
i
αENC
i , λ+

KSA =
∑

i
αKSA
i , λ−

ENC =
∑

i
βENC
i , λ−

KSA =
∑

i
βKSA
i ,

and




x#SENC

i − αENC
i ≥ 0

y#SENC

i − x#SENC

i + αENC
i ≥ 0

y#SENC

i + αENC
i ≤ 1

,





y#SENC

i − βENC
i ≥ 0

x#SENC

i − y#SENC

i + βENC
i ≥ 0

x#SENC

i + βENC
i ≤ 1

,





x#SKSA

i − αKSA
i ≥ 0

y#SKSA

i − x#SKSA

i + αKSA
i ≥ 0

y#SKSA

i + αKSA
i ≤ 1

,





y#SKSA

i − βKSA
i ≥ 0

x#SKSA

i − y#SKSA

i + βKSA
i ≥ 0

x#SKSA

i + βKSA
i ≤ 1

.

Constraints for the Ending States. We assume that the matching only hap-
pens at the MixColumns. Let (#E+[4j],#E+[4j+1],#E+[4j+2],#E+[4j+3])T

and (#E−[4j],#E−[4j + 1],#E−[4j + 2],#E−[4j + 3])T be the jth column of
the ending states #E+ and #E− linked by the MC operation. Since MC is non-
MDS, its constraints are quite different from Bao et al.’s model for MDS matrix,
where there is a (Σ − 4)-cell filter if and only if Σ ≥ 5 out of 8 cells of the two
columns are or cells (see [7, Property 1, page 14]).

For the MC operation of SKINNY, there may exist an m-cell (m > 0) filter even
if Σ < 5. For example, according to Equation (4), if #E+[4j] = , #E−[4j +
1] = and all other cells are , we still get a 1-cell filter due to #E+[4j] =
#E−[4j + 1]. We can enumerate all possible patterns and convert these local
constraints into linear inequalities using the convex hull computation method.
In Figure 3, we list some of the possible matching patterns with their filtering
strength measured in cells. We introduce a variable γj ≥ 0 for the j-th columns

MC

+1

MC

+1

MC

+1

MC

+1

MC

+1

MC

+1

MC

+1

MC

+1

MC

+1

MC

+2

MC

+2

MC

+2

MC

+2

MC

+3

MC

+2

MC

+2

MC

+2

Fig. 3: Some possible coloring patterns at the matching point

of #E+ and #E− such that there is a γj-cell filter due to the coloring patterns
of #E+ and #E−, then we get a DoM-cell filter at the matching point, where

Meet-in-the-Middle Attacks Revisited 15

DoM =
∑

j γj and should be positive according to the complexity analysis given
by Equation (3).

Constraints Imposed by the Computation Paths. Along the computation
paths leading to the ending states, the initial degrees of freedom are consumed
according to the MITM characteristic. Forward computation consumes the de-
grees of freedom of the neutral words for backward computation while backward
computation consumes the degrees of freedom of the neutral words for the for-
ward computation. The consumption of degrees of freedom is counted in cells.
Let σ+

ENC, σ
+
KSA and σ−

ENC, σ
−
KSA be the accumulated degrees of freedom that have

been consumed in the backward and forward computation in the encryption
and key schedule data paths. Since the degrees of freedom from the encryption
data paths for both directions should be used up and the degrees of freedom
originated from the key schedule data path should not be exhausted, we require

{
λ+
ENC − σ+

ENC = 0, λ−
ENC − σ−

ENC = 0

DoF+ = λ+
KSA − σ+

KSA ≥ 1, DoF− = λ−
KSA − σ−

KSA ≥ 1
.

According to the semantics of the colors, how a coloring pattern of the input
and output states of an operation consumes the degrees of freedom should be
be different for the forward and the backward computation paths. Therefore, we
will give two sets of rules for different directions of the computation.

XOR. The XOR operations exist in the ART and MC, and we can reuse the
XOR-RULE+ (for forward computation) and XOR-RULE− (for backward compu-
tation) rules gvien in [7]. The coloring patterns and how the degrees of freedom
are consumed are visualized in Figure 4.

⊕ ⊕

(-1)

⊕ ⊕

⊕ ⊕ ⊕
*

⊕

(a) Forward computation (XOR+-RULE) (b) Backward computation (XOR−-RULE)

⊕ ⊕

(-1)

⊕ ⊕

⊕ ⊕ ⊕
*

⊕

Fig. 4: Rules for XOR, where a “*” means that the cell can be any color

AddRoundTweakey. ART is the operation that the first two rows of the three
tweakey states are XORed into the encryption data path. There are three XOR
operations and four input cells (three from the tweakey state and one from the
encryption data path) involved to produce an output cell. Certainly, we can use
the XOR-RULE three times to get the constraints. However, this approach misses
some important coloring patterns that may lead to better attacks. We take the
forward computation for example as shown in Figure 5. If we use XOR+-RULE

three times successively as shown in Figure 5(a), when the and are the input
cells of the XOR, the output cell will be , eventually leading to a output cell.

16 Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, Lei Hu

However, if we change the order of the XOR operations as shown in Figure 5(b),
then ⊕ may produce a cell by consuming one degree of freedom, leading
to a output cell. To take this into account, we model the rule for three XORs
as a whole, named as 3-XOR+-RULE, with Figure 5(c) as an example.

⊕

⊕

⊕

(-1)

⊕

⊕

⊕

⊕

(-1)

(a) three XORs successively (b) change the three XORs’s order (c) 3-XOR+-RULE

Fig. 5: The inaccuracy of modeling 3-XOR+ by applying XOR+ successively

For the 3-XOR operation in the forward computation, we have the following
set of rules (denoted by 3-XOR+-RULE):

▶ 3-XOR+-RULE-1. If there are cells but no and cells in the input, the
output cell is or (partially cancel the impacts of the input cells by
consuming λ−

ENC or λ−
KSA).

▶ 3-XOR+-RULE-2. If there are and cells but no cells in the input, the
output cell is or (partially cancel the impacts from on by consuming
λ−
ENC or λ−

KSA).
▶ 3-XOR+-RULE-3. If there are cells but no and cells in the input, the

output cell is .
▶ 3-XOR+-RULE-4. If all the input cells are , then the output cell is .
▶ 3-XOR+-RULE-5. If there is at least one cell in the input, the output is .

We introduce variables δ−ENC and δ−KSA to denote the consumed degrees of free-
dom due to 3-XOR+-RULE. For example, δ−ENC = 1 means that we consume one
degree of freedom from λ−

ENC by applying the rule. In order to use up all the
degrees of freedom from #SENC, we should consume λ−

ENC first whenever possi-
ble. As shown in Figure 6, when there are degrees of freedom in the encryption
path, i.e., cells, the consumption of degree of freedom is always from λ−

ENC, i.e.,
δ−ENC = 1 and δ−KSA = 0.

Let #a, #b, #c, #d be the input cells and #e be the output cell. Then, the set
of rules 3-XOR+-RULE restricts (x#a, y#a, x#b, y#b, x#c, y#c, x#d, y#d, x#e, y#e,
δ−ENC) and (x#a, y#a, x#b, y#b, x#c, y#c, x#d, y#d, x#e, y#e, δ−KSA) to subsets of F11

2 ,
which can be described by a system of linear inequalities by using the convex
hull computation method. Some valid coloring patterns due to 3-XOR+-RULE are
given in Figure 6. Note that 3-XOR−-RULE can be obtained from 3-XOR+-RULE

by exchanging the cells and cells, since the meanings of and are dual for
the forward and backward computations.
MixColumn. Since MC contains only XOR operations, we can use XOR-RULE to
generate the set of rules MC-RULE for MC. According to Equation (4), there exists
one equation that XORs three cells together to get one cell. We use a similar

Meet-in-the-Middle Attacks Revisited 17

KSA

ENC

⊕

δ
−
ENC

=0

δ
−
KSA

=0

⊕
-1

δ
−
ENC

=1

δ
−
KSA

=0

⊕
-1

δ
−
ENC

=1

δ
−
KSA

=0

⊕

δ
−
ENC

=0

δ
−
KSA

=0

⊕
-1

δ
−
ENC

=0

δ
−
KSA

=1

⊕ ⊕
-1

δ
−
ENC

=0

δ
−
KSA

=1

⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕
-1

δ
−
ENC

=0

δ
−
KSA

=1

⊕ ⊕
-1

δ
−
ENC

=0

δ
−
KSA

=1

⊕ ⊕ ⊕
-1

δ
−
ENC

=0

δ
−
KSA

=1

⊕ ⊕ ⊕ ⊕
-1

δ
−
ENC

=1

δ
−
KSA

=0

*

*

*
⊕

Fig. 6: 3-XOR+-RULE, where a “*” means that the cell can be any color

MC

-0

MC

-0

MC

-0

MC

-0

MC

-0

MC

-1

MC

-0

MC

-1

MC

-1

MC

-2

MC-1

-0

MC-1

-0

MC-1

-0

MC-1

-0

MC-1

-0

MC-1

-1

MC-1

-0

MC-1

-1

MC-1

-1

MC-1

-2

(a) Forward computation (MC+-RULE) (b) Backward computation (MC−-RULE)

Fig. 7: MC-RULE

approach we employed for 3-XOR+-RULE and 3-XOR−-RULE to handle this special
equation. Finally, we get the valid propogations of the coloring patterns and list
some of them in Figure 7. Note that there are no key additions involved in MC,
and thus all the consumed degrees of freedom are from λ+

ENC and λ−
ENC.

4.2 The MITM Key-recovery Attack on SKINNY-n-3n

Solving the model built in Section 4.1, we identify a 23-round MITM charac-
teristic as shown in Figure 8. The starting states are #SENC = Y1 and the three

tweakey words #SKSA = (TK
(1)
1 , TK

(1)
2 , TK

(1)
3). The matching process happens

at the MC operation between the ending states #E+ = Z12 and #E− = X13.
There are 3 cells and 3 cells in #SKSA, providing λ−

KSA = λ+
KSA = 3 cells of

initial degrees of freedom originated from the key schedule data path. For #SENC,
Y1 provides λ−

ENC = 8 and λ+
ENC = 1 cells of initial degrees of freedom from the

encryption data path. The λ+
ENC = 1 cells of degrees of freedom is used up when

computing X1 from Y1 by XORing the subtweakey. In the forward computation,
the λ−

ENC = 8 cells of degrees of freedom are used up when computing Y4 from

Y1. For the forward computation, we require TK
(6)
1 [7] ⊕ TK

(6)
2 [7] ⊕ TK

(6)
3 [7]

and TK
(8)
1 [1] ⊕ TK

(8)
2 [1] ⊕ TK

(8)
3 [1] to be constants, consuming σ−

KSA = 2 cells
of degrees of freedom originated from the key schedule data path. Hence, we
get DoF− = λ−

KSA − σ−
KSA = 1. Similarly, we get DoF+ = λ+

KSA − σ+
KSA = 1. At

the matching point, we have DoM = 2 from the first two column of #E+ and
#E− with Equation (4). The 23-round key-recovery attack is given in Algo-
rithm 3. The data and memory complexity is bounded by Line 2, which is 2104

for SKINNY-128-384 and 252 for SKINNY-64-192. According to Equation (3), the
time complexity is about 2376 for SKINNY-128-384 and 2188 for SKINNY-64-192.

18 Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, Lei Hu

Algorithm 3: The MITM key-recovery attack on SKINNY-n-3n

1 X0[3, 9, 13]← 0, X1[0, 2, 8, 10, 13]← 0, X2[1, 3, 9, 11]← 0, Y2[5]← 0,
X3[0, 8]← 0, Y4[3]← 0

2 Collecting structure of plaintext-ciphertext pairs and store them in table H,
which traverses the non-constant 16-3=13 cells in the plaintext

3 for All possilbe values of the cells in (TK
(0)
1 , TK

(0)
2 , TK

(0)
3) do

4 for (a1, a2, b1, b2) ∈ F4w
2 do

5 Y0[3]← TK
(0)
1 [3]⊕ TK

(0)
2 [3]⊕ TK

(0)
3 [3], Y0[9, 13]← X0[9, 13],

Z0[3, 11, 12]← Y0[3, 9, 13], X1[12]← X1[0]⊕ Z0[12], X1[7]← Z0[3],
X1[15]← Z0[3]⊕ Z0[11], X2[15]← X2[3]⊕ Z1[15], X3[4]← Z2[0]

6 Derive the solution space of the cells in the TK by{
TK

(6)
1 [7] ⊕ TK

(6)
2 [7] ⊕ TK

(6)
3 [7] = a1

TK
(8)
1 [1] ⊕ TK

(8)
2 [1] ⊕ TK

(8)
3 [1] = a2

.

7 Derive the solution space of the cells in the TK by{
TK

(19)
1 [4] ⊕ TK

(19)
2 [4] ⊕ TK

(19)
3 [4] = b1

TK
(21)
1 [6] ⊕ TK

(21)
2 [6] ⊕ TK

(21)
3 [6] = b2

.

8 Initialize L to be an empty hash table
9 for the value in the solution space of cells in TK do

10 Compute X13[8] along the backward computation path:
X4 → X0 → EK(X0)→ X13 by accessing H

11 Insert relative information into L indexed by X13[8]

12 for the value in the solution space of cells in TK do
13 Compute Z12[4] and Z12[8] along the forward computation path:

X1 → Z12

14 for Candidate keys in L[Z12[4]⊕ Z12[8]] do
15 Test the guessed key with several plaintext-ciphertext pairs

Remark. The designers of SKINNY claimed that: “We conclude that meet-in-
the-middle attack may work up to at most 22 rounds (see [10], Sect. 4.2, page
22)”. Our attack penetrates one more round than expected and is the first 23-
round single-key attack on SKINNY-128-384 and SKINNY-64-192. Using the same
method, we also analyze ForkSkinny (see Supplement Material B). In addition,
we report on some results on Romulus-H as a by-product of the analysis of SKINNY
(see Supplement Material C).

Meet-in-the-Middle Attacks Revisited 19

r
o
u
n
d

0
X

0
Y
0

S
R

Z
0

M
C

T
K

(
0
)

1

T
K

(
0
)

2

T
K

(
0
)

3

r
o
u
n
d

1

i
n
i
t
i
a
l

+
3

+
3

X
1

Y
1

S
R

Z
1

M
C

T
K

(
1
)

1

T
K

(
1
)

2

T
K

(
1
)

3

r
o
u
n
d

2
X

2
Y
2

S
R

Z
2

M
C

r
o
u
n
d

3
X

3
Y
3

S
R

Z
3

M
C

r
o
u
n
d

4
X

4
Y
4

S
R

M
C

r
o
u
n
d

5 S
R

M
C

r
o
u
n
d

6 S
R

M
C

-
1

T
K

(
6
)

1

T
K

(
6
)

2

T
K

(
6
)

3

r
o
u
n
d

7 S
R

M
C

r
o
u
n
d

8 S
R

M
C

-
1

T
K

(
8
)

1

T
K

(
8
)

2

T
K

(
8
)

3

r
o
u
n
d

9 S
R

M
C

r
o
u
n
d

1
0

S
R

M
C

r
o
u
n
d

1
1

S
R

M
C

r
o
u
n
d

1
2

S
R

Z
1
2

M
C

r
o
u
n
d

1
3

m
a
t
c
h X
1
3

S
R

M
C

r
o
u
n
d

1
4

S
R

M
C

r
o
u
n
d

1
5

S
R

M
C

r
o
u
n
d

1
6

S
R

M
C

r
o
u
n
d

1
7

S
R

M
C

r
o
u
n
d

1
8

S
R

M
C

r
o
u
n
d

1
9

S
R

M
C

-
1

T
K

(
1
9
)

1

T
K

(
1
9
)

2

T
K

(
1
9
)

3

r
o
u
n
d

2
0

S
R

M
C

r
o
u
n
d

2
1

S
R

M
C

T
K

(
2
1
)

1

-
1

T
K

(
2
1
)

2

T
K

(
2
1
)

3

r
o
u
n
d

2
2

S
R

M
C

1
2

1
3

1
4

1
5

8
9

1
0

1
1

4
5

6
7

0
1

2
3

n
o
n
e

f
o
r
w
a
r
d

b
a
c
k
w
a
r
d

c
o
n
s
t
a
n
t

u
n
c
e
r
t
a
i
n

F
ig
.8:

A
n
M
IT

M
key

-recovery
a
tta

ck
o
n
2
3
-ro

u
n
d
S
K
I
N
N
Y
-n
-3
n

20 Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, Lei Hu

5 Exploiting Nonlinearly Constrained Neutral Words in
MITM Attacks and Its Applications

According to Property 1 in Section 2, in order to compute the allowable values for
the neutral words, one has to solve two systems of equations, i.e., Equation (1)
and (2). In previous MITM preimage attacks [49,7], the two systems of equa-
tions are linear (or can be reduced to linear equations involving certain cells not
from the starting states that implicitly define the spaces of the neutral words).
Hence, it is easy to derive the solution spaces B(#SENC[GENC],#SKSA[GKSA], c+)
and R(#SENC[GENC],#SKSA[GKSA], c−) by solving the systems of equations, whose
cost can be ignored compared with the overall complexity. However, in practice,
we encounter many interesting MITM characteristics with nonlinear constrained
neutral words, and there is no efficient method for solving them. We present a
table based technique in Algorithm 4 which can be applied in attacks relying
on such MITM characteristics without solving the equations or increasing the
overall time complexities.

Algorithm 4: Computing the solution spaces of the neutral words

Input: (#SENC[GENC],#SKSA[GKSA]) ∈ Fw·(|GENC|+|GKSA|)
2

Output: V , U

1 V ← [], U ← []

2 for (#SENC[BENC],#SKSA[BKSA]) ∈ Fw·(|BENC|+|BKSA|)
2 do

3 v ← π+(#SENC[GENC],#SKSA[GKSA],#SENC[BENC],#SKSA[BKSA]) by Equation 1
4 Insert (#SENC[BENC],#SKSA[BKSA]) into V at index v

5 for (#SENC[RENC],#SKSA[RKSA]) ∈ Fw·(|RENC|+|RKSA|)
2 do

6 u← π−(#SENC[GENC],#SKSA[GKSA],#SENC[RENC],#SKSA[RKSA]) by Equation 2
7 Insert (#SENC[RENC],#SKSA[RKSA]) into U at index u

Algorithm 4 obtains the solution spaces of the neutral words for all possible
c+ and c− under a given value of (#SENC[GENC],#SKSA[GKSA]) with time complex-

ity (2w)λ
+

+ (2w)λ
−

and memory complexity (2w)λ
+

+ (2w)λ
−
. After running

Algorithm 4, V [v] stores the solution space of

π+(#SENC[GENC],#SKSA[GKSA],#SENC[BENC],#SKSA[BKSA]) = v,

which consists about 2w·(λ+−l+) = 2w·DoF+

values for the neutral words for
the forward computation. Similarly, under each index u of U , there are about
2w·(λ−−l−) = 2w·DoF−

values for the neutral words for the backward computa-
tion. Algorithm 4 can be plugged into the procedure for MITM attacks to deal
with MITM characteristics with nonlinearly constrained neutral words. For ex-
ample, applying the technique to the MITM preimage attack gives Algorithm 5.
Next, we show the time complexity is not increased.

Meet-in-the-Middle Attacks Revisited 21

Algorithm 5: The framework of the MITM preimage attack on AES-
like hashing with non-linearly constrained neutral words

1 for (#SENC[GENC],#SKSA[GKSA]) ∈ G ⊆ Fw·(|GENC|+|GKSA|)
2 do

2 Call Algorithm 4 to build V , U

3 for c+ = (a1, · · · , al+) ∈ Fw·l+
2 do

4 for c− = (b1, · · · , bl−) ∈ Fw·l−
2 do

5 L← []
6 for (#SENC[BENC],#SKSA[BKSA]) ∈ V [c+] do
7 Compute E+[M+] along the forward computation path
8 Insert (#SENC[BENC],#SKSA[BKSA]) into L indexed by E+[M+]

9 for (#SENC[RKSA],#SKSA[RKSA]) ∈ U [c−], do
10 Compute E−[M−] along the backward computation path

11 for (#SENC[BENC],#SKSA[BKSA]) ∈ L[E−[M−]] do
12 Reconstruct the (candidate) message X
13 if X is a preimage then
14 Output X and Stop.

Complexity Analysis. In each MITM episode within the context defined by the
“For” loops surrounding the code segment from Line 6 to Line 14 of Algorithm 5,
we test 2w·(DoF++DoF−) messages and we expect 2w·(DoF++DoF−−m) of them to
pass them-cell filter, and averagely, there are about 2w·(DoF++DoF−−h) preimages
passing the check at Line 13 for each episode. The time complexity to perform
one MITM episode is

(2w)DoF+

+ (2w)DoF−
+ (2w)DoF++DoF−−m. (5)

Then, we estimate the size of G in Line 1 of Algorithm 5, which determines
the number of MITM episodes performed. Suppose |G| = (2w)x, to produce

one preimage, we require that (2w)x · (2w)l++l− · (2w)DoF++DoF−
= (2w)h or

x = h− (λ+ + λ−). Hence, we consider two situations depending on λ+ + λ−.

• λ+ + λ− ≥ h: In this case, we set x = 0, then |G| = 1. At Line 3 and

Line 4 of Algorithm 5, we only need to traverse (2w)h−(DoF++DoF−) values of

(c+, c−)∈ Fw·l++w·l−
2 , where h−(DoF++DoF−) ≤ l++l− due to λ++λ− ≥ h,

to find the preimage. Then, together with Equation (5), we have the overall

time complexity: (2w)λ
+

+ (2w)λ
−
+ (2w)h−min(DoF+, DoF−, m).

• λ+ + λ− < h: Set x = h− (λ+ + λ−), and we need to build 2x V and U in
Line 2 of Algorithm 5. Hence, we get the overall complexity:

(2w)h−λ+

+ (2w)h−λ−
+ (2w)h−min(DoF+, DoF−, m). (6)

Moreover, the memory complexity for both situations is

(2w)λ
+

+ (2w)λ
−
+ (2w)min(DoF+, DoF−). (7)

22 Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, Lei Hu

We apply Algorithm 5 to Grøstl-256, and Saturnin-Hash, and we obtain
some improved cryptanalytic results, which are given in the Supplementary Ma-
terials D and E.

6 MITM-based Collision Attacks and Its Applications

Suppose that there is an algorithm that can produce a different t-cell partial
target preimage. Then we expect to find a collision by running the algorithm
2w·(h−t)/2 times to identify a collision on the h-cell hash value. At FSE 2012 [45],
Li, Isobe, and Shibutani employed this strategy to convert the MITM-based
partial target preimage attacks into pseudo collision attacks. First, we consider
a generalization of partial target preimage attacks.

Let T be the space of all possible values of the output of the hash function.
For a predefined partition of T into (2w)t subspaces with an equal size. We call
an algorithm a t-cell partial target preimage attack if it can produce a message
whose hash value is a random element in a given subspace. For example, an al-
gorithm generating a message such that the first word of its hash value is always
0 is a 1-cell partial target preimage attack. An algorithm generating a message
such that the XOR of the first and second words of its hash value is always 0 is
also a 1-cell partial target preimage attack. Given an MITM characteristic, the
framework for a collision attack is described in Algorithm 6. Note that the call to
Algorithm 6 can be replaced by an ordinary equation solving procedure to save
the memory if the involved equations are linear or easy to solve. To be clear on
how to set the objective functions in our MILP models, we need to understand
how the complexity of the attack is related to the parameters specified in the
MITM characteristic.

Complexity Analysis. In the MITM t-cell partial target preimage attack, if
the matching process results in an m-cell filter, then we have m ≤ t, because
the matching information is derived from the known cells of the target T . To
determine the overall complexity of the algorithm, we need to determine how
many MITM episodes (Line 9 to 18 of Algorithm 6) are required. According to
the analysis of Algorithm 4 in Section 5, the time complexity for building U
and V is (2w)λ

+

+ (2w)λ
−
. In each MITM episode within the context defined

by the “For” loops surrounding the code segment from Line 9 to Line 18, we
test 2w·(DoF++DoF−) messages and we expect 2w·(DoF++DoF−−m) of them to pass
the m-cell filter, and averagely, there are about 2w·(DoF++DoF−−t) messages are

inserted into the hash tableH. Therefore, we need about (2w)
h−t
2 −(DoF++DoF−−t)

episodes to produce one collision. The time to perform one MITM episode is

(2w)DoF+

+ (2w)DoF−
+ (2w)DoF++DoF−−m + (2w)DoF++DoF−−t. (8)

Suppose in Line 3 of Algorithm 6 we have G = 2w·x. Then, (2w)x · (2w)l+ · (2w)l−
matching episodes are performed. Hence, we have

(2w)x · (2w)l+ · (2w)l− = (2w)
h−t
2 −(DoF++DoF−−t).

Meet-in-the-Middle Attacks Revisited 23

Algorithm 6: The framework of the MITM collision attack on AES-
like hashing with non-linearly constrained starting states

1 Setting the selected t cells of #T to constants
2 H ← []

3 for (#SENC[GENC],#SKSA[GKSA]) ∈ G ⊆ Fw·(|GENC|+|GKSA|)
2 do

4 V ← [], U ← []
5 Call Algorithm 4 to populate V and U

6 for c+ = (a1, · · · , al+) ∈ Fw·l+
2 do

7 for c− = (b1, · · · , bl−) ∈ Fw·l−
2 do

8 L← []

9 for (#SENC[BENC],#SKSA[BKSA]) ∈ V [c+] do
10 Compute E+[M+] along the forward computation path
11 Insert (#SENC[BENC],#SKSA[BKSA]) into L indexed by E+[M+]

12 for (#SENC[RKSA],#SKSA[RKSA]) ∈ U [c−], do
13 Compute E−[M−] along the backward computation path

14 for (#SENC[BENC],#SKSA[BKSA]) ∈ L[E−[M−]] do
15 Reconstruct the (candidate) message X
16 if X is a t-cell partial target preimage then
17 Insert X into H indexed by the hash value of X
18 Stop when there is a collision

We get x = h
2 − (λ+ + λ− − t

2). Hence, we consider two situations:

• λ+ + λ− ≥ h+t
2 : In this case, we set x = 0. At Line 6 and Line 7 of

Algorithm 6, we only need to traverse (2w)
h−t
2 −(DoF++DoF−−t) values of

(c+, c−)∈ Fw·l++w·l−
2 , where h−t

2 − (DoF+ + DoF− − t) ≤ l+ + l− due to

λ+ + λ− ≥ h+t
2 , to find the collision. Then, together with Equation 8, we

have the overall time complexity:

(2w)λ
+

+ (2w)λ
−
+ (2w)

h
2
−min{DoF+− t

2
, DoF−− t

2
, m− t

2
, t

2
}. (9)

• λ+ + λ− < h+t
2 : Set x = h

2 − (λ+ + λ− − t
2), and we need to build 2x V and

U in Line 5 of Algorithm 6. Hence, we get the overall complexity:

(2w)
h
2
−(λ+− t

2
) + (2w)

h
2
−(λ−− t

2
) + (2w)

h
2
−min{DoF+− t

2
, DoF−− t

2
, m− t

2
, t

2
}, (10)

which is approximately (2w)
h
2 −min{DoF+− t

2 , DoF−− t
2 , m− t

2 ,
t
2}, since we al-

ways have DoF+ ≤ λ+ and DoF− ≤ λ−.

The memory complexity in both situations is

(2w)λ
+

+ (2w)λ
−
+ (2w)min{DoF+,DoF−} + (2w)

h−t
2 . (11)

24 Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, Lei Hu

where the (2w)
h−t
2 is to store the t-cell partial target preimages in H. Conse-

quently, for an attack efficient than the trivial birthday attack, we have min{DoF+

− t
2 , DoF− − t

2 , m− t
2 ,

t
2} > 0, λ+ < h

2 and λ− < h
2 , or





DoF+ > t
2
, DoF− > t

2
t
2
< m ≤ t

λ+ < h
2
, λ− < h

2

.

6.1 Automatic Search for MITM-based Collision Attacks

First of all, The objective function of the model is to maximize

min(DoF+ − t

2
,DoF+ − t

2
,m− t

2
,
t

2
)

according to Equation (10). In what follows, we only discuss the main partic-
ularity of MITM-based collision attacks, which lies in the matching part. To
be more specific, the degree of match (DoM) is derived differently from other
attacks discussed in the work. To be concrete, we consider AES-like hashings
like WHIRLPOOL and Grøstl, which includes the MixColumn(MC) or MixRows(MR)
operation in their last rounds. To determine the degree of match, we consider
two situations according to the position where the match happens.

The matching point is placed at the last round. Suppose that the MDS
matrix of the MC operation at the matching point operates on k cells, which
links the state Z in the last round to the XOR sum of the input state X of
the first round and the target T , i.e., MC(Z) = X ⊕ T . Suppose that from the
forward and backward computation α cells and β cells are known. Without
loss of generality, we assume (Z[0], · · · , Z[α − 1])T of Z is known as , and
(X[0], · · · , X[β − 1])T of X is known as . From

MC ·




Z[0]

.

.

.
Z[α − 1]

.

.

.
Z[k − 1]


 =




X[0] ⊕ T [0]
X[1] ⊕ T [1]

.

.

.
X[β − 1] ⊕ T [β − 1]

.

.

.


 ,

we get β linear equations with k variables Z[0], Z[1], · · · , Z[k−1] on the left, and
2β variables X[0], · · · , X[β− 1], T [0], · · · , T [β− 1] on the right. There are k−α
unknowns Z[α], · · · , Z[k − 1] on the left. Hence, if β > k − α, we can represent
the k−α unknowns by other variables by consuming k−α linear equations. At
last, we have Σ = β − (k − α) linear equations left:


ζ1(Z[0], · · · , Z[α − 1]) = ϕ1(X[0], · · · , X[β − 1]) ⊕ φ1(T [0], · · · , T [β − 1]),
ζ2(Z[0], · · · , Z[α − 1]) = ϕ2(X[0], · · · , X[β − 1]) ⊕ φ2(T [0], · · · , T [β − 1]),

.

.

.
ζΣ(Z[0], · · · , Z[α − 1]) = ϕΣ(X[0], · · · , X[β − 1]) ⊕ φΣ(T [0], · · · , T [β − 1]),

(12)

Meet-in-the-Middle Attacks Revisited 25

where ζi(·), ϕi(·), φi(·) are linear equations. By assigning t ≤ Σ = β + α − k
conditions on the target T in the Equation (12):


φ1(T [0], · · · , T [β − 1]) = τ1,
φ2(T [0], · · · , T [β − 1]) = τ2,

.

.

.
φt(T [0], · · · , T [β − 1]) = τt,

(13)

where τ = (τ1, · · · , τt) ∈ Fw·t
2 , we get a t-cell filter:





ζ1(Z[0], · · · , Z[α − 1]) = ϕ1(X[0], · · · , X[β − 1]) ⊕ τ1,
ζ2(Z[0], · · · , Z[α − 1]) = ϕ2(X[0], · · · , X[β − 1]) ⊕ τ2,

.

.

.
ζτt (Z[0], · · · , Z[α − 1]) = ϕΣ(X[0], · · · , X[β − 1]) ⊕ τt.

In summary, we have the constraints DoF = t ≤ Σ = β + α− k and β + α ≥ k.
Therefore, in the MILP model for this case, we can ignore the coloring infor-
mation of T . After identifying an MITM characteristic with configurations for
(α, β,m, t), the t conditions on T can be derived accordingly with Equation (13).

forward backward constant uncertain prefixed

X

Z

MC−1

MC−1

⊕

TMC−1(T)

(b): Generating T is covered in the backward computation
X

Z W

MC ⊕

T

(a): Generating T is covered in the forward computation

Fig. 9: The matching point is not placed at the last round.

The matching point is not at the last round. In this case, the XOR of
the target T can happen in the forward computation (see Figure 9(a)) or in the
backward computation (see Figure 9(b)). The yellow cells are prefixed constants,
which can be represented as 0-1 variables in the same way as the Gray (G) cells:
If the ith cell of T is yellow, then (xT

i , y
T
i) = (1, 1). Other cells of T are White

(W), encoded as (xT
j , y

T
j) = (0, 0).

In the case shown in Figure 9(a), the rules of xoring the tag T is the same
to the XOR+-RULE by regarding the cells as cells. Moreover, we require that
the cells in T align with the cells in X as shown in Figure 9(a). Hence, the
constraint xT

i ≤ xX
i is added to avoid the transition ⊕ → . Therefore, for

the number t of conditions imposed on T , we have t =
∑

i x
T
i .

In the case of Figure 9(b), we consider the positions of cells in MC−1(T).
The rules of xoring the tag T is the same to the XOR+-RULE by regarding the
cells as cells. In addition, we require that the cells in MC−1(T) align with the

cells in Z. Hence, the constraint y
MC−1(T)
i ≤ yZi is added to avoid the transition

⊕ → . Therefore, for the number t of conditions imposed on T , we have

26 Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, Lei Hu

X5 Z5 W5 Tmatch

⊕SB

SC

MR

X4 Z4

SB MR

SC −16

X3 Z3

SB

SC

MR

X2 Z2

SB

SC

MR

Starting point

+10 +20

Z1

SB

SC

MR

−8

X0 Z0 X1

SB

SC

MR

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

forward backward constant uncertain prefixed ignored

Fig. 10: An MITM attack on 6-round WHIRLPOOL

t =
∑

i y
MC−1(T)
i .

6.2 Collision Attacks on WHIRLPOOL and Grøstl

The WHIRLPOOL hash function [9], designed by Barreto and Rijmen, is an ISO/IEC
standard. Its compression function is built by plug an AES-like cipher into the
Miyaguchi-Preneel construction. During the last 20 years, WHIRLPOOL has with-
stood extensive cryptanalysis [46,43,33,55] and the best collision attack in the
classical setting reaches 5 rounds [29,43]. Recently, Hosoyamada and Sasaki in-
troduced a quantum collision attack on 6-round WHIRLPOOL [33].

In this section, we give the first 6-round collision attack on WHIRLPOOL in the
classical setting, breaking the 10-year record for collision attacks on WHIRLPOOL.
Applying the automatic model of MITM collision attack to WHIRLPOOL, we find
a new 6-round MITM characteristic shown in Figure 10. We apply Algorithm
6 to WHIRLPOOL based on this MITM characteristic. The starting state is X3.
Then, we have λ+ = 10 and λ− = 20, w = 8. According to Property 1, we have
l+ = 8 and c+ = (a1, · · · , a8) ∈ F8×8

2 ; l− = 16 and c− = (b1, · · · , b16) ∈ F8×16
2 .

Then we build similar equations to Equation (14), (15), (16) in the attack on
Grøstl in Section D. Therefore, we call Algorithm 4 to build V and U . DoF+ =
λ+− l+ = 2, DoF− = λ−− l− = 4, t = m = 2 and h = 64. The time complexity
is (28)

64
2 −(10− 2

2)+(28)
64
2 −(20− 2

2)+(28)
64
2 −min{2− 2

2 , 4− 2
2 , 2− 2

2 ,
2
2} ≈ 2248 according

to Equation (10), and the memory complexity is about 2248. We also apply the
method to Grøstl, and the results are given in Supplementary Material F.

7 Conclusion and Open Problems

Taking Bao et al’s work (EUROCRYPT 2021) on automatic MITM preimage
attacks as a starting point, we formulate the MITM attacks in a more formal,

Meet-in-the-Middle Attacks Revisited 27

expressive, and accurate way. Based on this formulation, we investigate the pe-
culiarities of MITM-based key-recovery attacks on block ciphers and collision
attacks on AES-like hash functions and model them in the constraint program-
ming paradigm. Now, we have a fairly powerful tool for finding exploitable MITM
characteristics in key-recovery, (pseudo) preimage, and collision attacks on word
oriented designs. Moreover, we present a generic procedure for dealing with non-
linearly constrained neutral words without increasing the overall time complex-
ities of the attacks relying on them. We apply our method to concrete keyed
and unkeyed primitives, leading to attacks improving the state-of-the-art. At
this point, we would like propose an open problem: Is it possible to search for
bit-level MITM characteristics automatically, and to what extent it can improve
the current cryptanalytic results? In particular, we face the following difficulties
in building a bit-oriented model: 1) Programming the bit-level propagation of
neutral words inside the S-box. 2) Matching may happen in both the S-box layer
and linear layer. 3) Even if the model can be constructed, it will be extremely
difficult to solve due to a large number of variables and constraints. For bit-
oriented models, we think the work from Fuhr, Minaud, and Yu [50,27] is good
starting point.

Acknowledgement. We would like to thank the reviewers for their valuable
comments and suggestions. This work is supported by National Key R&D Pro-
gram of China (2018YFA0704701, 2018YFA0704704), the Major Program of
Guangdong Basic and Applied Research (2019B030302008), Major Scientific and
Techological Innovation Project of Shandong Province, China (2019JZZY010133),
Natural Science Foundation of China (61902207, 61772519) and the Chinese Ma-
jor Program of National Cryptography Development Foundation (MMJJ20180101,
MMJJ20180102).

References

1. Riham AlTawy and Amr M. Youssef. Preimage attacks on reduced-round Stri-
bog. In David Pointcheval and Damien Vergnaud, editors, AFRICACRYPT 2014,
Proceedings, volume 8469, pages 109–125. Springer, 2014.

2. Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhanitabar, Arnab
Roy, and Damian Vizár. Forkcipher: A new primitive for authenticated encryption
of very short messages. In ASIACRYPT 2019, Proceedings, Part II, pages 153–182,
2019.

3. Kazumaro Aoki, Jian Guo, Krystian Matusiewicz, Yu Sasaki, and Lei Wang. Preim-
ages for step-reduced SHA-2. In Mitsuru Matsui, editor, ASIACRYPT 2009, Pro-
ceedings, volume 5912, pages 578–597. Springer, 2009.

4. Kazumaro Aoki and Yu Sasaki. Preimage attacks on one-block MD4, 63-step MD5
and more. In Roberto Maria Avanzi, Liam Keliher, and Francesco Sica, editors,
SAC 2008, Revised Selected Papers, volume 5381, pages 103–119. Springer, 2008.

5. Kazumaro Aoki and Yu Sasaki. Meet-in-the-middle preimage attacks against re-
duced SHA-0 and SHA-1. In Shai Halevi, editor, CRYPTO 2009, Proceedings,
volume 5677, pages 70–89. Springer, 2009.

28 Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, Lei Hu

6. Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng
Sim, and Yosuke Todo. GIFT: A small Present - towards reaching the limit of
lightweight encryption. In Wieland Fischer and Naofumi Homma, editors, CHES
2017, Proceedings, volume 10529, pages 321–345. Springer, 2017.

7. Zhenzhen Bao, Xiaoyang Dong, Jian Guo, Zheng Li, Danping Shi, Siwei Sun, and
Xiaoyun Wang. Automatic search of meet-in-the-middle preimage attacks on AES-
like hashing. Cryptology ePrint Archive, Report 2020/467, 2020. https://eprint.
iacr.org/2020/467.

8. Augustin Bariant, Nicolas David, and Gaëtan Leurent. Cryptanalysis of Forkci-
phers. IACR Trans. Symmetric Cryptol., 2020(1):233–265, 2020.

9. Paulo S. L. M. Barreto and Vincent Rijmen. The WHIRLPOOL Hashing Function,
2000. Revised in 2003.

10. Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
family of block ciphers and its low-latency variant MANTIS. In CRYPTO 2016,
Proceedings, Part II, pages 123–153. Springer, 2016.

11. Eli Biham, Orr Dunkelman, Nathan Keller, and Adi Shamir. New attacks on IDEA
with at least 6 rounds. J. Cryptol., 28(2):209–239, 2015.

12. Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique
cryptanalysis of the full AES. In ASIACRYPT 2011, Proceedings, pages 344–371,
2011.

13. Andrey Bogdanov and Christian Rechberger. A 3-subset meet-in-the-middle at-
tack: Cryptanalysis of the lightweight block cipher KTANTAN. In Alex Biryukov,
Guang Gong, and Douglas R. Stinson, editors, SAC 2010, Revised Selected Papers,
volume 6544, pages 229–240. Springer, 2010.

14. Christina Boura, Anne Canteaut, and Christophe De Cannière. Higher-order differ-
ential properties of Keccak and Luffa. In Antoine Joux, editor, FSE 2011, Revised
Selected Papers, volume 6733, pages 252–269. Springer, 2011.

15. Anne Canteaut, Sébastien Duval, Gaëtan Leurent, Maŕıa Naya-Plasencia, Léo Per-
rin, Thomas Pornin, and André Schrottenloher. Saturnin: a suite of lightweight
symmetric algorithms for post-quantum security. IACR Trans. Symmetric Cryp-
tol., 2020(S1):160–207, 2020.

16. Anne Canteaut, Maŕıa Naya-Plasencia, and Bastien Vayssière. Sieve-in-the-middle:
Improved MITM attacks. In Advances in Cryptology - CRYPTO 2013 - 33rd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part I, pages 222–240, 2013.

17. Hüseyin Demirci and Ali Aydin Selçuk. A meet-in-the-middle attack on 8-round
AES. In Kaisa Nyberg, editor, FSE 2008, Revised Selected Papers, volume 5086,
pages 116–126. Springer, 2008.

18. Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved key recovery
attacks on reduced-round AES in the single-key setting. In Thomas Johansson
and Phong Q. Nguyen, editors, EUROCRYPT 2013, Proceedings, volume 7881,
pages 371–387. Springer, 2013.

19. Whitfield Diffie and Martin E. Hellman. Special feature exhaustive cryptanalysis
of the NBS data encryption standard. Computer, 10(6):74–84, 1977.

20. Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Key recovery attacks
on 3-round Even-Mansour, 8-step LED-128, and full AES. In Kazue Sako and
Palash Sarkar, editors, ASIACRYPT 2013, Proceedings, Part I, volume 8269, pages
337–356. Springer, 2013.

https://eprint.iacr.org/2020/467
https://eprint.iacr.org/2020/467

Meet-in-the-Middle Attacks Revisited 29

21. Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Cryptanalysis of iter-
ated Even-Mansour schemes with two keys. In Palash Sarkar and Tetsu Iwata,
editors, ASIACRYPT 2014, Proceedings, Part I, volume 8873, pages 439–457.
Springer, 2014.

22. Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. New attacks on Feistel
structures with improved memory complexities. In Rosario Gennaro and Matthew
Robshaw, editors, CRYPTO 2015, Proceedings, Part I, volume 9215, pages 433–
454. Springer, 2015.

23. Xiaoyang Dong, Siwei Sun, Danping Shi, Fei Gao, Xiaoyun Wang, and Lei Hu.
Quantum collision attacks on AES-like hashing with low quantum random access
memories. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Pro-
ceedings, Part II, volume 12492, pages 727–757. Springer, 2020.

24. Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved single-key attacks on
8-round AES-192 and AES-256. In Masayuki Abe, editor, ASIACRYPT 2010,
Proceedings, volume 6477, pages 158–176. Springer, 2010.

25. Orr Dunkelman, Gautham Sekar, and Bart Preneel. Improved meet-in-the-middle
attacks on reduced-round DES. In INDOCRYPT 2007, Proceedings, pages 86–100,
2007.

26. Thomas Espitau, Pierre-Alain Fouque, and Pierre Karpman. Higher-order differ-
ential meet-in-the-middle preimage attacks on SHA-1 and BLAKE. In Rosario
Gennaro and Matthew Robshaw, editors, CRYPTO 2015, Proceedings, Part I,
volume 9215, pages 683–701. Springer, 2015.

27. Thomas Fuhr and Brice Minaud. Match box meet-in-the-middle attack against
KATAN. In Fast Software Encryption - 21st International Workshop, FSE 2014,
London, UK, March 3-5, 2014. Revised Selected Papers, pages 61–81, 2014.

28. Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel,
Christian Rechberger, Martin Schläffer, and Søren S. Thomsen. Grøstl - a SHA-3
candidate. In Symmetric Cryptography, 2009.

29. Henri Gilbert and Thomas Peyrin. Super-Sbox cryptanalysis: Improved attacks
for AES-like permutations. In FSE 2010, Revised Selected Papers, pages 365–383,
2010.

30. Jian Guo, San Ling, Christian Rechberger, and Huaxiong Wang. Advanced meet-
in-the-middle preimage attacks: First results on full Tiger, and improved results
on MD4 and SHA-2. In ASIACRYPT 2010, Proceedings, pages 56–75, 2010.

31. Shoichi Hirose. Some plausible constructions of double-block-length hash functions.
In Matthew J. B. Robshaw, editor, FSE 2006, Revised Selected Papers, volume
4047, pages 210–225. Springer, 2006.

32. Deukjo Hong, Bonwook Koo, and Yu Sasaki. Improved preimage attack for 68-
step HAS-160. In Dong Hoon Lee and Seokhie Hong, editors, ICISC 2009, Revised
Selected Papers, volume 5984, pages 332–348. Springer, 2009.

33. Akinori Hosoyamada and Yu Sasaki. Finding hash collisions with quantum com-
puters by using differential trails with smaller probability than birthday bound. In
Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Proceedings, Part
II, volume 12106, pages 249–279. Springer, 2020.

34. Takanori Isobe. A single-key attack on the full GOST block cipher. J. Cryptol.,
26(1):172–189, 2013.

35. Takanori Isobe and Kyoji Shibutani. Security analysis of the lightweight block
ciphers XTEA, LED and Piccolo. In Willy Susilo, Yi Mu, and Jennifer Seberry,
editors, ACISP 2012, Proceedings, volume 7372, pages 71–86. Springer, 2012.

30 Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, Lei Hu

36. Takanori Isobe and Kyoji Shibutani. Generic Key Recovery Attack on Feistel
Scheme. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Proceed-
ings, Part I, volume 8269, pages 464–485. Springer, 2013.

37. Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin. Ro-
mulus for Round 3. NIST Lightweight Crypto Standardization process (Round 2),
2020.

38. Jérémy Jean, Maŕıa Naya-Plasencia, and Thomas Peyrin. Improved rebound attack
on the finalist Grøstl. In Anne Canteaut, editor, FSE 2012, Revised Selected Papers,
volume 7549, pages 110–126. Springer, 2012.

39. Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block ci-
phers: The TWEAKEY framework. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT 2014, Proceedings, Part II, volume 8874, pages 274–288. Springer,
2014.

40. Dmitry Khovratovich, Christian Rechberger, and Alexandra Savelieva. Bicliques
for preimages: Attacks on Skein-512 and the SHA-2 family. IACR Cryptology
ePrint Archive, 2011:286, 2011.

41. Simon Knellwolf and Dmitry Khovratovich. New preimage attacks against reduced
SHA-1. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, Pro-
ceedings, volume 7417, pages 367–383. Springer, 2012.

42. Stefan Kölbl, Martin M. Lauridsen, Florian Mendel, and Christian Rechberger.
Haraka v2 - Efficient Short-Input Hashing for Post-Quantum Applications. IACR
Trans. Symmetric Cryptol., 2016(2):1–29, 2016.

43. Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rijmen, and
Martin Schläffer. Rebound distinguishers: Results on the full WHIRLPOOL com-
pression function. In ASIACRYPT 2009, Proceedings, pages 126–143, 2009.

44. Gaëtan Leurent and Clara Pernot. New Representations of the AES Key Schedule.
Cryptology ePrint Archive, Report 2020/1253, 2020. https://eprint.iacr.org/
2020/1253.

45. Ji Li, Takanori Isobe, and Kyoji Shibutani. Converting meet-in-the-middle preim-
age attack into pseudo collision attack: Application to SHA-2. In Anne Canteaut,
editor, FSE 2012, Revised Selected Papers, volume 7549, pages 264–286. Springer,
2012.

46. Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
The rebound attack: Cryptanalysis of reduced WHIRLPOOL and Grøstl. In FSE
2009, Revised Selected Papers, pages 260–276, 2009.

47. Florian Mendel, Vincent Rijmen, and Martin Schläffer. Collision attack on 5 rounds
of Grøstl. In FSE 2014, Revised Selected Papers, pages 509–521, 2014.

48. National Institute of Standards and Technology (NIST). Lightweight cryptogra-
phy (LWC) standardization process, 2020. https://csrc.nist.gov/Projects/

Lightweight-Cryptography/Round-2-Candidates.

49. Yu Sasaki. Meet-in-the-middle preimage attacks on AES hashing modes and an
application to WHIRLPOOL. In Antoine Joux, editor, FSE 2011, Revised Selected
Papers, volume 6733, pages 378–396. Springer, 2011.

50. Yu Sasaki. Integer linear programming for three-subset meet-in-the-middle attacks:
Application to GIFT. In Atsuo Inomata and Kan Yasuda, editors, IWSEC 2018,
Proceedings, volume 11049, pages 227–243. Springer, 2018.

51. Yu Sasaki and Kazumaro Aoki. Preimage attacks on 3, 4, and 5-pass HAVAL. In
Josef Pieprzyk, editor, ASIACRYPT 2008, Proceedings, volume 5350, pages 253–
271. Springer, 2008.

https://eprint.iacr.org/2020/1253
https://eprint.iacr.org/2020/1253
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-2-Candidates
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-2-Candidates

Meet-in-the-Middle Attacks Revisited 31

52. Yu Sasaki and Kazumaro Aoki. Finding preimages in full MD5 faster than ex-
haustive search. In Antoine Joux, editor, EUROCRYPT 2009, Proceedings, volume
5479, pages 134–152. Springer, 2009.

53. Yu Sasaki, Yang Li, Lei Wang, Kazuo Sakiyama, and Kazuo Ohta. Non-full-active
super-sbox analysis: Applications to ECHO and Grøstl. In ASIACRYPT 2010,
Proceedings, pages 38–55, 2010.

54. Yu Sasaki, Lei Wang, Yasuhide Sakai, Kazuo Sakiyama, and Kazuo Ohta. Three-
subset meet-in-the-middle attack on reduced XTEA. In AFRICACRYPT 2012,
pages 138–154. Springer, 2012.

55. Yu Sasaki, Lei Wang, Shuang Wu, and Wenling Wu. Investigating fundamental se-
curity requirements on WHIRLPOOL: Improved preimage and collision attacks. In
Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, Proceedings, volume
7658, pages 562–579. Springer, 2012.

56. Martin Schläffer. Updated differential analysis of Grøstl. In Grøstl website, 2011.
57. Danping Shi, Siwei Sun, Patrick Derbez, Yosuke Todo, Bing Sun, and Lei Hu.

Programming the demirci-selçuk meet-in-the-middle attack with constraints. In
Thomas Peyrin and Steven D. Galbraith, editors, Advances in Cryptology - ASI-
ACRYPT 2018 - 24th International Conference on the Theory and Application
of Cryptology and Information Security, Brisbane, QLD, Australia, December 2-6,
2018, Proceedings, Part II, volume 11273 of Lecture Notes in Computer Science,
pages 3–34. Springer, 2018.

58. Mohamed Tolba, Ahmed Abdelkhalek, and Amr M. Youssef. Impossible differential
cryptanalysis of reduced-round SKINNY. In Marc Joye and Abderrahmane Nitaj,
editors, AFRICACRYPT 2017, Proceedings, volume 10239, pages 117–134, 2017.

59. Lei Wang and Yu Sasaki. Finding preimages of Tiger up to 23 steps. In Seokhie
Hong and Tetsu Iwata, editors, FSE 2010, Revised Selected Papers, volume 6147,
pages 116–133. Springer, 2010.

60. Lei Wang, Yu Sasaki, Wataru Komatsubara, Kazuo Ohta, and Kazuo Sakiyama.
Second preimage attacks on step-reduced RIPEMD/RIPEMD-128 with a new
local-collision approach. In Aggelos Kiayias, editor, CT-RSA 2011, Proceedings,
volume 6558, pages 197–212. Springer, 2011.

61. Lei Wei, Christian Rechberger, Jian Guo, Hongjun Wu, Huaxiong Wang, and San
Ling. Improved meet-in-the-middle cryptanalysis of KTANTAN (poster). In Udaya
Parampalli and Philip Hawkes, editors, ACISP 2011, Proceedings, volume 6812,
pages 433–438. Springer, 2011.

62. Shuang Wu, Dengguo Feng, Wenling Wu, Jian Guo, Le Dong, and Jian Zou.
(pseudo) preimage attack on round-reduced Grøstl hash function and others. In
FSE 2012, Revised Selected Papers, pages 127–145, 2012.

32 Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, Lei Hu

Supplementary Material

A Detailed Explaination of the MITM Attack on
23-round Skinny-n-3n

According to Algorithm 2, we first set |#SENC| independent gray cells to con-
stants. Therefore, we set |#SENC| = 16 cells as 0 in the encryption data path
as shown in Line 1 of Algorithm 3. Among them, the three cells of X0[3, 9, 13]
are set as 0 to meet the requirement (II) to avoid using full codebook in Sec-
tion 3. Hence, we only traverse the 13 non-constant cells of X0 to collect data
as shown in Line 2 of Algorithm 3. In Line 5 of Algorithm 3, after fixing one

value for the cells in (TK
(0)
1 , TK

(0)
2 , TK

(0)
3), we determine the other unfixed

cells in the encryption data path, i.e., #SENC[GENC] in Line 6 of Algorithm 2.

In detail, Y0[3] = X0[3] ⊕ TK
(0)
1 [3] ⊕ TK

(0)
2 [3] ⊕ TK

(0)
3 [3] by adding X0[3] = 0

with subtweakey cell; Y0[9, 13] = X0[9, 13] since the subtweakey is only XORed
into the first two rows. Now, the cells in Y0 are known. According to SR, we
get the cells Z0[3, 11, 12] = Y0[3, 9, 13]. Due to MC in Equation (4), we com-
pute X1[12] = X1[0]⊕Z0[12], X1[7] = Z0[3] and X1[15] = Z0[3]⊕Z0[11], where
X1[0] = 0 according to Line 1 of Algorithm 3. Totally, 8 cells in X1 are fixed
(together with X1[0, 2, 8, 10, 13] = 0 in Line 1 of Algorithm 3). After adding
subtweakey into X1, the cells in Y1 and then Z1 are fixed, where Y1 is acting
as a starting point with λ−

ENC = 8. From Z1 to X2, we get X2[15] = X2[3]⊕Z1[15]
due to Equation (4), where X2[3] = 0 according to Line 1 of Algorithm 3. Here
X2[1, 3, 9, 11] = 0 and Y2[5] = 0 act as a reduction of degrees of freedom for cells
and denote as σ−

ENC,2 = 5 in round 2. The cells in Y2 and Z2 are fixed by adding
subtweakey to X2. From Z2 to X3, we have X3[4] = Z2[0] with Equation (4).
Here X3[0, 8] = 0 acts as a reduction of degrees of freedom for cells and denote
as σ−

ENC,3 = 2 in round 3. At last, in round 4, from X4 to Y4, the red cell is can-
celled by adding subtweakey to get Y4[3] = 0, which acts as a degree of freedom
reduction for cells and denote as σ−

ENC,4 = 1. Now, all the cells in the encryp-

tion data path are fixed. Totally, σ−
ENC = σ−

ENC,2+σ−
ENC,3+σ−

ENC,4 = 5+2+1 = 8 cells

of degrees of freedom are used. Since λ−
ENC = 8, the intial degrees of freedom for

cells in the encryption data path are used up. Similarly, for the intial degrees
of freedom of cells in the data encryption path, i.e., λ+

ENC = 1 in Y1, are used

up due to X1[2] = 0 = TK
(1)
1 [2]⊕ TK

(1)
2 [2]⊕ TK

(1)
3 [2]⊕ Y1[2].

In Algorithm 3, after all the cells are fixed, we compute backward and
forward independently in Line 9 and 12, for the solutions derived in Line 6 and
Line 7, respectively. The order of Line 9 and 12 has no essential significance.
In particular, the order of the loops can be swapped in Algorithm 3. However,
we note that in certain cases the order may affect the memory complexity. We
should always build the tables within the loop requiring less memory.

In the matching point, we have DoM = 2 from the first two columns of
#E+ = Z12 and #E− = X13 with Z12[4]⊕Z12[8] = X13[8] and Z12[1]⊕Z12[9] =
X13[13] due to Equation (4) of MC. However, without increasing the overall com-
plexity, we only use one equation to act as filter, i.e., Z12[4] ⊕ Z12[8] = X13[8].

Meet-in-the-Middle Attacks Revisited 33

Here, Z12[4] and Z12[8] are computed by and cells, which are independent to
the . The reasons are Z12[4] = Y12[7] with SR−1, and Y12[7] = X12[7]⊕STK12[7]
and X12[7] = Z11[3] due to MC (Equation 4); Z12[8] = Y12[10] by SR−1, and
Y12[10] = X12[10], and X12[10] = Z12[6] ⊕ Z12[10] due to MC. Similarly, we can
compute X13[8] which only depends on the and cells.

At last, according to Equation (3), we have the time complexity (2w)3×16−min{1,1,1} =
(2w)47, with memory 2w to store L, to perform the 23-round MITM key-recovery
attack on SKINNY-n-3n.

B MITM attacks on Round-reduced ForkSkinny-n-3n

ForkSkinny, designed by Andreeva et al. [2], is the internal primitive of ForkAE, a
2nd round candidate in the NIST lightweight authenticated encryption standard-
ization process [48]. The construction of ForkSkinny is shown in Figure 11. The
encryption of ForkSkinny is split into two steps. The first rinit rounds process
the input message with the round function of Skinny under modified constants.
Then, the encryption procedure is forked, into ForkSkinny0 and ForkSkinny1,
where two copies of the output from the first stage are separately processed by
the two forks with r0 and r1 rounds, respectively. The tweakeys are generated by
the tweakey schedule for in total rinit + r0 + r1 rounds, and used sequentially in
the initial step, ForkSkinny0 and ForkSkinny1, for instance, the last r1 round
tweakeys are applied in ForkSkinny1.

Forkcipher: a New Primitive for Authenticated Encryption of Very Short Messages 9

4.1 Specification

RF RF

TKS TKS

M

K‖T

RF RF

TKS TKS

BC

C1

Tw

RF RF

TKS TKS

C0

Tw

Fig. 3: ForkSkinny encryption with selector s = b. A plaintext M , a key K and a tweak T (blue) are used
to compute a ciphertext C = C0‖C1 (red) of twice the size of the plaintext. RF is a single round function
of SKINNY and TKS is round tweakey update function [17]. and BC is a branch constant that we introduce.

Overall Structure. We illustrate our design in Fig. 3 for ForkSkinny-128-192. This version takes a
128-bit plaintext M , a 64-bit tweak T and a 128-bit secret key K as input, and outputs two 128-bit
ciphertext blocks C0 and C1 (i.e., ForkSkinny(K,T,M, b) = C0, C1). The first rinit= 21 rounds of
ForkSkinny are almost identical to the one of SKINNY and only differ in the value of the constant
added to the internal state. After that, the encryption is forked, which means that two copies of the
internal state are further modified with different sets of tweakeys. For reasons that we detail below,
a constant denoted by BC (Branch Constant) is added to the internal state used to compute C1,
right after forking. Then, ForkSkinny0 iterates r0 = 27 rounds and ForkSkinny1 iterates r1 = 27
rounds. As illustrated in Figure 3, after forking the tweakeys for the round functions of ForkSkinny0
are computed from the tweakey state obtained after rinit rounds, while the tweakeys for the round
functions of ForkSkinny1 are derived from the tweakey state at the end of rinit + r0 rounds (denoted
by Tw). Figure 4 details the ForkSkinny construction, where Enc-SKinnyr(·, ·) denotes the SKINNY

encryption using r round functions taking as input a plaintext or state together with a tweakey.
Similarly, Dec-SKinnyr(·, ·) denotes the corresponding decryption algorithm using r rounds.

1: function ForkSkinnyEnc(M,K, T, s)
2: tk ← K||T
3: L ← Enc-Skinnyrinit(M, tk)
4: if s = 0 or s = b then
5: C0 ← Enc-Skinnyr0(L,TKSrinit(tk))
6: end if
7: if s = 1 or s = b then
8: tk′ ← TKSrinit+r0(tk)
9: C1 ← Enc-Skinnyr1(L⊕BC, tk′)

10: end if
11: if s = 0 return C0

12: if s = 1 return C1

13: if s = b return C0, C1

14: end function

1: function ForkSkinnyDec(C,K, T, b, s)
2: tk ← K||T
3: tk′ ← TKSrinit(tk)
4: if b = 0 then
5: L ← Dec-Skinnyr0(C, tk′)
6: else if b = 1 then
7: tk′′ ← TKSr0(tk′)
8: L ← Dec-Skinnyr1(Cb, tk

′′)⊕BC
9: end if

10: if s = i or s = b then
11: M ← Dec-Skinnyrinit(L, tk)
12: end if
13: if s = o or s = b then
14: if b = 0 then tk′ ← TKSr0(tk′)
15: C′ ← Enc-Skinnyrb⊕1

(L, tk′)
16: end if
17: if s = i return M
18: if s = o return C′

19: if s = b return M,C′

20: end function

Fig. 4: ForkSkinny encryption and decryption algorithms. Here TKS denotes the round tweakey scheduling
function of SKINNY. TKSr depicts r rounds of TKS.

Fig. 11: The ForkSkinny framework [2].

Note that there are varies ways [8] to reduce ForkSkinny, however, the au-
thors suggested that the number of rounds to be reduced should be the same
before the fork9, and in each of the branches. Hence, for the original versions
of ForkSkinny-128-384 with rinit = 25, r0 = r1 = 31 and ForkSkinny-64-192

9 https://www.esat.kuleuven.be/cosic/forkae/home/forkskinny-challenge/

https://www.esat.kuleuven.be/cosic/forkae/home/forkskinny-challenge/

34 Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, Lei Hu

with rinit = 17, r0 = r1 = 23, we reduce them to a 24-round ForkSkinny-128-384
with rinit = 25−16 = 9, r0 = r1 = 31−16 = 15, and a 24-round ForkSkinny-64-192
with rinit = 17−8 = 9, r0 = r1 = 23−8 = 15, to launch the MITM key-recovery
attacks.

In the first branch ForkSkinny0, there is no matching point as shown in
Figure 12 and the matching point happens between Z13 and X14 in the second
branch ForkSkinny1, as shown in Figure 13. The degrees of freedom for blue cells
and red cells are both 1 cell and the matching point provides a filter of 1 cell. We
apply similar attack procedures to Algorithm 3 to perform the 24-round attack
on ForkSkinny-n-3n. The data complexity is 2n−3w and the time compleixty is
23n−w. These are the first single-key attacks on reduced ForkSkinny. Note that
the NIST submission of ForAE only suggests a 128-bit key, hence, our attacks do
not affect the security of ForAE and ForkSkinny.

C MITM Attacks on Round-reduced Romulus-H

Romulus-H [37] is a lightweight hash, which adopts Hirose’s Double-Block-Length
(DBL) compression function [31] plugged into the Merkle-Damg̊ard with per-
mutation domain extender as shown in Figure 14. The underline block cipher is
SKINNY-128-384.

Applying the chunk separation given in Figure 8, we can find the preimage
of SKINNY-128-384 with DM/MMO-modes in time 2128−8 = 2120. Then, for the 23-
round preimage attack on the compression of Romulus-H, we place the preimage
attack of SKINNY-128-384-DM at the upper block of Romulus-H and leave the
partial target of the lower block to be satisfied randomly. Hence, the totally
complexity is 2120+128 = 2248. Our preimage attack does not impact the security
of Romulus-H, since the authors only claimed 128-bit security.

23-round Collision Attack on the Compression Function of Romulus-H.
By applying the automatic model given in Section 6.1, we introduce a new

MTIM characteristic for collision attack on reduced SKINNY-128-384 in hashing
modes as shown in Figure 15, which can be converted to a 23-round collision
attack on Romulus-H’s compression function.

Similar to Figure 8, we have one byte degree of freedom for both blue and
red cells from Figure 15. In the matching point at round 22, we have Z22[8] =
(T0[4]⊕X0[4])⊕ (T0[12]⊕X0[12]) due to Equation (4), which equals to Z22[8] =
(T0[4]⊕T0[12])⊕(X0[4]⊕X0[12]). We prefix the partial target T0[4]⊕T0[12] = 0 to
get one byte filter in the matching point. Similar to the attack in Algorithm 3, we
get about 28 partial target preimages for one MITM episode, which costs a time
complexity of 28. Hence, for the collision attack on 23-round SKINNY-128-384

with DM/MMO-modes, we need a time complexity of about 260 and a memory
complexity of about 260 according to Equation (9).

In the free-start collision attack on 23-round Romulus-H, we place MITM
characteristic of Figure 15 in the upper block of Figure 14. Suppose the 256-bit
target is T0∥T1, we find the partial target preimages for T0 and then compute

Meet-in-the-Middle Attacks Revisited 35

r
o
u
n
d

0
X

0
Y
0

S
R

Z
0

M
C

T
K

(
0
)

1

T
K

(
0
)

2

T
K

(
0
)

3

r
o
u
n
d

1
X

1
Y
1

S
R

Z
1

M
C

r
o
u
n
d

2
X

2
Y
2

S
R

Z
2

M
C

r
o
u
n
d

3
X

3
Y
3

S
R

Z
3

M
C

i
n
i
t
i
a
l
+
6

+
3

r
o
u
n
d

4
X

4
Y
4

S
R

Z
4

M
C

r
o
u
n
d

5
X

5
Y
5

-
2

S
R

Z
5

M
C

T
K

(
5
)

1

T
K

(
5
)

2

T
K

(
5
)

3

r
o
u
n
d

6 S
R

M
C

r
o
u
n
d

7

-
2

S
R

M
C

T
K

(
7
)

1

T
K

(
7
)

2

T
K

(
7
)

3

r
o
u
n
d

8 S
R

fo
r
k
1

M
C

r
o
u
n
d

9 S
R

M
C

r
o
u
n
d

1
0

S
R

M
C

r
o
u
n
d

1
1

S
R

M
C

r
o
u
n
d

1
2

S
R

M
C

r
o
u
n
d

1
3

S
R

Z
1
3

X
1
4

M
C

r
o
u
n
d

1
4

S
R

M
C

r
o
u
n
d

1
5

S
R

M
C

r
o
u
n
d

1
6

S
R

M
C

r
o
u
n
d

1
7

S
R

M
C

r
o
u
n
d

1
8

S
R

M
C

r
o
u
n
d

1
9

S
R

M
C

r
o
u
n
d

2
0

S
R

M
C

r
o
u
n
d

2
1

S
R

M
C

r
o
u
n
d

2
2

S
R

M
C

r
o
u
n
d

2
3

S
R

M
C

n
o
n
e

f
o
r
w
a
r
d

b
a
c
k
w
a
r
d

c
o
n
s
t
a
n
t

u
n
c
e
r
t
a
i
n

F
ig.1

2:
F
o
rk

I:
M
IT

M
key

-recovery
a
tta

ck
o
n
2
4
-ro

u
n
d
F
o
r
k
S
k
i
n
n
y
-
n
-
3
n

36 Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, Lei Hu

r
o
u
n
d

0
X

0
Y
0

S
R

Z
0

M
C

T
K

(
0
)

1

T
K

(
0
)

2

T
K

(
0
)

3

r
o
u
n
d

1
X

1
Y
1

S
R

Z
1

M
C

r
o
u
n
d

2
X

2
Y
2

S
R

Z
2

M
C

r
o
u
n
d

3
X

3
Y
3

S
R

Z
3

M
C

i
n
i
t
i
a
l
+
6

+
3

r
o
u
n
d

4
X

4
Y
4

S
R

Z
4

M
C

r
o
u
n
d

5
X

5
Y
5

-
2

S
R

Z
5

M
C

T
K

(
5
)

1

T
K

(
5
)

2

T
K

(
5
)

3

r
o
u
n
d

6 S
R

M
C

r
o
u
n
d

7

-
2

S
R

M
C

T
K

(
7
)

1

T
K

(
7
)

2

T
K

(
7
)

3

r
o
u
n
d

8 S
R

fo
r
k
2

M
C

r
o
u
n
d

9 S
R

M
C

r
o
u
n
d

1
0

S
R

M
C

r
o
u
n
d

1
1

S
R

M
C

r
o
u
n
d

1
2

-
1

S
R

M
C

T
K

(
2
7
)

1

T
K

(
2
7
)

2

T
K

(
2
7
)

3

r
o
u
n
d

1
3

S
R

M
C

m
a
t
c
h

Z
1
3

X
1
4r
o
u
n
d

1
4

S
R

M
C

r
o
u
n
d

1
5

S
R

M
C

r
o
u
n
d

1
6

S
R

M
C

r
o
u
n
d

1
7

S
R

M
C

r
o
u
n
d

1
8

S
R

M
C

r
o
u
n
d

1
9

S
R

M
C

r
o
u
n
d

2
0

-
1

S
R

M
C

T
K

(
3
5
)

1

T
K

(
3
5
)

2

T
K

(
3
5
)

3

r
o
u
n
d

2
1

S
R

M
C

r
o
u
n
d

2
2

-
1

S
R

M
C

T
K

(
3
7
)

1

T
K

(
3
7
)

2

T
K

(
3
7
)

3

r
o
u
n
d

2
3

S
R

M
C

n
o
n
e

f
o
r
w
a
r
d

b
a
c
k
w
a
r
d

c
o
n
s
t
a
n
t

u
n
c
e
r
t
a
i
n

F
ig.1

3:
F
o
rk

II:
M
IT

M
k
ey
-recovery

a
tta

ck
o
n
2
4
-ro

u
n
d
F
o
r
k
S
k
i
n
n
y
-
n
-
3
n

Meet-in-the-Middle Attacks Revisited 37

Ẽ

Ẽ

2n

n

n

1 1

M [1]

02n

Ẽ

Ẽ

1 1

M [2]

· · ·
2

· · ·

Ẽ

Ẽ

1 1

‖
M [m]

S

Fig. 1: Block diagram of Romulus-H hash function.

to meet [10]. Romulus-H can be easily turned into an eXtendable Output Function (XOF) that has an arbitrarily long
output. This is because MDPH is indifferentiable from a (monolithic) random oracle, thus any black-box transforma-
tion that turns a RO into a XOF will also work for MDPH. One simple example is to use H�M½�0˘�, H�M½�1˘�, . . . ,
where H is the base hash function and �i˘ denotes an encoding of integer i. In fact this is just a variant of standard
MGF1 (Mask generation function). Additional computation cost of this transformation is small (one compression
function call per block) thanks to the iterative nature of MDPH.

In terms of performances, Hirose’s scheme requires two TBC calls, but since we are using Skinny-128/384+, 256-bit
message blocks can be handled at each iteration, which makes Romulus-H an efficient rate-1 construction overall. We
note that this is three times more efficient than the Skinny-Hash construction [6] (where Skinny-128/384 is used inside
a standard sponge-based mode), for the same area cost. Moreover, the fact that each pair of TBC calls have the same
tweakey input, combined with the lightweight tweakey schedule of Skinny, is helpful to achieve efficient implementations
of this construction as the tweakey can be recovered and stored only once if only one Skinny-128/384+ hardware core
is available. If two cores are available, they can share the same round keys. Moreover, we note that the hash can be
naturally adapted to extremely constrained area environments by reducing the message input at every iteration (this
is possible because Romulus-H places the message input in the tweak input of the TBC, and because Skinny-128/384+
tweakey schedule can be totally replaced by constants if some words are set to 0).

3 Romulus-LR and Romulus-LR-TEDT: Leakage-Resilient Modes for Romulus

Even though we provide efficient threshold implementations of Romulus, we studied how leakage resilience capability
could be added to our candidate. It turns out that this can be achieved with a very simple modification of the
Romulus mode. More precisely, we will propose two modes for leakage resilience: Romulus-LR and Romulus-LR-TEDT.
More details on these modes and the corresponding security proofs can be found in a separate article [8, 12].

Romulus-LR is the first mode, which simply consists in (a) adding a key-derivation function (KDF) at the beginning
of Romulus-N, to generate a temporary key K ¬ that will be used in the subsequent TBC calls (b) re-injecting the message
blocks inside the tweak input of each TBC call. It is then expected that the KDF and tag generating function (TGF),
both using the master key K, should be properly protected with side-channels attacks countermeasures (such as
masking). However, the long chain that depends on the message or associated data blocks can be left unprotected (or
with much cheaper protection), which leads to a very efficient design (close to the original Romulus-N or Romulus-M).
This mode, almost identical to Romulus-N, achieves the strong ciphertext integrity with misuse and leakage in the
chosen-ciphertext model (CIML2) up to the birthday bound. It furthermore achieves integrity nonce-misuse resistance
(MR-CINT) and integrity with the release of unverified plaintexts (INT-RUP) up to the birthday bound. Besides, it
guarantees the nonce-misuse resilience of messages encrypted with fresh nonces, as long as the challenge queries are
leak-free (CCAml1). In order to address even stronger adversaries, we offer Romulus-LR-TEDT.

Romulus-LR-TEDT is our second and most advanced leakage resilient mode, directly based on the provably secure
TBC-based TEDT construction [8]. This Romulus-LR-TEDT mode basically consists in fine-tuning the details of TEDT
to fit the advantages of Skinny-128/384+ and allow 128-bit nonce and long message/associated data inputs. TEDT
provides full leakage resilience, that is, it limits the exploitability of physical leakages via side-channel attacks, even
if these leakages happen during every message encryption and decryption operation. TEDT offers what is currently
considered as the highest possible security notions in the presence of leakage, namely beyond birthday bound CIML2
and security against Chosen Ciphertext Attacks with nonce-misuse-resilience and Leakage (CCAmL2). While the
initial TEDT proposal requires 4 TBC calls to process one n-bit message block, we optimize this to only 3 calls taking
advantage of the properties of Skinny and our proposed hash function Romulus-H. This makes the performance more
lightweight and closer to typical two-pass SIV-based schemes, which require 2 calls (except Romulus-M which requires

3

Fig. 14: Romulus-H [37]

T1. We need to collect 2124 partial target preimages to finally find a collision,
which needs 2124 time and 2124 memory.

D MITM Pseudo Preimage attacks on reduced Grøstl-256

Grøstl is a SHA3 finalist hash function. It comes with two versions: Grøstl-256
and Grøstl-512, with the trailing digits signifying the sizes of the outputs in bits.
The structure of Grøstl-n2 with two message blocks is depicted in Figure 16,
where P and Q are two n-bit AES-like permutations. Before it outputs the hash

value, an output transformation based on P and a truncation Ω : Fn
2 → Fn/2

2 are
applied to h2. We refer the reader to [28] for more details of the design. There
have been quit a few papers studying the security of Grøstl [47,62,53], etc.

Attacks on Output Transformation. As shown in Figure 17, we give a new 6-
round chunk seperation for preimage attack on 6-round output transformation of
Grøstl-256. For output transformation of Grøstl-256, there is no key schedule
and the neutral words are all from the internal state.

The index of each cell of state X is given in Figure 17. The starting point is
X3. We have BENC = {0, 2, 6, 9, 10, 11, 15, 34, 36, 38},RENC = {21, 22, 23, 24, 26, 30,
31, 40, 41, 42, 44, 49, 50, 51, 53, 58, 59, 60, 62}, GENC = N − BENC ∪ RENC. Then, we
have λ+ = 10 and λ− = 19, w = 8.

According to Property 1, we have l+ = 8 and c+ = (a1, · · · , a8) ∈ F8×8
2 . For

arbitrary given (X3[GENC], X3[BENC]), we compute c+ with Equation (14), (15)
and (16), where the cells of “-” are ignored. Similarly, we have l− = 16 and
c− = (b1, · · · , b16) ∈ F8×16

2 . Therefore, we can call Algorithm 4 to build V and
U . DoF+ = λ+ − l+ = 2 and DoF− = λ− − l− = 3.



Z2[0] Z2[8] - - Z2[32] - - -
Z2[1] Z2[9] - - Z2[33] - - -
Z2[2] Z2[10] - - Z2[34] - - -
Z2[3] Z2[11] - - Z2[35] - - -
Z2[4] Z2[12] - - Z2[36] - - -
Z2[5] Z2[13] - - Z2[37] - - -
Z2[6] Z2[14] - - Z2[38] - - -
Z2[7] Z2[15] - - Z2[39] - - -


= MC

−1 ·



X3[0] X3[8] - - X3[32] - - -
X3[1] X3[9] - - X3[33] - - -
X3[2] X3[10] - - X3[34] - - -
X3[3] X3[11] - - X3[35] - - -
X3[4] X3[12] - - X3[36] - - -
X3[5] X3[13] - - X3[37] - - -
X3[6] X3[14] - - X3[38] - - -
X3[7] X3[15] - - X3[39] - - -


(14)

SR



X2[0] X2[8] - - X2[32] - - -
- X2[9] X2[17] - - X2[41] - -
- - X2[18] X2[26] - - X2[50] -
- - - X2[27] X2[35] - - X2[59]

X2[4] - - - X2[36] X2[44] - -
- X2[13] - - - X2[45] X2[53] -
- - X2[22] - - - X2[54] X2[62]

X2[7] - - X2[31] - - - X2[63]


= SB

−1



Z2[0] Z2[8] - - Z2[32] - - -
Z2[1] Z2[9] - - Z2[33] - - -
Z2[2] Z2[10] - - Z2[34] - - -
Z2[3] Z2[11] - - Z2[35] - - -
Z2[4] Z2[12] - - Z2[36] - - -
Z2[5] Z2[13] - - Z2[37] - - -
Z2[6] Z2[14] - - Z2[38] - - -
Z2[7] Z2[15] - - Z2[39] - - -


(15)

38 Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, Lei Hu

r
o
u
n
d

0
X

0
Y
0

S
R

Z
0

M
C

T
K

(
0
)

1

T
K

(
0
)

2

T
K

(
0
)

3

r
o
u
n
d

1 S
R

M
C

r
o
u
n
d

2 S
R

M
C

r
o
u
n
d

3 S
R

M
C

r
o
u
n
d

4 S
R

M
C

r
o
u
n
d

5 S
R

M
C

-
1

T
K

(
5
)

1

T
K

(
5
)

2

T
K

(
5
)

3

r
o
u
n
d

6 S
R

M
C

r
o
u
n
d

7 S
R

M
C

-
1

T
K

(
7
)

1

T
K

(
7
)

2

T
K

(
7
)

3

r
o
u
n
d

8 S
R

M
C

r
o
u
n
d

9

i
n
i
t
i
a
l

+
3

+
3

X
9

S
R

Y
9

M
C

Z
9

r
o
u
n
d

1
0

X
1
0

S
R

Y
1
0

M
C

Z
1
0

r
o
u
n
d

1
1

X
1
1

S
R

Y
1
1

M
C

Z
1
1

r
o
u
n
d

1
2

X
1
2

S
R

Y
1
2

M
C

Z
1
2

T
K

(
1
2
)

1

T
K

(
1
2
)

2

T
K

(
1
2
)

3

r
o
u
n
d

1
3

S
R

M
C

r
o
u
n
d

1
4

S
R

M
C

-
1

T
K

(
1
4
)

1

T
K

(
1
4
)

2

T
K

(
1
4
)

3

r
o
u
n
d

1
5

S
R

M
C

r
o
u
n
d

1
6

S
R

M
C

T
K

(
1
6
)

1

-
1

T
K

(
1
6
)

2

T
K

(
1
6
)

3

r
o
u
n
d

1
7

S
R

M
C

r
o
u
n
d

1
8

S
R

M
C

r
o
u
n
d

1
9

S
R

M
C

r
o
u
n
d

2
0

S
R

M
C

r
o
u
n
d

2
1

S
R

M
C

r
o
u
n
d

2
2

X
2
2

Y
2
2

S
R

m
a
t
c
h

Z
2
2

M
C
⊕

T
0 1
2

1
3

1
4

1
5

8
9

1
0

1
1

4
5

6
7

0
1

2
3

n
o
n
e

f
o
r
w
a
r
d

b
a
c
k
w
a
r
d

c
o
n
s
t
a
n
t

u
n
c
e
r
t
a
i
n

F
ig.15:

F
ree-sta

rt
co
llisio

n
a
tta

ck
o
n
2
3
-ro

u
n
d
R
o
m
u
l
u
s
-
H

Meet-in-the-Middle Attacks Revisited 39

m0

h0 = IV

Q

P

m1

h1

Q

P
h2

P Trunc

Fig. 16: Grøstl-n/2 with two message blocks

X5 Z5 W5 Tmatch

⊕SB

SR

MC

X4 Z4

SB MC

SR −16

X3 Z3

SB

SR

MC

X2 Z2

SB

SR

MC

Starting point

+10 +19

Z1

SB

SR

MC

−8

X0 Z0 X1

SB

SR

MC

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

forward backward constant uncertain ignored

Fig. 17: Preimage attack on 6-round output transformation of Grøstl-256



- - - - - - - a8
- - - - - - a7 -
- - - - - a6 - -
- - - - a5 - - -
- - - a4 - - - -
- - a3 - - - - -
- a2 - - - - - -

a1 - - - - - - -


= MC

−1 ·



X2[0] X2[8] - - X2[32] - - -
- X2[9] X2[17] - - X2[41] - -
- - X2[18] X2[26] - - X2[50] -
- - - X2[27] X2[35] - - X2[59]

X2[4] - - - X2[36] X2[44] - -
- X2[13] - - - X2[45] X2[53] -
- - X2[22] - - - X2[54] X2[62]

X2[7] - - X2[31] - - - X2[63]


(16)

We call Algorithm 5 to perform the MITM preimage attack on the 6-round
output transformation of Grøstl-256. As shown in Figure 17, h = 32 cells,m = 2
cells. According to Equation (6), the time complexity is

(28)32−10 + (28)32−19 + (28)32−min(2, 3, 2) ≈ 2240. (17)

The memory complexity is

(28)10 + (28)19 + (28)min(2, 3) ≈ 2152. (18)

Pseudo Preimage Attacks on the Hash Function. At FSE 2012, Wu et al.
[62] converted the preimage attack on Grøstl-256’s output transformation into
pseudo preimage attack on Grøstl-256 hash function. Suppose given 256-bit
target T , we have find 2x preimages for the output transformation, i.e., we find
2x X that meet P (X) ⊕ X = ∗∥T . Wu et al. try to find the pseudo preimage
(H,M) of Grøstl-256 hash function that meets (H ′ = H ⊕M):

(P (H ′)⊕H ′)⊕ (Q(M)⊕M)⊕X = 0. (19)

40 Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, Lei Hu

We set x = 10, and the time complexity to find 210 preimages X for the output
transformation is 2250. We store the 210 X in table L1. Firstly, we select 2

251 M
and compute Q(M) ⊕M and check L1 to find 10-bit partial collisions with X.
Hence, we find 2251+10/210 = 2251 (Q(M) ⊕M,X) pairs with a 10-bit zero in
Q(M)⊕M⊕X and store them in table L2. Next, we find partial target preimages
for P (H ′) ⊕ H ′ with 10-bit fixed zero as partial target. We reuse Figure 17 to
find H ′. We can just fix T [55] = T [56] = 0 (just assume the 10-bit fixed zero bits
are among the two bytes). We find 2251 such H ′ with time complexity of 2251

according to Equation (6)10. We use P (H ′)⊕H ′ to check L2, and it is expected
to find 2251+251/2512−10 = 1 collision, which is just the pseudo preimage (H,M)
for Grøstl-256 hash function. The time complexity is 2252 with memory 2251.

E MITM Attacks on Round-reduced Saturnin-Hash

Saturnin is a suite of lightweight symmetric algorithms proposed by Canteaut
et al. [15]. It is among the 2nd round candidates of the NIST Lightweight cryp-
tography (LWC) standardization process [48]. Based on a 256-bit block cipher
with 256-bit key, two authenticated ciphers and a hash function are designed. In
this section, we focus on its hash function, called Saturnin-Hash.

A 7-round preimage attack on Saturnin-Hash. We first give a 7-round
chunk separation on the compression of Saturnin-Hash as shown in Figure 18,
the operations in round function work on 4× 4 square of 16-bit “supernibbles”.
The arrangement of “supernibbles” is




0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15


 .

The SB operation applies 16-bit Super-Sbox S to each supernibble. MC is
Super-Mixcolumns, which acts as the same role to the Mixcolumns of AES. MR is
Super-Mixrows. Saturnin has a very simple key-schedule. In even rounds, the
256-bit key K is XORed to the internal state; in odd rounds, it is rotated by 5
supernibble-positions to get K ′.

The starting states are X4 and K ′. We have λ+ = 24 and λ− = 7. In the
backward direction, we apply the property of XOR then MixColumns (XOR-MC)

by Bao et al. [7] to ignore the state Z3 and Z2.

10 With h = 2, m = 2, DoF+ = 2 and DoF− = 3, we have (2w)h−min(DoF+, DoF−, m) =
1, which means we get one partial target preimage with one computation of
Grøstl-256 on average.

Meet-in-the-Middle Attacks Revisited 41

X0

SB

Y0

MR

Z0

K′⊕AK

X1

SB

Y1

MC

Match
Z1

K⊕AK

X2

SB

Y2

MR

Z2

K′⊕AK

X3

SB

Y3

MC

Z3

K⊕AK

X4

Start

SB

Y4

MR

Z4

K′⊕AK

X5

SB

Y5

MC

Z5

K⊕AK

X6

SB

Y6

MR

Z6

K′⊕AK

K

⊕
AK

P

none

forward backward constant uncertain

Fig. 18: The 7-round MITM attack on Saturnin-Hash

Then, from X4 to Y3, we have

MC
−1


X4[0]⊕K[0] X4[4]⊕K[4] X4[8]⊕K[8] X4[12]⊕K[12]

K[1] K[5] K[9] K[13]
X4[2]⊕K[2] X4[6] X4[10] X4[14]
X4[3]⊕K[3] X4[7]⊕K[7] X4[11]⊕K[11] X4[15]⊕K[15]

 =


- - - -
a1 a4 a7 a10

a2 a5 a8 a11

a3 a6 a9 a12


(20)

From X3 to Y2, we have

MR
−1


- - - -
- - - -

K′[2] K′[6] K′[10] K′[14]
K′[3] K′[7] K′[11] K′[15]

 =


- - - -
- - - -
- a13 a14 a15

- a16 a17 a18

 (21)

42 Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, Lei Hu

Y1 Y ′1

MC

Z′1K X2

K+

MC−1

K−

Fig. 19: Matching in the 7-round MITM attack on Saturnin-Hash

For a given c+ = (a1, · · · , a18) ∈ F16×18
2 with l+ = 18, we solve the two linear

Equations (20) and (21) to compute the neutral words of blue. Hence, DoF+ =
λ+ − l+ = 6.

The neutral values for red cells are easy to obtain by solving a linear system
of equations from Y4 to X5. We have λ− = 7, l− = 4, c− = (b1, · · · , b4) ∈ F16×4

2

and DoF− = λ−− l− = 3. In the matching point, we use tricks for matching the
ending states by Bao et al. The matching point is decomposed as Figure 19 and
we get a filter of DoM = 3 cells. We have time complexity

(216)16−min(6, 3, 3) ≈ 2208. (22)

The memory complexity is about (216)3 = 248.
Converting the preimage attack on the compression function into a preimage

attack on 7-round Saturnin-hash, we get the time complexity 2256−24 = 2232.
Since the authors of Saturnin-hash only claimed a security of 2224, our attack
does not impact the security Saturnin-hash, but only gives a better under-
standing on Saturnin-hash against MITM attack.

F Conllision Attacks on Round-reduced Grøstl

F.1 Collision attack on 6-round Grøstl-256’s output transformation

With the automatic model of MITM collision attack in Sect. 6.1, we find a new
6-round chunk seperation as shown in Figure 20. Based on it, we give the 6-
round collision attack on the output transformation of Grøstl-256. The starting
point is X3 and λ+ = λ− = 10. From Z1 and X5, we get l+ = l− = 8. Hence,
DoF+ = λ+ − l+ = 2, DoF− = λ− − l− = 2, m = 1, and t = 1. By applying
Algorithm 6, we have time complexity according to Equation (9).

(28)10 + (28)10 + (28)
32
2 −min{2− 1

2 , 2− 1
2 , 1− 1

2 ,
1
2} ≈ 2124. (23)

The memory complexity is about 2124 according to Equation (11).

F.2 Collision attack on 8-round Grøstl-512’s output transformation

As shown in Figure 21, the starting state is W3. Here, since in the computation
from W3 to Z3, the degrees of freedom of the blue bytes are reduced from 31

Meet-in-the-Middle Attacks Revisited 43

X5 Z5 W5 Tmatch

⊕SB

SR

MC

X4 Z4

SB MC

SR −8

X3 Z3

SB

SR

MC

X2 Z2

SB

SR

MC

Starting point

+10 +10

Z1

SB

SR

MC

−8

X0 Z0 X1

SB

SR

MC

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

forward backward constant uncertain prefixed ignored

Fig. 20: The Meet-in-the-Middle attack on 6-round output transformation of
Grøstl-256

bytes to 31 − 17 = 14 bytes. By solving a linear system of equations, we can
obtain the space of (λ+ =) 14 bytes with fixed gray constants. For each value of
the 14 bytes, we apply the table-based method of computing the solution space of
the neutral words (Algorithm 4), where l+ = 12 and c+ = (a1, · · · , a12) ∈ F8×12

2 .
Hence, DoF+ = λ+ − l+ = 2. Similarly, we have λ− = 42 − 26 = 16, l− = 14
and c− = (b1, · · · , b14) ∈ F8×14

2 . Hence, DoF− = λ− − l− = 2. In addition, we
have m = 2 and t = 2. By applying Algorithm 6, we have the time complexity
according to Equation (10)

(28)
64
2 −(14− 2

2) + (28)
64
2 −(16− 2

2) + (28)
64
2 −min{2− 2

2 , 2− 2
2 , 2− 2

2 ,
2
2} ≈ 2248. (24)

The memory cost is 2248 to store the partial target preimages.

G Preimage Attacks on Some Hashing Modes with
10-round AES-256

At EUROCRYPT 2021, Bao et al. [7] introduced the MITM preimage attacks on
8-/9-/9-round AES-128/-192/-256 in PGV hashing modes. At EUROCRYPT
2021, Leurent and Pernot [44] introduced new representations of the AES key
schedules. Taking the new representations into account, we introduce an updated
automatic model for MITM preimage attacks on AES hashing modes. Finally, we
find an MITM preimage attack on 10-round AES-256 as shown in Figure 22 and
improve the best previous attack by one round.

44 Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, Lei Hu

forward backward constant uncertain

prefixed ignored

X7 Z7 W7

T

SB

SR

match ⊕

X6 Z6 W6

SB

SR

MC

X5 Z5 W5

SB

SR

MC

−14

X4 Z4 W4

SB

SR

MC

−26

X3 Z3 W3

SB

SR

MC

−17 +42 +31

X2 Z2 W2

SB

SR

MC

−12

X1 Z1 W1

SB

SR

MC

X0 Z0 W0

SB

SR

MC

none

Fig. 21: The Meet-in-the-Middle attack on 8-round output transformation of
Grøstl-512

Meet-in-the-Middle Attacks Revisited 45

#SB0

SB

#SR0

SR

#MC0

MC

#AK0

K0⊕AK

#SB1

SB

#SR1

SR

#MC1

MC
a15

a16

a17

a18

#AK1

K1⊕AK

#SB2

SB

#SR2

SR

#MC2

MC

#AK2

K2⊕AK

#SB3

SB

#SR3

SR

#MC3

MC

#AK3

K3⊕AK

#SB4

SB

Start

#SR4

SR

#MC4

MC

#AK4

K4⊕AK

#SB5

SB

#SR5

SR

#MC5

MC

#AK5

K5⊕AK

#SB6

SB

#SR6

SR

#MC6

MC

#AK6

K6⊕AK

#SB7

SB

#SR7

SR

#MC7

MC

#AK7

K7⊕AK

#SB8

SB

#SR8

SR

#MC8

MC

Match

#AK8

K8⊕AK

#SB9

SB

#SR9

SR

#MC9
a13

a14 K9⊕AK

T⊕

K−1

⊕
AK

A−1
K0

K−1 K0

A−1
K1

K1 K2

A−1
K2

K3 K4

a8 a9

a10a11

a12

A−1
K3

K5 K6

A−1
K4

K7 K8

A−1
K5

K9 K10

S0

S1

S2

S3

Start

S4

S5

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Ki

Si

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

none

forward backward constant uncertain

Fig. 22: An MITM attack on 10-round AES-256. Note that the cell order for K̄i

and S̄i is different.

A
−1

=



0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 1 0



(25)

46 Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, Lei Hu

k
2
0

k
1
2

k
4

k
1
7
⊕
k
2
1

k
9
⊕
k
1
3

k
1
⊕
k
5

k
2
2

k
1
4

k
6

k
1
9
⊕
k
2
3

k
1
1
⊕
k
1
5

k
3
⊕
k
7

k
1
6
⊕
k
2
0

k
8
⊕
k
1
2

k
0
⊕
k
4

k
2
1

k
1
3

k
5

k
1
8
⊕
k
2
2

k
1
0
⊕
k
1
4

k
2
⊕
k
6

k
2
3

k
1
5

k
7

k
′ 20
k
′ 12 k
′ 4

k
′ 17
⊕
k
′ 21

k
′ 9
⊕
k
′ 13

k
′ 1
⊕
k
′ 5

k
′ 22
k
′ 14 k
′ 6

k
′ 19
⊕
k
′ 23

k
′ 11
⊕
k
′ 15

k
′ 3
⊕
k
′ 7

k
′ 16
⊕
k
′ 20

k
′ 8
⊕
k
′ 12

k
′ 0
⊕
k
′ 4

k
′ 21
k
′ 13 k
′ 5

k
′ 18
⊕
k
′ 22

k
′ 10
⊕
k
′ 14

k
′ 2
⊕
k
′ 6

k
′ 23
k
′ 15 k
′ 7

⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕ S

⊕S
⊕ S

ci
⊕ ⊕ S

Fig. 11. One round of the AES-192 key schedule (alternative representation).

k
1
5

k
3
1

k
1
4
⊕
k
1
0
⊕
k
6
⊕
k
2

k
3
0
⊕
k
2
6
⊕
k
2
2
⊕
k
1
8

k
1
3
⊕
k
5

k
2
9
⊕
k
2
1

k
1
2
⊕
k
8

k
2
8
⊕
k
2
4

k
1
4

k
3
0

k
1
3
⊕
k
9
⊕
k
5
⊕
k
1

k
2
9
⊕
k
2
5
⊕
k
2
1
⊕
k
1
7

k
1
2
⊕
k
4

k
2
8
⊕
k
2
0

k
1
5
⊕
k
1
1

k
3
1
⊕
k
2
7

k
1
3

k
2
9

k
1
2
⊕
k
8
⊕
k
4
⊕
k
0

k
2
8
⊕
k
2
4
⊕
k
2
0
⊕
k
1
6

k
1
5
⊕
k
7

k
3
1
⊕
k
2
3

k
1
4
⊕
k
1
0

k
3
0
⊕
k
2
6

k
1
2

k
2
8

k
1
5
⊕
k
1
1
⊕
k
7
⊕
k
3

k
3
1
⊕
k
2
7
⊕
k
2
3
⊕
k
1
9

k
1
4
⊕
k
6

k
3
0
⊕
k
2
2

k
1
3
⊕
k
9

k
2
9
⊕
k
2
5

k
′ 15
k
′ 31

k
′ 14
⊕
k
′ 10
⊕
k
′ 6
⊕
k
′ 2

k
′ 30
⊕
k
′ 26
⊕
k
′ 22
⊕
k
′ 18

k
′ 13
⊕
k
′ 5

k
′ 29
⊕
k
′ 21

k
′ 12
⊕
k
′ 8

k
′ 28
⊕
k
′ 24

k
′ 14
k
′ 30

k
′ 13
⊕
k
′ 9
⊕
k
′ 5
⊕
k
′ 1

k
′ 29
⊕
k
′ 25
⊕
k
′ 21
⊕
k
′ 17

k
′ 12
⊕
k
′ 4

k
′ 28
⊕
k
′ 20

k
′ 15
⊕
k
′ 11

k
′ 31
⊕
k
′ 27

k
′ 13
k
′ 29

k
′ 12
⊕
k
′ 8
⊕
k
′ 4
⊕
k
′ 0

k
′ 28
⊕
k
′ 24
⊕
k
′ 20
⊕
k
′ 16

k
′ 15
⊕
k
′ 7

k
′ 31
⊕
k
′ 23

k
′ 14
⊕
k
′ 10

k
′ 30
⊕
k
′ 26

k
′ 12
k
′ 28

k
′ 15
⊕
k
′ 11
⊕
k
′ 7
⊕
k
′ 3

k
′ 31
⊕
k
′ 27
⊕
k
′ 23
⊕
k
′ 19

k
′ 14
⊕
k
′ 6

k
′ 30
⊕
k
′ 22

k
′ 13
⊕
k
′ 9

k
′ 29
⊕
k
′ 25

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

ci
⊕

Fig. 12. One round of the AES-256 key schedule (alternative representation).

26

Fig. 23: A new representation of AES-256’s key schedule from Leurent and Per-
not [44]

As shown in Figure 22, K̄i = A−1(S̄i) with i = 0, 1, 2, 3, 4, 5. From Figure 23,
we derive A−1 given in Equation (25). In the new representation of AES-256’s
key schedule shown in Figure 24, the starting state is S̄3 and #SB4. In S̄3, there
are 19 cells, 1 cells and 12 cells. In #SB4, there are 8 cells, 8 cells.
Hence, the total initial degrees of freedom are λ+ = 19 + 8 = 27 cells for
cells, and λ− = 1 + 8 = 9 for cells. We first consider the reduction of degrees
of freedom for the cells in S̄3. As shown in Figure 24, the cells in state S̄3

have to meet the Equation (26), where (a1, a2, .., a7) are constants and symbols
marked by blue are cells and marked by black are cells.

S(S̄3[1])⊕ S̄3[2] = a1

S(S̄3[8])⊕ S̄3[9] = a2

S(S̄3[16])⊕ S̄3[17] = a3

S(S̄3[24])⊕ S̄3[25] = a4

S(S̄3[0])⊕ S̄3[1] = a5

S(S̄3[30])⊕ S̄3[31] = a6

S(S̄3[6])⊕ S̄3[7] = a7.

(26)

In addition, as shown in Figure 22, the and cells of S̄3 propagate to S̄2 and
then compute K̄2 by applying A−1 to S̄2. The and cells in K̄2 and S̄3 have to
meet Equation (27), where (a8, a9, a10, a11, a12) are constants. For example, in

Meet-in-the-Middle Attacks Revisited 47

the first equation of Equation (27), K̄2[4] = S̄2[12]⊕ S̄2[24] by K̄2 = A−1(S̄2),
and S̄2[12]⊕ S̄2[24] = S̄3[18]⊕ S̄3[6] by considering the propagation from S̄3 to
S̄2 in Figure 24.





K̄2[0] = S̄2[6]⊕ S̄2[12]⊕ S̄2[18]⊕ S̄2[24]
= S̄3[12]⊕ S̄3[18]⊕ S̄3[24]⊕ S(S̄3[31])⊕ S̄3[6] = a8,

K̄2[4] = S̄2[12]⊕ S̄2[24] = S̄3[18]⊕ S̄3[6] = a9,
K̄2[5] = S̄2[4]⊕ S̄2[16] = S̄3[10]⊕ S̄3[30] = a10,
K̄2[9] = S̄2[16]⊕ S̄2[30] = S̄3[30]⊕ S̄3[4] = a11,
K̄2[3] = S̄2[0]⊕ S̄2[14]⊕ S̄2[20]⊕ S̄2[26]

= S̄3[14]⊕ S̄3[20]⊕ S̄3[26]⊕ S(S̄3[7])⊕ S̄3[0] = a12.

(27)

In Figure 22, the subkeys meet K−1[12]⊕K9[12] = a13 and K−1[6]⊕K9[6] =
a14, where the subkeys K−1 and K9 are the left 16 cells of K̄0 and K̄5, respec-
tively. Since K̄0 = A−1(S̄0) and K̄5 = A−1(S̄5), we have Equation (28) with
Equation (25). 




K9[12] = K̄5[12] = S̄5[24],
K−1[12] = K̄0[12] = S̄0[24],
K9[6] = K̄5[6] = S̄5[8]⊕ S̄5[28],
K−1[6] = K̄0[6] = S̄0[8]⊕ S̄0[28].

(28)

Further changing of variables of Equation (28) by cells of S̄3, together with the
conditions K−1[12]⊕K9[12] = a13 and K−1[6]⊕K9[6] = a14, we have

S(S(S(S̄3[9])⊕ S̄3[10])⊕ S̄3[11])⊕ S̄3[12]︸ ︷︷ ︸
S̄5[24]

⊕ S̄3[18]︸ ︷︷ ︸
S̄0[24]

= a13,

S(S(S(S̄3[25])⊕ S̄3[26])⊕ S̄3[27])⊕ S̄3[28]︸ ︷︷ ︸
S̄5[8]

⊕ S̄3[8]︸ ︷︷ ︸
S̄5[28]

⊕ S̄3[2]︸ ︷︷ ︸
S̄0[8]

⊕ S(S̄3[21])⊕ S̄3[22]︸ ︷︷ ︸
S̄0[28]

= a14.

(29)

In round 1, we apply the property of XOR then MixColumns (XOR-MC) by Bao
et al. [7] to ignore the state #AK1, and get Equation (30).

- - - a15

- - a16 -
- a17 - -

a18 - - -

 = MC
−1(K1). (30)

Equation (26), (27), (29) and (30) introduce a (7+5+2+4 =)18-cell reduction
of degrees of freedom for cells. In addition, from #SB4 to #AK3, there is an
8-cell reduction of degrees of freedom for cells. Totally, the degree of freedom
for cells is DoF+ = λ+ − 18− 8 = 1.

For the cells, the initial degree of freedom λ− = 1+8 = 9. The computation
from #MC4 to #SB5 consume 8-cell degree of freedom. Hence, DoF− = λ− −
8 = 1.

We introduce the preimage attack on the hashing modes with 10-round
AES-256 in Algorithm 7. Since, we are going to find a 128-bit preimage at-
tack, the encryption data path (with 128-bit internal state) and key schedule

48 Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, Lei Hu

S0

S1
a6 a7

S2
a2 a3 a4 a5

S3

S4
a1

S5

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

forward backward constant uncertain

Fig. 24: Chunk separations of AES-256’s key schedule with Leurent and Pernot’s
representations

data path (with 256-bit internal state) provide enough degrees of freedom, and
we do not need to traverse all the cells to find the 128-bit preimage. Hence, for
briefness, we fixed all the as zero in Line 1, as well as (a1, a2, ..., a12) in Line
2. Then for each 7-cell values (S̄3[1], S̄3[9], S̄3[17], S̄3[25], S̄3[30], S̄3[6], S̄3[20])

Meet-in-the-Middle Attacks Revisited 49

Algorithm 7: The MITM preimage attack on 10-round AES-256

1 S̄3[5, 11, 13, 14, 15, 19, 21, 22, 23, 27, 28, 29]← 0,
2 (a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a12)← 0,

3 V ← []
4 for 7-cell values (S̄3[1], S̄3[9], S̄3[17], S̄3[25], S̄3[30], S̄3[6], S̄3[20]) do
5 Deduce the 12 cells from Equation (26) and (27):

(S̄3[2], S̄3[8], S̄3[16], S̄3[24], S̄3[0], S̄3[31], S̄3[7], S̄3[18], S̄3[10], S̄3[4], S̄3[26], S̄3[12])
6 /* All and cells in S̄3 are known. */

7 Compute Equation (29) and (30) to get the 6-cell value
(a13, a14, a15, a16, a17, a18), and store the values for the cells of S̄3 in
V [a13, ..., a17, a18]

8 /* When computing Equation (30), only and cells in K1 are

considered, which is derived following the path:

S̄3 → S̄2 → S̄1
A−1

−−−→ K̄1 → K1 */

9 /* In V [a13, ..., a17, a18], there are 28 values of on average. */

10 Randomly pick one X = (a13, ..., a17, a18) whose V [X] is of about 28 values.
11 for All values of in #AK3, #AK4 and #SB5[2, 6]
12 /* There are 8+6+2=16 independent gray cells in the data encryption

path, which provide enough degrees of freedom to finally find a

16-byte preimage. */

13 do
14 for all values of the one cell in S̄3 do
15 Compute backward to the matching point, store it in L[]

16 for each blue value in V [X] do
17 Compute forward to the matching point to match
18 /* use the trick by Bao et al.’s [7] in the matching point

and there is one cell filter in the matching phase. */

19 For each match, test the full preimage.

in Line 4, we deduce other unfixed 12-cell values by Equation (26) and (27) in
Line 5. Here, we actually do not try to solve the nonlinear equations in Equation
(26) and (27), but deduce the 12-cell values one by one. For example, for the
first equation of Equation (26), i.e., S(S̄3[1])⊕ S̄3[2] = a1, with knowledge of
S̄3[1] and a1 = 0, we get the value for S̄3[2]. Thereafter, all the 19 cells in S̄3

are determined. Hence, all the and cells in K1 can be derived following the

S̄3 → S̄2 → S̄1
A−1

−−−→ K̄1 → K1. Then, in Line 7, we compute Equation (29)
and (30) to get the 6-cell value (a13, a14, a15, a16, a17, a18), and store the blue
values of S̄3 in V [a13, ..., a17, a18]. Since in Line 4 we traverse 7-cell values, and
at last store them in V under the 6-cell index, there will be about 28 values
under each index of V . Here, it is a tweaked nonlinear-constrained technique
introduced in Section 5.

Since we have large enough degrees of freedom to find the 128-bit preimage
when taken the key schedule into consideration, we only pick one subset of V

50 Xiaoyang Dong, Jialiang Hua, Siwei Sun, Zheng Li, Xiaoyun Wang, Lei Hu

#MC8 #MC8′

MC

#AK8′K8 #AK8

K8
+

MC−1

K8
−

Fig. 25: Decomposition of the matching point of the MITM attack on 10-round
AES-256

indexed by a given X = (a13, ..., a17, a18) to perform the MITM attack, where
the number of elements in V [X] is about 28.

In the MITM attack, we traverse the cells in #AK3, #AK4 and #SB5[2, 6]
until a preimage is found. There are 8+6+2=16 independent gray cells in the
data encryption path, which provide enough degrees of freedom to finally find a
128-bit preimage.

In Line 15, together with the cells fixed as 0 in Line 1, all the and cells
in the subkeys Ki (−1 ≤ i ≤ 9) are computed. Then, from #SB5 to #AK4,
with the knowledge of #SB5[2, 6] and and in K4, we compute the cells
backward in #AK4. Further compute backward to the matching point. We use
the trick by Bao et al.’s [7] in the matching point and decompose the matching
point as shown in Figure 25. There is one cell of filter at the last column.

In forward direction, for each value in V [X], all the and cells in the
subkeys Ki (−1 ≤ i ≤ 9) are derived. Then from #AK3 to #SB4, with the
knowledge of the cells of #AK3, we compute the cells forward in #SB4.
Further, compute the cells forward to the matching point. For each match of
the and values, check for a full 128-bit target match to find the preimage.
Complexity. The memory complexity is about 256 to store V . The time com-
plexity is about 2120.

	Meet-in-the-Middle Attacks Revisited: Key-recovery, Collision, and Preimage Attacks

