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Abstract A common assumption in activity recognition

is that the system remains unchanged between its design

and its posterior operation. However, many factors affect

the data distribution between two different experimental

sessions. One of these factors is the potential change in the

sensor location (e.g. due to replacement or slippage)

affecting the classification performance. Assuming that

changes in the sensor placement mainly result in shifts in

the feature distributions, we propose an unsupervised

adaptive classifier that calibrates itself using an online

version of expectation–maximisation. Tests using three

activity recognition scenarios show that the proposed

adaptive algorithm is robust against shift in the feature

space due to sensor displacement and rotation. Moreover,

since the method estimates the change in the feature dis-

tribution, it can also be used to roughly evaluate the reli-

ability of the system during online operation.

Keywords Activity recognition � Sensor displacement �
Unsupervised adaptation � Linear discriminant analysis �
Expectation–maximisation

1 Introduction

Activity recognition from on-body sensors is largely being

studied in applications like gaming [10], industrial main-

tenance [26] and health monitoring [29]. In particular,

acceleration sensors have been applied for recognising

different activities ranging from modes of locomotion [30]

to complex daily living activities [19]. Typically, the

design of these systems (e.g. feature selection, classifica-

tion) assumes that the characteristics of the sensor network

will not change. However, during system operation body-

worn sensors may slip or rotate. Similarly, it is unrealistic

to expect users to precisely re-attach the sensors at the

same location from day to day. These changes may degrade

the recognition performance. In order to address the issue

of sensor location variability, we propose a self-calibrating

approach based on probabilistic classifiers. The method

tracks changes in the feature distribution in an unsuper-

vised manner using an online implementation of the

Expectation–maximisation algorithm.

Several approaches have been proposed to cope with

those changes in activity and gesture recognition using

body-worn and ambient sensors (e.g. using vision-based

recognition [9, 31, 32]). Some of them try to exploit the

specific characteristics of the change they want to address.

For example, Kunze et al. [12] used the combined infor-

mation of gyroscope and accelerometers to distinguish

between rotation and translation . Their work suggests that,

in contrast to sensor rotation, translation does not affect

significantly the acceleration signals. Based on this, they

proposed a heuristic method that yielded higher recognition

rates for displaced sensors on body segments. Other

approaches focus on the selection of displacement-invari-

ant features [25]. Förster et al. use genetic programing to

find invariant features on acceleration-based gesture
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recognition [7]. In this case, they left one sensor out from

training and used evolving features of other sensors to train a

classifier. In another work, the same group proposed an

online unsupervised self-calibration algorithm [8]. Using

online adaptation, they adjusted a nearest class centre clas-

sifier (NCC). They applied the method on synthetic data in

addition to two real-life data sets corresponding to gesture-

recognition scenario mentioned above and a fitness scenario

data set. Alternative methods to find invariant features are to

train classifiers using the data recorded at different body

locations. Lester and colleagues used sensors placed on the

shoulder, wrist and the waist of subjects performing daily

life activities [14]. Then, they compare the performance of

the classifiers trained on data from individual sensors

against classifiers trained on data from the three sensors

altogether. This approach relies on the recording of enough

data from all available positions. However, this may imply a

costly setup for the collection of the training data, while at

the same time, it might be difficult to fully cover all potential

displacements that a sensor may suffer.

A third approach assumes that changes in the sensor

placement affect the signal feature distributions in a par-

ticular manner. A particular case, termed covariate shift,

assumes that the training and testing feature distributions

change but the conditional distribution of the classifier

output given an input is the same. Based on this assumption,

Sugiyama et al. proposed a modification of cross-validation

technique called importance weighted cross-validation

(IWCV) that can be used for model and parameter selection

in classification tasks [27]. They used IWCV to select the

parameters of an importance weighted LDA (IWLDA)

where the weights are the ratio of the test and train pattern

distributions in the calibration session. In experimental

studies, this ratio is replaced by its empirical estimates,

using either Kullback-Leibler importance Estimation Pro-

cedure (KLIEP) or unconstrained least square importance

fitting [15, 28]. However, it should be noticed that this

method requires a calibration session for estimating the

ratio of the distributions between training and test session.

We propose a method that assumes that the main change

in the feature distribution corresponds to a shift. This

allows us to propose an Expectation–maximisation algo-

rithm that can be used online to estimate the feature dis-

tributions on an unsupervised manner. This yields a

mechanism to estimate the distribution shift and adapt the

original classifier. In this paper, we extend our previous

studies of the method regarding sensor displacement in

order to assess its performance upon rotational noise.

The rest of this paper is structured as follows. In Sect. 2,

we describe the proposed method. Then, we revisit previ-

ously reported tests in the case of sensor displacement [2].

For this, we use the same scenarios introduced by Förster

and colleagues: a human–computer interaction (HCI) and a

fitness scenario (Sects. 3.1.1 and 3.1.2, respectively) [8]. In

Sect. 3.2, we further test our method in the case of sensor

rotation. To this end, we use the HCI and a daily living

scenario. We then conclude and discuss the presented

method and results, as well as future directions of research.

2 Unsupervised adaptive classifier

The underlying assumption of a typical recognition system

is that the feature distributions estimated from the training

data will remain unchanged during system operation.

However, this assumption may not hold in real-life appli-

cations, resulting in a decrease in performance. In order to

deal with that, we propose an unsupervised approach aimed

at estimating changes in the feature distribution and thus

allowing the adaptation of probabilistic classifiers. We

particularly study this adaptive classifier in the case of

changes in the sensor placement.

In the proposed approach, knowing that sensor dis-

placement may result in changes in the overall feature

distribution, we assume that these changes can be fully

characterised by a shift of an unknown magnitude and

direction. Given this, we estimate the distribution shift

using an online version of the expectation–maximisation

algorithm. Once the shift vector has been estimated,

incoming samples can be shifted back and classified using

the original classifier (i.e. the one trained in the original

feature distribution).

Specifically, let CðxÞ be a classifier trained on data with

feature distribution p(x). Given the assumptions described

above, the distribution of new incoming samples p(y) will

be equal to the original distribution shifted by a vector h;

pðyÞ ¼ pðxþ hÞ ð1Þ

Therefore, the classification performance will not be

affected if samples are shifted back before classification:

Cðy� hÞ: In consequence, self-adaptation can be achieved

by estimating the shift vector h in an online, unsupervised

manner, as described below.

Given the training feature distribution p(x),

pðxÞ ¼
XI

i¼1

Pðz ¼ xiÞPðxjz ¼ xiÞ ð2Þ

where x represents the features, P(z = xi) is the prior

probability of class i, I is the number of classes, and the

class-conditional distribution is a normal distribution with

mean li and covariance matrix Ri,

Pðxjz ¼ xiÞ � Nðxjli;RiÞ ð3Þ

Let y be the samples recorded during system operation.

As described above, the shifted distribution pðy� hÞ
should correspond to the same distribution as the training
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samples (1). Given a matrix Y where the j-th column

represents the j-th observation, yj and Z be a matrix of

labels, with corresponding zj that are latent variables. We

can define the log-likelihood for a specific value of h;

ln pðYjhÞ ¼ ln
X

Z

pðY;ZjhÞ ð4Þ

We use an Expectation–maximisation (EM) algorithm to

maximise the likelihood over h [3]. Given the previous

estimation hold the E-step corresponds to computing the

posterior probabilities given the shift vector pðZjY; holdÞ:
For the j-th observation, it is computed as:

Pðzj ¼ xsjyj; h
oldÞ ¼

Pðzj ¼ xsÞPðyj � holdjz ¼ xsÞPI
i¼1 Pðzj ¼ xiÞPðyj � holdjz ¼ xiÞ

ð5Þ

The M-step corresponds then to evaluating hnew;

hnew ¼ arg max
h

Qðh; holdÞ ð6Þ

where

Qðh; holdÞ ¼
X

Z

pðZjY; holdÞ ln pðY;ZjhÞ ð7Þ

Qðh; holdÞ ¼
XJ

j¼1

Qjðh; holdÞ ð8Þ

where J is the number of patterns and Qjðh; holdÞ is defined

as follows:

XI

i¼1

Pðzj ¼ xijyj; h
oldÞ ln Pðzj ¼ xiÞ þ ln Nðyi � hjli;RiÞ
� �

ð9Þ
In order to have a run-time estimation of the distribution

shift, we use an online version of Levenberg–Marquardt

algorithm [18]. This yields an on-line update rule that

maximises (9) using its gradient (g) and Hessian (H),

hnew ¼ hold þ Dh ð10Þ

where,

Dh ¼ ðH þ kIÞ�1g ð11Þ

g ¼
XI

i¼1

Pðzj ¼ xijyj; h
oldÞR�1

i ðy� hold � liÞ ð12Þ

H ¼
XI

i¼1

Pðzj ¼ xijyj; h
oldÞR�1

i ð13Þ

The k term in (11) is a small positive number and I is

identity matrix. This regularisation term prevents from

inverting a singular matrix.

To sum up, given a trained probabilistic classifier–Lin-

ear or Quadratic Discriminant Analysis (LDA or QDA,

respectively)–shifts in the feature distribution can be esti-

mated online using Algorithm 1. In order to avoid small

oscillations in the estimation when there are small changes

in the feature distribution, the shift h is only updated when

the magnitude of the estimated change exceeds a threshold

(H). Note that at the beginning of the operation, an initial

value H0 has to be set. Having no knowledge about how

the distribution may have changed since training, we set

this value to be zero, thus assuming no change.

3 Results

We test the performance of the adaptation approach on real

data recorded in activity recognition scenarios. We emulate

changes in the sensor location (Sect. 3.1), as well as sensor

rotation (Sect. 3.2). In the first case, we use data recorded

simultaneously by sensors located at different places, using

data from one sensor for training and testing on data from

another one. In the latter case, signals from each sensor are

artificially rotated by a given angle. The use of artificial

rotation allows us to evaluate different conditions and

better characterise the performance of the method. In the

rest of the paper, the adaptation mechanism detailed in the

previous section is used to adapt a LDA classifier (hence-

forth termed aLDA).

3.1 Robustness to sensor displacement

We use two activity recognition scenarios to test the per-

formance of the adaptive classifiers upon changes in the

sensor location. The first one corresponds to a gesture-

based HCI scenario, while the second one corresponds to

fitness activities where aerobic movements are performed

by the subject. In both scenarios, several acceleration

sensors were placed on the subject limbs in order to

simultaneously record activity at different body locations,

see Fig. 1a, b. This allows to emulate sensor displacement

by testing classifiers trained at one location using data from

a sensor placed at a different location. These scenarios and

Algorithm 1 Online shift estimation

Initialise h = h0

for every new sample yj do

Compute posterior probability of the shifted sample using (5).

Classify the pattern based on maximum posterior rule.

Compute shift update, Dh

if ðjDhj[HÞ
Update the shift h (Eq. 10).

endif

end for
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testing procedure were previously introduced by Förster

and colleagues [8].

We report the classification performance of a static LDA

classifier, as well as the proposed adaptive version of LDA

(aLDA). Moreover, we also evaluate the performance of

IWLDA. This method relies on the covariate shift

assumption and requires a calibration data set to estimate

the distribution shift (c.f. Sect. 1, [28]). In the reported

simulations for IWLDA, we used all test samples as cali-

bration data set, therefore corresponding to the perfor-

mance of an off-line recognition system. KLIEP was

applied for the importance estimation (for IWLDA we set

k = 1 and for KLIEP we set d = 0.01 and three Newton

iterations). It should be noticed that in the reported results

for IWLDA, the feature distribution change is first esti-

mated and then kept fixed for estimating the accuracy on

the testing set. On the contrary, for aLDA we report the

accuracy of the classification while the adaptation process

takes place, therefore emulating the online performance.

A more detailed analysis of the method performance

upon sensor displacement, including a comparison with the

adaptive NCC method proposed by Förster and colleagues

[8], has been previously reported in [2].

3.1.1 HCI gesture scenario

The HCI scenario deals with the recognition of five dif-

ferent hand gestures: a triangle, an upside-down triangle,

a circle, a square and an infinity symbol [7, 8] . Six USB

accelerometers are placed at different positions on the

right lower arm of the subject and aligned to minimise

rotational variation (c.f. Fig. 1a and [8]). We use data

while one subject performs 50 repetitions of each gesture.

Data are manually segmented to contain only a single

action with duration between 5 and 8 s. We created

training and testing sets containing two-thirds and one-

third of the data, respectively, with classes equally dis-

tributed on both sets.

We assess the performance of the adaptive approach using

the mean value, the standard deviation, min, max, energy in

addition to magnitude of acceleration signals and correlation

between each pair of three axes of each sensor. The dimen-

sionality of the feature space is reduced using canonical

variate analysis (CVA), also known as multiple discriminant

analysis, leading to a four-dimensional feature space (i.e.

corresponding to the number of classes minus one) [6, 11].

The update threshold H was set to 1.5, as this corresponds to

the maximum estimated shift when the method is applied to

the training data set, and k was set to the absolute value of the

smallest non-positive eigenvalue of H ? 0.01.

The classification performance of the adaptive LDA and

IWLDA classifiers is shown in Fig. 2a. In these plots, the

performance of each approach (vertical axis) is compared

with the performance of the fixed LDA classifier (horizonal

axis). Each point corresponds to one of the tested sensor

combinations. Red circles show the performance when

there is no change in the sensor location (i.e. the classifier

is tested on data from the same sensor it was trained).

Points above the diagonal line correspond to an improve-

ment due to the adaptation process with respect to the static

classifier. It shows that the adaptive LDA outperforms the

static classifier in most cases, while the accuracy remains

similar when there is no change in the sensor location.

Moreover, IWLDA results in very small improvement over

the LDA classifier.

We also show the average performance for the three

classifiers with respect to the sensor change (Fig. 2a,

rightmost plot). The performance of the LDA classifier

decreases significantly when tested with data recorded at a

different location. In contrast, aLDA consistently outper-

forms both the LDA and IWLDA classifiers. Surprisingly,

IWLDA does not allow any improvement with respect to

Fig. 1 Sensor placement for the

different experimental setups.

a HCI gesture-recognition

scenario. b Fitness scenario.

c Daily living scenario
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the LDA classifier when tested on another sensor location.

This suggests that the recalibration process does not pro-

vide enough information to properly estimate the new

feature distributions. Further discussion on this issue is

presented in Sect. 4.

Since the adaptation process relies on the estimation of

changes in the feature distribution, one may expect that it

performs better when there are small changes in the sensor

location. In the case of no sensor location change (t = s),

the aLDA adaptive mechanism yields a small decrease in

performance with respect to the static classifier. In contrast,

aLDA average performance is about 20% higher than LDA

when tested in sensors located next to the training sensors

(|t - s| = 1). Similarly, aLDA also improves performance

in the other sensor combinations (|t - s| [ 1). In particular,

we observe that the aLDA is quite robust for the location

sensors 3 to 6 (i.e. sensors located closer to the wrist).

Indeed, the average performance after displacement among

of these positions is equal to 75.2 and 86.9% for the two

simulated sets of features (c.f. Fig. 3).

Fig. 2 Method performance upon sensor displacement—classifica-

tion accuracy. Left aLDA. Middle IWLDA. Each plot shows the

accuracy of the adaptive classifier versus the LDA classifier. Circles

show the cases when the classifier is tested at the same location it was

previously trained. Right Average performance for the three

classifiers
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3.1.2 Fitness activity data set

The second scenario corresponds to a fitness scenario

where five different aerobic movements of the leg were

recorded using 10 bluetooth acceleration sensors located on

the subject’s leg [8]. Five of the sensors were placed on the

lower leg and the other five on the thigh (c.f. Fig. 1b).

Sensors were located equidistantly and roughly with the

same orientation so as to model only translation. During

the experiment, the subject performs the movements shown

in a video by an instructor. The video contains all move-

ment classes equally represented and is presented five

times.

For each sensor, the mean and variance of the acceler-

ation magnitude based on a sliding window with two-thirds

of overlap are used as features. As in the previous appli-

cation, the data were divided into a training and a testing

set containing two-thirds and one-third of the data,

respectively, and simulation parameters for aLDA were the

same as before. Similar to previous studies, we tested

separately the sensors located on different leg segments

(i.e. thigh or lower leg), as preliminary results show that

little adaptation can be achieved for location changes

between different limb segments.

In contrast to the previous scenario, in this case, the

performance of the aLDA and IWLDA classifiers does not

significantly differ from the static LDA (c.f. Fig. 2b, c). A

performance increase is only observed when there is a large

change in the sensor location (|t - s| [ 1), especially for

sensors located on the thigh. Indeed, the performance

decrease of the static LDA classifier when tested in other

locations is not as steep as in the HCI scenario. The

average performance of the static LDA when testing in the

closest sensor to the training one (|t - s| = 1) is about 62

and 76% for sensors on the thigh and lower leg, respec-

tively. Actually, the static LDA performs better than the

previously proposed adaptive NCC for the sensors in the

lower leg, suggesting that there is little room for perfor-

mance improvement given the classifier characteristics [2].

3.2 Robustness to sensor rotation

3.2.1 HCI gesture scenario

We further tested the proposed method by emulating sensor

rotation. Using the HCI gesture scenario, the sensor signals

were artificially rotated in the range -90� to 90�. We report

results for rotations around the x- and z-axis since (given

the characteristics of the task, rotations around the y-axis

had a small effect on the recognition performance). The

data preprocessing and classifier training are performed as

described in the previous section. During online adaptation,

the regularisation parameter k was set to 0.005.

The performance of the fixed and adaptive classifier is

shown in Figs. 4 and 5 for rotations over the x- and z-axis,

respectively. As expected, the performance of the LDA

classifier drops drastically even after small sensor rotations,

especially in the case of rotations around the x-axis. The

decrease in performance of the adaptive classifier is sig-

nificantly smaller for all the tested sensors, thus yielding

graceful degradation upon such type of sensor change.

3.2.2 Daily living scenario

A third data set was used to test robustness against sensor

rotation. The data are a subset of a larger recording per-

formed in a rich-sensor environment [16, 20]. It corre-

sponds to a daily living scenario where the subject

performs a morning activities. During the recordings, each

subject performed five times a run with activities of daily

living (ADL) and one drill run. During the ADL run,

subjects freely perform the activities following a loose

description of the overall actions to perform (i.e. wake up,

make breakfast and take a walk), without precise instruc-

tion about more specific actions. During the drill runs, they

performed 20 repetitions of a predefined sequence of

activities including open doors and drawers, turn on/off the

lights or drink.

We evaluate activity recognition using five acceleration

sensors located on the back, right upper arm, left upper

arm, right lower arm and left lower arm as shown in Fig 1c.

Acceleration values for the three axis of the five sensors

were taken into account, and features were again extracted

using CVA. The projected features were feed either into

the the LDA classifier or its adaptive version. As before,

we emulate rotation of one sensor in the range [-90�, 90�]

in the y- and z-axis. We report results from four different

Fig. 3 HCI gesture scenario. Classification accuracy (encoded by

grey levels) for each training–testing combination. Each row denotes

the sensor used for training and each column represents the sensor

used for testing the method

484 Pers Ubiquit Comput (2013) 17:479–490
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subjects, using threefold cross-validation for each one of

them.

We performed two sets of simulations using different

sets of classes to be recognised. In the first one, termed

experiment A, the set is composed of four activities: toggle

switch, drink, clean table and close drawer. These classes

exhibit a large discriminability that leads to high classifi-

cation accuracy when there is no noise (0.81, 0.81, 0.79 and

0.84 for subjects 1–4, respectively). The second set,

experiment B, was chosen to be more challenging and is

composed of six activities (open door, open dishwasher,

open drawer, clean table, drink and toggle switch). The

classification accuracy for all subjects in this experiment,

when no noise is added, is 0.63, 0.66, 0.66 and 0.64 for

subjects 1–4, respectively.

Analysis of the features extracted using CVA shows that

the most informative sensors are those located on the back

and on the right arm. Indeed, in both experiments, rotation

of sensors in the left arm has no influence on the classifi-

cation accuracy (results not shown).

Figure 6 shows the performance for one representative

subject after rotation of sensors on the back and the right

lower arm for the experiment A. It can be seen that the

performance of the LDA (dashed red trace) decreases after

rotations of the sensor on the back, particularly around the

y-axis. This decrease is less marked than in the previous

database since all sensors are used for classification and

only one of them is affected with noise. Once more, the

adaptive process (continuous blue trace) outperforms the

static approach for all subjects resulting in a more robust

system against sensor rotation. Such effect is larger in the

sensor located in the back than the one in the arm.

The figure also shows the evolution of the estimated

shift as new samples are acquired (the values are colour

coded, where dark colours correspond to smaller values). It

can be seen that for small sensor rotation, the method

quickly converges towards small values. In contrast, for

large rotations ([40�), after 50 samples the value of the

estimated shift starts to increase. We also show the final

estimated shift (i.e. after 250 samples), as well as its

standard deviation on the last 100 samples as a measure of

the convergence of the adaptive mechanism.

A similar pattern was found in experiment B, as seen in

Fig. 7. In this case, sensors in the back and right upper are

the most discriminative. Again, for small sensor rotations,

the method is able to estimate the distribution shift and

Fig. 4 HCI scenario. Rotations over the x-axis. Classification accu-

racy of the static LDA (dotted line) and adaptive LDA (continuous
line)

Fig. 5 HCI scenario. Rotations over the z-axis. Classification accu-

racy of the static LDA (dotted line) and adaptive LDA (continuous
line)
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outperforms the static LDA classifier. Figures 8 and 9

show the performance increment, in terms of percentage of

the LDA performance, for all subjects. It shows that the

adaptive mechanism generally increases the performance

of the original classifier in both experiments for all

subjects.

4 Discussion

Deployment of activity recognition systems requires them

to be able to cope with different factors that appear in real

life. One of those is the case of sensor displacement,

especially for long-term running applications. Several

approaches have been proposed to tackle this issue either

by taking into account the type of change we want to be

robust to, or by redundant training on the system using

several body locations. However, the first approach can

only address specific types of change, while the second one

imposes a significant overhead on the system design and

calibration.

Alternatively, we propose an unsupervised adaptive

mechanism that tracks changes in the feature distribution in

an online manner. The proposed method extends probabi-

listic Gaussian classifiers assuming that changes in the

sensor placement mainly result in a shift of the overall

feature distribution. Given this assumption, unsupervised

adaptation is achieved by estimating the feature distribu-

tion shift by means of an online version of expectation

maximisation using the Levenberg–Marquardt algorithm.

Reckoning that such an assumption is unlikely to fully

hold in real applications, we perform several simulations

using activity recognition of realistic scenarios emulating

both sensor translation and rotation. Experiments using

body-worn accelerometers support the idea that this

method is able to compensate for strong performance

decrease without compromising the performance when the

original classifier performs well (e.g. fitness scenario). We

emulate sensor displacement using an experimental setup

using sensors located at different positions of the upper and

lower limbs, and testing the classifier in a sensor located at

a different position than the one used for training.

Fig. 6 Daily living scenario—Experiment A (four classes). Perfor-

mance on subject 1 when sensors on the back and right lower arm are

rotated. Top row Classification performance of the static LDA and

adaptive LDA (dotted and continuous traces, respectively). Middle

row Evolution over time of the estimated shift. Bottom row Final

value of the estimated offset. Error bars show the standard deviation

computed over the last 100 samples
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Fig. 7 Daily living scenario - Experiment B (6 classes). Performance

on subject 1 when sensors on the back and right upper arm are rotated.

Top row Classification performance of the static LDA and adaptive

LDA (dotted and continuous traces, respectively). Middle row

Evolution over time of the estimated shift. Bottom row Final value

of the estimated offset. Error bars show the standard deviation

computed over the last 100 samples

Fig. 8 Daily living scenario—Experiment A (four classes). Perfor-

mance increase (with respect to the LDA performance) when using

aLDA upon rotation of signals of one sensor. Each line corresponds to

the rotation of one of the three discriminative sensors (i.e. sensors on

the back and right upper and lower arm). Top Rotation over the y-axis.

Bottom Rotation over the z-axis

Pers Ubiquit Comput (2013) 17:479–490 487

123



Moreover, we assessed the method in the case of rotational

changes in the sensor position by artificially rotating the

recorded signals. This allows us to characterise its perfor-

mance upon changes of different magnitude.

Regarding sensor displacement, we further compare

with another adaptation technique, i.e., IWLDA. Our

results show that aLDA performs as well as the IWLDA

without requiring the availability of calibration data.

Indeed, in the specific case of the HCI scenario, it signif-

icantly outperforms IWLDA. Furthermore, it should be

taken into account that for the aLDA, we report the testing

performance while the adaptation process is taking place,

thus providing an estimation of the online performance of

the system. In previous work, we have also shown that this

method also outperforms another adaptive approach based

on NCC classifiers [2].

In the HCI scenario, the performance of the LDA clas-

sifier is strongly affected by sensor displacement. This

effect is reduced by the adaptive mechanism (cf. Fig. 2a).

In particular, aLDA performance remains remarkably high

for sensors located close to the wrist. In contrast, the

IWLDA is not able to capture the changes in the feature

distribution despite the availability of the calibration pro-

cess. In the fitness scenario, the adaptive mechanism does

not have a significant impact, as the performance of the

aLDA does not differ from the static classifier. This may be

due to the fact that the LDA classifier already seems robust

to small sensor displacements in this application thus

leaving less opportunity for adaptation. A similar perfor-

mance pattern was observed for the IWLDA, showing that

our approach converges to the same estimation than the

calibration process of this method.

Results suggest that the adaptive approach is more

robust to sensor rotation than the fixed classifier (c.f. Sect.

3.2). In particular in the HCI scenario, the performance of

the LDA classifier drops to chance level after rotation of

about 15�, whereas the decrease of the adaptive approach is

considerably smaller. In the daily living scenario, where

several sensors are taken into account for classification,

sensor rotation has a smaller impact on the performance of

the LDA. However, even in these cases, the aLDA con-

sistently performs better than the static approach for the

two sets of target classes that we presented.

The rationale of the adaptation method is the estimation

of changes in the feature distribution. Other approaches try

to detect these changes in order to identify anomalous

behaviour (e.g. sensor failure). They are mainly based on

the characterisation of the feature distributions [1, 4, 17,

24] or the the classification output in classifier ensembles

[5, 23]. In our case, the estimated shift provides a direct

estimation of the changes in the feature distribution [2].

Such measure can be used to infer an online estimation of

the system reliability, a critical point for systems that have

to deal with dynamic changing environments [13, 21]. For

example, if a sensor is considered non reliable (e.g. when

the estimated shift H exceeds a given threshold), com-

pensatory actions can be taken, such as its removal from a

sensor network [13, 22, 23].

Figure 10 shows how the mean and standard deviation

of the estimated shift correlates with the change in per-

formance with respect to the original location, for both

sensor displacement and rotation. In general, larger esti-

mated shifts correspond to a decrease in accuracy, meaning

that it can provide information about the sensor reliability.

Fig. 9 Daily living scenario—Experiment B (six classes). Perfor-

mance increase (with respect to the LDA performance) when using

aLDA upon rotation of signals of one sensors. Each line corresponds

to the rotation of one of the discriminative sensors (i.e. sensors on the

back and right upper and lower arm). Top Rotation over the y-axis.

Bottom Rotation over the z-axis
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However, in some cases, the performance decreases though

the estimated change is small, suggesting that in these

cases, the assumptions of the method are not satisfied.

Reported results suggest that despite the strong

assumptions of the method, it is able to effectively capture

changes in the feature distribution of the upcoming sam-

ples. Indeed, the presented approach results in graceful

performance degradation upon sensor displacement. Fur-

thermore, this is achieved in an unsupervised manner

without requiring a calibration phase and using only two

free parameters (k and H). At this stage, it is limited by the

types of changes it can effectively estimate, i.e., shifts on

the feature distributions. Further work is being undertaken

to extend it to also cope with other types of transformations

(e.g. allowing for scaling and rotations). However, this may

require iterative processes relying on a larger amount of

data, and more free parameters that may compromise its

application on run-time applications. An trade-off then

should be found between the performance increase that can

be achieved and complexity of the method that should be

used.
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