11 research outputs found

    Challenges and opportunities of using ecological and remote sensing variables for crop pest and disease mapping

    Get PDF
    Crop pest and diseases are responsible for major economic losses in the agricultural systems in Africa resulting in food insecurity. Potential yield losses for major crops across Africa are mainly caused by pests and diseases. Total losses have been estimated at 70% with approximately 30% caused by inefficient crop protection practices. With newly emerging crop pests and disease, monitoring plant health and detecting pathogens early is essential to reduce disease spread and to facilitate effective management practices. While many pest and diseases can be acquired from another host or via the environment, the majority are transmitted by biological vectors. Thus, vector ecology can serve an indirect explanation of disease cycles, outbreaks, and prevalence. Hence, better understanding of the vector niche and the dependence of pest and disease processes on their specific spatial and ecological contexts is therefore required for better management and control. While research in disease ecology has revealed important life history of hosts with the surrounding environment, other aspects need to be explored to better understand vector transmission and control strategies. For instance, choosing appropriate farming practices have proved to be an alternative to the use of synthetic pesticides. For instance, intercropping can serve as a buffer against the spread of plant pests and pathogens by attracting pests away from their host plant and also increasing the distance between plants of the same species, making it more exigent for the pest to target the main crop. Many studies have explored the potential applications of geospatial technology in disease ecology. However, pest and disease mapping in crops is rather crudely done thus far, using Spatial Distribution Models (SDM) on a regional scale. Previous research has explored climatic data to model habitat suitability and the distribution of different crop pests and diseases. However, there are limitation to using climate data since it ignores the dispersal and competition from other factors which determines the distribution of vectors transmitting the disease, thus resulting in model over prediction. For instance, vegetation patterns and heterogeneity at the landscape level has been identified to play a key role in influencing the vector-host-pathogen transmission, including vector distribution, abundance and diversity at large. Such variables can be extracted from remote sensing dataset with high accuracy over a large extent. The use of remotely sensed variables in modeling crop pest and disease has proved to increase the accuracy and precision of the models by reducing over fitting as compared to when only climatic data which are interpolated over large areas thus disregarding landscape heterogeneity.When used, remotely sensed predictors may capture subtle variances in the vegetation characteristic or in the phenology linked with the niche of the vector transmitting the disease which cannot be explained by climatic variables. Subsequently, the full potential of remote sensing applications to detect changes in habitat condition of species remains uncharted. This study aims at exploring the potential behind developing a framework which integrates both ecological and remotely sensed dataset with a robust mapping/modelling approach with aim of developing an integrated pest management approach for pest and disease affecting both annual and perrennial crops and whom currently there is no cure or existing germplasm to control further spread across sub Saharan Africa.Herausforderungen und Möglichkeiten der Verwendung von ökologischen und Fernerkundungsvariablen für die Schädlings- und Krankheitskartierung Pflanzenschädlinge und Krankheiten in der Landwirtschaft sind für große wirtschaftliche Verluste in Afrika verantwortlich, die zu Ernährungsunsicherheit führen. Die Verluste werden auf 70% geschätzt, wobei etwa 30% auf ineffiziente Pflanzenschutzpraktiken zurückzuführen sind. Bei neu auftretenden Pflanzenschädlingen und Krankheiten ist die Überwachung des Pflanzenzustands und die frühzeitige Erkennung von Krankheitserregern unerlässlich, um die Ausbreitung von Krankheiten zu reduzieren und effektive Managementpraktiken zu erleichtern. Während viele Schädlinge und Krankheiten von einem anderen Wirt oder über die Umwelt erworben werden können, wird die Mehrheit durch biologische Vektoren übertragen. Daraus folgt, dass die Vektorökologie als indirekte Erklärung von Krankheitszyklen, Ausbrüchen und Prävalenz untersucht werden sollte. Um effektive Vektorkontrollmaßnahmen zu entwickeln ist ein besseres Verständnis der ökologischen Vektor-Nischen und der Abhängigkeit von Schädlings- und Krankheits-Prozessen von ihrem spezifischen räumlichen und ökologischen Kontext wichtig. Während die Forschung in der Krankheitsökologie wichtige Lebenszyklen von Wirten mit der Umgebung schon gut aufgezeigt hat, müssen weitere Aspekte noch besser untersucht werden, um Vektorübertragungs- und Kontroll-Strategien zu entwickeln. So hat sich beispielsweise die Wahl geeigneter Anbaumethoden als Alternative zum Einsatz synthetischer Pestizide erwiesen. In einigen Fällen wurde der Zwischenfruchtanbau als ‚Puffer' gegen die Ausbreitung von Pflanzenschädlingen und Krankheitserregern vorgeschlagen. Bei diesem Anbausystem werden Schädlinge von ihrer Wirtspflanze abgezogen und auch der Abstand zwischen Pflanzen derselben Art vergrößert (was eine Übertragung erschwert). Viele Studien haben bereits die Einsatzmöglichkeiten von Geodaten in der Krankheitsökologie untersucht. Die Kartierung von Schädlingen und Krankheiten in Nutzpflanzen ist jedoch bisher eher großskalig erfolgt, unter der Zunahme von sogenannten ‚Spatial Distribution Models (SDM)' auf regionaler Ebene. Etliche Studien haben diesbezüglich klimatische Daten verwendet, um die Eignung und Verteilung verschiedener Pflanzenschädlinge und Krankheiten zu modellieren. Es gibt jedoch Einschränkungen bei der Verwendung von Klimadaten, da dabei andere landschaftsbezogene Verbreitungs-Faktoren ignoriert werden, die die Verteilung der Vektoren und Krankheitserreger bestimmen, was zu einer Modell-Überprognose führt. Vegetationsmuster und Heterogenität auf Landschaftsebene beeinflussen maßgeblich die Diversität und Verteilung eines Vektors und spielen somit eine wichtige Rolle bei der Vektor-Wirt-Pathogen-Übertragung. Bei der Verwendung von Fernerkundungsdaten können subtile Abweichungen in der Vegetationscharakteristik oder in der Phänologie, die mit der Nische des Vektors verbunden sind, besser erfasst werden. Es besteht noch Forschungs-Bedarf hinsichtlich der Rolle von Fernerkundungsdaten bei der Verbesserung von Artenmodellen, die zum Ziel haben den Lebensraum von Krankheitsvektoren besser zu erfassen. Ziel dieser Studie ist es, das Potenzial für die Entwicklung eines Rahmens zu untersuchen, der sowohl ökologische als auch aus der Ferne erfasste Daten mit einem robusten Mapping- / Modellierungsansatz kombiniert, um einen integrierten Ansatz zur Schädlingsbekämpfung für Schädlinge und Krankheiten zu entwickeln, der sowohl einjährige als auch mehrjährige Kulturpflanzen betrifft Keine Heilung oder vorhandenes Keimplasma zur weiteren Verbreitung in Afrika südlich der Sahara

    A model to predict the expansion of trioza erytreae throughout the iberian peninsula using a pest risk analysis approach

    Get PDF
    Assessing the potential of spread of an introduced crop pest in a new country is crucial to anticipating its effects on crop production and deriving phytosanitary management toward reducing potential negative effects. Citrus production represents a key agricultural activity throughout the Mediterranean basin. The African citrus psyllid Trioza erytreae (del Guercio, 1918) (Hemiptera: Triozidae) is a natural vector of Candidatus liberibacter spp., the causal agent of the harmful disease huanglongbing (HLB) or “citrus greening disease”. In continental Europe, T. erytreae was detected for the first time in northwestern Spain in 2014. Pest risk analysis (PRA) approaches, such as modeling, consider both time and space components to predict the potential distribution of pests in a given region. In this work, we aim to parameterize a model able to predict the expected spread of T. erytreae in the Iberian Peninsula using three types of PRA models. The kernel model with two hypothetical entry points accurately predicted the distribution of T. erytreae with respect to latitude. This model should be further refined and validated to support decision-makers in the adoption of timely and successful management and regulatory measures against the spread of T. erytreae to other citrus-producing areas in Europe.The authors are grateful to the Foundation for Science and Technology (FCT, Portugal), for financial support through national funds FCT/MCTES to CIMO (UIDB/00690/2020) and to the project PRE-HLB—Preventing HLB epidemics for ensuring citrus survival in Europe (H2020-SFS-2018-2 Topic SFS-05-2018-2019-2020, proj. No. 817526).info:eu-repo/semantics/publishedVersio

    Importance of vegetation index in codling moth Cydia pomonella distribution modeling

    Get PDF
    Codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae) is the key insect pest of apple orchards in Iran. This study was conducted in the main apple-growing regions of East Azarbaijan Province to generate potential habitat suitability maps of C. pomonella using MaxEnt modeling and to determine the importance of vegetation index in improving the accuracy of these models. Field surveys for collecting the occurrence data of codling moth were conducted during three growing seasons, 2017 - 2019. The activity of codling moth adult males was monitored using delta-shaped traps baited with female sex pheromone. Fifteen environmental variables were considered as potential predictors for estimating codling moth distribution. These variables were categorized into topographic, climatic, and remote sensing variables. A MaxEnt modeling algorithm was used to predict the distribution of codling moth. Model performance was evaluated using the area under the receiver operating characteristic curve (AUC). By using the topographic, climatic, and topographic+climatic variables, the AUC values were 0.840, 0.951, and 0.938, respectively. The model including normalized difference vegetation index (NDVI) had the highest AUC value (0.99), which strongly supports model predictive power and indicates the importance of vegetation index in codling moth distribution modeling. NDVI was the most contributed variable in the model followed by precipitation of September, slope, minimum temperature of May, and mean temperature of April. The distribution map obtained in MaxEnt provides an important tool for identifying potential risk zones of codling moth. This map can assist managers in forecasting and planning control measures and therefore, effective management of current infestations of codling moth

    Modeling the geographic spread and proliferation of invasive alien plants (IAPs) into new ecosystems using multi-source data and multiple predictive models in the Heuningnes catchment, South Africa

    Get PDF
    The geographic spread and proliferation of Invasive Alien Plants (IAPs) into new ecosystems requires accurate, constant, and frequent monitoring particularly under the changing climate to ensure the integrity and resilience of affected as well as vulnerable ecosystems. This study thus aimed to understand the distribution and shifts of IAPs and the factors influencing such distribution at the catchment scale to minimize their risks and impacts through effective management. Three machine learning Species Distribution Modeling (SDM) techniques, namely, Random Forest (RF), Maximum Entropy (MaxEnt), Boosted Regression Trees (BRT) and their respective ensemble model were used to predict the potential distribution of IAPs within the catchment. The current and future bioclimatic variables, environmental and Sentinel-2 Multispectral Instrument satellite data were used to fit the models to predict areas at risk of IAPs invasions in the Heuningnes catchment, South Africa. The present and two future climatic scenarios from the Community Climate System Model (CCSM4) were considered in modeling the potential distribution of these species. The two future scenarios represented the minimum and maximum atmospheric carbon Representative Concentration Pathways (RCP) 2.6 and 8.5 for 2050 (average for 2041–2060)

    Understanding climate change effects on the potential distribution of an important pollinator species, Ceratina moerenhouti (Apidae: Ceratinini), in the Eastern Afromontane biodiversity hotspot, Kenya

    Get PDF
    Monitoring key pollinator taxa such as the genus Ceratina requires precise near real-time predictions to facilitate better surveillance. The potential habitat suitability of Ceratina moerenhouti was predicted in the Eastern Afromontane biodiversity hotspot (EABH) in Kenya using presence-only data, to identify their potential distribution and vulnerability due to climate change. Bioclimatic, edaphic, terrain, land surface temperature, and land use and land cover (LULC) variables were used as predictors. Three machine learning techniques, together with their ensemble model, were evaluated on their suitability to predict current and future (the shared socioeconomic pathways (SSPs), i.e., SSP245 and SSP585) habitat suitability. Predictors were subjected to variable selection using the variance inflation factor resulting in a few (n = 9) optimum variables. The area under the curve (AUC) and true skill statistic (TSS) were used for the accuracy assessment of the modeling outputs. The results indicated that 30% and 10% of the EABH in Murang’a and Taita Taveta counties are currently suitable for C. moerenhouti occurrence, respectively. However, future projections show a ±5% decrease in C. moerenhouti habitats in the two counties. Further, the ensemble model harnessed the algorithm differences while the random forest had the highest individual predictive power (AUC = 0.97; TSS = 0.96). Clay content, LULC, and the slope were the most relevant variables together with temperature and precipitation. Integrating multi-source data in predicting suitable habitats improves model prediction capacity. This study can be used to support the maintenance of flowering plant communities around agricultural areas to improve pollination services

    Disease detection in citrus crops using optical and thermal remote sensing: a literature review.

    Get PDF
    Brazil stands out in the international citrus trade, especially due to its oranges, having produced around 16 million tons in 2021. However, productivity could be increased with greater control of diseases such as greening, which has spread around the world and leads to the total loss of affected trees. Given this scenario, it is necessary to perform fast and accurate detections in order to better manage actions and inputs. Since remote sensing is a pillar of digital agriculture, a literature review was carried out to analyze the use of optical and thermal sensors for the detection of diseases that affect citrus groves. For this purpose, the international databases Scopus and Web of Science were used to select references published between 2012 and 2022, resulting in twelve studies - most from China or the United States of America. The results showed a prevalence of methodologies that combine bands and spectral indices obtained through the use of multispectral and hyperspectral sensors, predominantly on board unmanned aircrafts (UAVs). Machine learning (ML) and deep learning (DL) classification algorithms produced good results in the detection of citrus groves affected by diseases, mainly greening. These results are affected by the stage of the infection, the presence or absence of symptoms, and the spectral and spatial resolutions of the sensors: the Red-Edge band and data with higher spatial detail result in more accurate classification models. However, the analyzed literature is still inconclusive regarding the early detection of infected plants

    Spatial modelling of invasive species distribution in water-limited environments using remotely sensed data and climatic scenarios in the Heuningnes catchment, South Africa

    Get PDF
    >Magister Scientiae - MScThe occurrence and spread of Invasive Alien Plants (IAPs) is a threat to global water resources and natural ecosystems due to high water use rates. With the current climate change projections and their ability to survive extreme environmental conditions, these species pose a huge threat to grazing resources, water availability and ecosystems in general. Routine monitoring and understanding their distribution and potential vulnerable areas is fundamental as it provides the requisite baseline information to guide clearing efforts and other related management and rehabilitation initiatives

    Use of geospatial techniques to improve bee farming and bee health across four main agroecological zones in Kenya.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Pietermaritzburg.Amid augmented climate change and anthropogenic influence on natural environments and agricultural systems, the global socioeconomic and environmental value of bees is undisputed. Bee products such as honey, pollen, nectar, royal jelly and to a lesser extent bee venom are important supplemental sources of income generation especially in the underdeveloped rural African areas. Moreover, bee farming is an important incentive for forest conservation, biodiversity and ecosystem services in terms of pollination services. Bee pollination services play a vital role in crop production, hence directly contribute to food and nutritional security for African smallholder farmers. Nevertheless, bee farming and bee health in general are under threat from climate change, agricultural intensification and associated habitat alteration, agrochemicals intensification, bee pests and diseases. Therefore, there is need to establish spatial distribution of bees, their food substrates, floral cycle and biotic and abiotic threats, especially bee pests. Bee pests devastate bee colonies through physical injury and as vectors of pathogens, hence causing a considerable reduction in bee colony productivity. Thus, this study sought to establish geospatial techniques that could be used to improve bee farming and bee health in Kenya. Firstly, this study aimed to determine the spatial and temporal distribution of stingless bees in Kenya using six machine learning ecological niche approaches and non-conflating variables from both bioclimatic, vegetation phenology and topographic features. All machine learning algorithms used herein performed at an ‘excellent’ level with a true skills statistics (TSS) score of up to 0.91. Secondly, the study assessed the suitability of resampled multispectral data for mapping melliferous (flowering plants that produce substance used by bees to produce honey) plants in Kenya. Bi-temporal AISA Eagle hyperspectral images, resampled to four sensors’ (i.e., WorldView-2, RapidEye, Spot- 6 and Sentinel-2) spatial and spectral resolutions, and a RF classifier were used to map melliferous plants. Melliferous plants were successfully mapped with up to 93.33% overall accuracy using WorldView-2. Furthermore, the study predicted the distribution of four main bee pests (Aethina tumida, Galleria mellonella, Oplostomus haroldi and Varroa destructor) in Kenya using the maximum entropy (MaxEnt) model and random forest (RF) classifier. The effect of seasonality on the abundance of bee pests was apparent, as indicated by the Wilcoxon rank sum test, with up to 6.35 times more pests in the wet than the dry season. Furthermore, bioclimatic variables especially precipitation contributed the most (up to 77.8%) to all bee pest predictions, while vegetation phenology provided vital information needed to sharpen the prediction models at grain level due to their higher spatial resolution and seasonal and phenological features. Moreover, topography had a moderate influence (14.3%) on the distribution of bee pests. Also, there was a positive correlation between bee pests’ abundance, habitat suitability and high altitude. Anthropogenic influence (as depicted by human footprint data) on the distribution of bee pests was relatively low (1.2%) due to the availability of a variety of bee food substrate from the mixed land use/land cover (LULC) classes, especially farmlands. Using the Pearson correlation coefficient, the prediction models for all bee pests scored at an excellent level (0.84), except for the G. mellonella prediction model, which was ranked ‘fair’ (0.55). Due to the relatively high accuracy for models developed herein to map stingless bees’ distribution, melliferous plants and bee pests’ occurrence and abundance, this study concluded that the models developed could reliably be used to indicate high suitability areas for bee farming. They could also be used to predict high bee pests risk areas for mitigation and management purposes, hence improving bee health and hive productivity

    Understanding Striga occurrence and risk under changing climatic conditions across different agroecological farming systems at local and regional scales122

    Get PDF
    Philosophiae Doctor - PhDThe invasion by Striga in most cereal crop fields in Africa has posed an acute threat to food security and socioeconomic integrity. Consequently, numerous technological and research developments have been made to minimize and even control the Striga impacts on crop production. So far, efforts to control Striga have primarily focused on the manipulation of the genetics of the host crops, as well as understanding the phenological and physiological traits, along with the chemical composition of the weed

    Importance of Remotely-Sensed Vegetation Variables for Predicting the Spatial Distribution of African Citrus Triozid (Trioza erytreae) in Kenya

    No full text
    Citrus is considered one of the most important fruit crops globally due to its contribution to food and nutritional security. However, the production of citrus has recently been in decline due to many biological, environmental, and socio-economic constraints. Amongst the biological ones, pests and diseases play a major role in threatening citrus quantity and quality. The most damaging disease in Kenya, is the African citrus greening disease (ACGD) or Huanglongbing (HLB) which is transmitted by the African citrus triozid (ACT), Trioza erytreae. HLB in Kenya is reported to have had the greatest impact on citrus production in the highlands, causing yield losses of 25% to 100%. This study aimed at predicting the occurrence of ACT using an ecological habitat suitability modeling approach. Specifically, we tested the contribution of vegetation phenological variables derived from remotely-sensed (RS) data combined with bio-climatic and topographical variables (BCL) to accurately predict the distribution of ACT in citrus-growing areas in Kenya. A MaxEnt (maximum entropy) suitability modeling approach was used on ACT presence-only data. Forty-seven (47) ACT observations were collected while 23 BCL and 12 RS covariates were used as predictor variables in the MaxEnt modeling. The BCL variables were extracted from the WorldClim data set, while the RS variables were predicted from vegetation phenological time-series data (spanning the years 2014–2016) and annually-summed land surface temperature (LST) metrics (2014–2016). We developed two MaxEnt models; one including both the BCL and the RS variables (BCL-RS) and another with only the BCL variables. Further, we tested the relationship between ACT habitat suitability and the surrounding land use/land cover (LULC) proportions using a random forest regression model. The results showed that the combined BCL-RS model predicted the distribution and habitat suitability for ACT better than the BCL-only model. The overall accuracy for the BCL-RS model result was 92% (true skills statistic: TSS = 0.83), whereas the BCL-only model had an accuracy of 85% (TSS = 0.57). Also, the results revealed that the proportion of shrub cover surrounding citrus orchards positively influenced the suitability probability of the ACT. These results provide a resourceful tool for precise, timely, and site-specific implementation of ACGD control strategies
    corecore