617 research outputs found

    Discriminative Density-ratio Estimation

    Full text link
    The covariate shift is a challenging problem in supervised learning that results from the discrepancy between the training and test distributions. An effective approach which recently drew a considerable attention in the research community is to reweight the training samples to minimize that discrepancy. In specific, many methods are based on developing Density-ratio (DR) estimation techniques that apply to both regression and classification problems. Although these methods work well for regression problems, their performance on classification problems is not satisfactory. This is due to a key observation that these methods focus on matching the sample marginal distributions without paying attention to preserving the separation between classes in the reweighted space. In this paper, we propose a novel method for Discriminative Density-ratio (DDR) estimation that addresses the aforementioned problem and aims at estimating the density-ratio of joint distributions in a class-wise manner. The proposed algorithm is an iterative procedure that alternates between estimating the class information for the test data and estimating new density ratio for each class. To incorporate the estimated class information of the test data, a soft matching technique is proposed. In addition, we employ an effective criterion which adopts mutual information as an indicator to stop the iterative procedure while resulting in a decision boundary that lies in a sparse region. Experiments on synthetic and benchmark datasets demonstrate the superiority of the proposed method in terms of both accuracy and robustness

    A review of domain adaptation without target labels

    Full text link
    Domain adaptation has become a prominent problem setting in machine learning and related fields. This review asks the question: how can a classifier learn from a source domain and generalize to a target domain? We present a categorization of approaches, divided into, what we refer to as, sample-based, feature-based and inference-based methods. Sample-based methods focus on weighting individual observations during training based on their importance to the target domain. Feature-based methods revolve around on mapping, projecting and representing features such that a source classifier performs well on the target domain and inference-based methods incorporate adaptation into the parameter estimation procedure, for instance through constraints on the optimization procedure. Additionally, we review a number of conditions that allow for formulating bounds on the cross-domain generalization error. Our categorization highlights recurring ideas and raises questions important to further research.Comment: 20 pages, 5 figure

    Unsupervised adaptation for acceleration-based activity recognition: robustness to sensor displacement and rotation

    Get PDF
    A common assumption in activity recognition is that the system remains unchanged between its design and its posterior operation. However, many factors affect the data distribution between two different experimental sessions. One of these factors is the potential change in the sensor location (e.g. due to replacement or slippage) affecting the classification performance. Assuming that changes in the sensor placement mainly result in shifts in the feature distributions, we propose an unsupervised adaptive classifier that calibrates itself using an online version of expectation-maximisation. Tests using three activity recognition scenarios show that the proposed adaptive algorithm is robust against shift in the feature space due to sensor displacement and rotation. Moreover, since the method estimates the change in the feature distribution, it can also be used to roughly evaluate the reliability of the system during online operatio

    Unsupervised adaptation for acceleration-based activity recognition: Robustness to sensor displacement and rotation

    Get PDF
    A common assumption in activity recognition is that the system remains unchanged between its design and its posterior operation. However, many factors affect the data distribution between two different experimental sessions. One of these factors is the potential change in the sensor location (e.g. due to replacement or slippage) affecting the classification performance. Assuming that changes in the sensor placement mainly result in shifts in the feature distributions, we propose an unsupervised adaptive classifier that calibrates itself using an online version of expectation-maximisation. Tests using three activity recognition scenarios show that the proposed adaptive algorithm is robust against shift in the feature space due to sensor displacement and rotation. Moreover, since the method estimates the change in the feature distribution it can also be used to roughly evaluate the reliability of the system during online operation
    • …
    corecore