25 research outputs found

    Importing ArrayExpress datasets into R/Bioconductor

    Get PDF
    Summary:ArrayExpress is one of the largest public repositories of microarray datasets. R/Bioconductor provides a comprehensive suite of microarray analysis and integrative bioinformatics software. However, easy ways for importing datasets from ArrayExpress into R/Bioconductor have been lacking. Here, we present such a tool that is suitable for both interactive and automated use

    ArrayExpress update—an archive of microarray and high-throughput sequencing-based functional genomics experiments

    Get PDF
    The ArrayExpress Archive (http://www.ebi.ac.uk/arrayexpress) is one of the three international public repositories of functional genomics data supporting publications. It includes data generated by sequencing or array-based technologies. Data are submitted by users and imported directly from the NCBI Gene Expression Omnibus. The ArrayExpress Archive is closely integrated with the Gene Expression Atlas and the sequence databases at the European Bioinformatics Institute. Advanced queries provided via ontology enabled interfaces include queries based on technology and sample attributes such as disease, cell types and anatomy

    A software framework for microarray and gene expression object model (MAGE-OM) array design annotation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The MIAME and MAGE-OM standards defined by the MGED society provide a specification and implementation of a software infrastructure to facilitate the submission and sharing of data from microarray studies via public repositories. However, although the MAGE object model is flexible enough to support different annotation strategies, the annotation of array descriptions can be complex.</p> <p>Results</p> <p>We have developed a graphical Java-based application (Adamant) to assist with submission of Microarray designs to public repositories. Output of the application is fully compliant with the standards prescribed by the various public data repositories.</p> <p>Conclusion</p> <p>Adamant will allow researchers to annotate and submit their own array designs to public repositories without requiring programming expertise, knowledge of the MAGE-OM or XML. The application has been used to submit a number of ArrayDesigns to the Array Express database.</p

    MicroArray Facility: a laboratory information management system with extended support for Nylon based technologies

    Get PDF
    BACKGROUND: High throughput gene expression profiling (GEP) is becoming a routine technique in life science laboratories. With experimental designs that repeatedly span thousands of genes and hundreds of samples, relying on a dedicated database infrastructure is no longer an option. GEP technology is a fast moving target, with new approaches constantly broadening the field diversity. This technology heterogeneity, compounded by the informatics complexity of GEP databases, means that software developments have so far focused on mainstream techniques, leaving less typical yet established techniques such as Nylon microarrays at best partially supported. RESULTS: MAF (MicroArray Facility) is the laboratory database system we have developed for managing the design, production and hybridization of spotted microarrays. Although it can support the widely used glass microarrays and oligo-chips, MAF was designed with the specific idiosyncrasies of Nylon based microarrays in mind. Notably single channel radioactive probes, microarray stripping and reuse, vector control hybridizations and spike-in controls are all natively supported by the software suite. MicroArray Facility is MIAME supportive and dynamically provides feedback on missing annotations to help users estimate effective MIAME compliance. Genomic data such as clone identifiers and gene symbols are also directly annotated by MAF software using standard public resources. The MAGE-ML data format is implemented for full data export. Journalized database operations (audit tracking), data anonymization, material traceability and user/project level confidentiality policies are also managed by MAF. CONCLUSION: MicroArray Facility is a complete data management system for microarray producers and end-users. Particular care has been devoted to adequately model Nylon based microarrays. The MAF system, developed and implemented in both private and academic environments, has proved a robust solution for shared facilities and industry service providers alike

    Celsius: a community resource for Affymetrix microarray data

    Get PDF
    Celsius is a new system that serves as a warehouse by aggregating Affymetrix files and associated metadata, and containing the largest publicly available source of Affymetrix microarray data

    maxdLoad2 and maxdBrowse: standards-compliant tools for microarray experimental annotation, data management and dissemination

    Get PDF
    BACKGROUND: maxdLoad2 is a relational database schema and Java(® )application for microarray experimental annotation and storage. It is compliant with all standards for microarray meta-data capture; including the specification of what data should be recorded, extensive use of standard ontologies and support for data exchange formats. The output from maxdLoad2 is of a form acceptable for submission to the ArrayExpress microarray repository at the European Bioinformatics Institute. maxdBrowse is a PHP web-application that makes contents of maxdLoad2 databases accessible via web-browser, the command-line and web-service environments. It thus acts as both a dissemination and data-mining tool. RESULTS: maxdLoad2 presents an easy-to-use interface to an underlying relational database and provides a full complement of facilities for browsing, searching and editing. There is a tree-based visualization of data connectivity and the ability to explore the links between any pair of data elements, irrespective of how many intermediate links lie between them. Its principle novel features are: • the flexibility of the meta-data that can be captured, • the tools provided for importing data from spreadsheets and other tabular representations, • the tools provided for the automatic creation of structured documents, • the ability to browse and access the data via web and web-services interfaces. Within maxdLoad2 it is very straightforward to customise the meta-data that is being captured or change the definitions of the meta-data. These meta-data definitions are stored within the database itself allowing client software to connect properly to a modified database without having to be specially configured. The meta-data definitions (configuration file) can also be centralized allowing changes made in response to revisions of standards or terminologies to be propagated to clients without user intervention. maxdBrowse is hosted on a web-server and presents multiple interfaces to the contents of maxd databases. maxdBrowse emulates many of the browse and search features available in the maxdLoad2 application via a web-browser. This allows users who are not familiar with maxdLoad2 to browse and export microarray data from the database for their own analysis. The same browse and search features are also available via command-line and SOAP server interfaces. This both enables scripting of data export for use embedded in data repositories and analysis environments, and allows access to the maxd databases via web-service architectures. CONCLUSION: maxdLoad2 and maxdBrowse are portable and compatible with all common operating systems and major database servers. They provide a powerful, flexible package for annotation of microarray experiments and a convenient dissemination environment. They are available for download and open sourced under the Artistic License

    MARS: Microarray analysis, retrieval, and storage system

    Get PDF
    BACKGROUND: Microarray analysis has become a widely used technique for the study of gene-expression patterns on a genomic scale. As more and more laboratories are adopting microarray technology, there is a need for powerful and easy to use microarray databases facilitating array fabrication, labeling, hybridization, and data analysis. The wealth of data generated by this high throughput approach renders adequate database and analysis tools crucial for the pursuit of insights into the transcriptomic behavior of cells. RESULTS: MARS (Microarray Analysis and Retrieval System) provides a comprehensive MIAME supportive suite for storing, retrieving, and analyzing multi color microarray data. The system comprises a laboratory information management system (LIMS), a quality control management, as well as a sophisticated user management system. MARS is fully integrated into an analytical pipeline of microarray image analysis, normalization, gene expression clustering, and mapping of gene expression data onto biological pathways. The incorporation of ontologies and the use of MAGE-ML enables an export of studies stored in MARS to public repositories and other databases accepting these documents. CONCLUSION: We have developed an integrated system tailored to serve the specific needs of microarray based research projects using a unique fusion of Web based and standalone applications connected to the latest J2EE application server technology. The presented system is freely available for academic and non-profit institutions. More information can be found at

    Review Article: Current Knowledge on Microarray Technology - An Overview

    Get PDF
    The completion of whole genome sequencing projects has led to a rapid increase in the availability of genetic information. In the field of transcriptomics, the emergence of microarray-based technologies and the design of DNA biochips allow high-throughput studies of RNA expression in cell and tissue at a given moment. It has emerged as one of the most important technology in the field of molecular biology and transcriptomics. Arrays of oligonucleotide or DNA sequences are being used for genome-wide genotyping and expression profiling, and several potential clinical applications have begun to emerge as our understanding of these techniques and the data they generate improves. From its emergence to date, several database, software and technology updates have been developed in the field of microarray technology. This paper reviews basics and updates of each microarray technology and serves to introduce newly compiled resources that will provide specialist information in this area.Keywords: Microarray, Databases, cDNA array, Oligonucleotide arra
    corecore