570 research outputs found

    Prediction of Electron Energies in Metal Oxides

    Get PDF

    Static polarizability of molecular materials: environmental and vibrational contributions

    Full text link
    Modeling the dielectric behavior of molecular materials made up of large pi-conjugated molecules is an interesting and complex task. Here we address linear polarizabilities, and the related dielectric constant, of molecular crystals and aggregates made up of closed-shell pi-conjugated molecules with either a non-polar or largely polar ground-state, and also examine the behavior of mixed-valence (or charge-transfer) organic salts. We recognize important collective phenomena due to supramolecular interactions in materials with large molecular polarizabilities, and underline large vibrational contributions to the polarizability in materials with largely delocalized electrons.Comment: 18 pages, including 9 figure

    Doctor of Philosophy

    Get PDF
    dissertationThis dissertation presents a theoretical study on interactions between xenon and transition metals. The focus is on isolated silver and silver clusters doped in chabazite. The ab initio embedded cluster model and ab initio periodic calculation were applied for calculations involved the chabazite surface. In the study of xenon binding to small silver clusters on chabazite surface (Chapter 2), the results show that charged clusters have enhanced affinity for xenon. When reduced to neutral, these silver clusters show no xenon affinity. Furthermore, increasing the size of the clusters weakens the xenon adsorption because of the delocalization of the positive charge. In Chapter 3, a comprehensive ab initio study on interactions between the transition metal cations of group 10, 11, and 12 and xenon was conducted. The interaction trends of xenon - transition metal cations of group 12 < group 11 < group 10 and row 5 < row 4 < row 6 were found. Pt+ is found to interact with xenon stronger than Au+ and is the strongest ligand to Xe ever reported. The nature of the interaction is explained by a ? donation from xenon to the cations. In Chapter 4, the diffusion of xenon inside chabazite structure was studied by the use of the variational canonical transition state theory and the hopping model

    Environment-Driven Variability in Absolute Band Edge Positions and Work Functions of Reduced Ceria

    Get PDF
    The absolute band edge positions and work function (Ί) are the key electronic properties of metal oxides that determine their performance in electronic devices and photocatalysis. However, experimental measurements of these properties often show notable variations, and the mechanisms underlying these discrepancies remain inadequately understood. In this work, we focus on ceria (CeO2), a material renowned for its outstanding oxygen storage capacity, and combine theoretical and experimental techniques to demonstrate environmental modifications of its ionization potential (IP) and Ί. Under O-deficient conditions, reduced ceria exhibits a decreased IP and Ί with significant sensitivity to defect distributions. In contrast, the IP and Ί are elevated in O-rich conditions due to the formation of surface peroxide species. Surface adsorbates and impurities can further augment these variabilities under realistic conditions. We rationalize the shifts in energy levels by separating the individual contributions from bulk and surface factors, using hybrid quantum mechanical/molecular mechanical (QM/MM) embedded-cluster and periodic density functional theory (DFT) calculations supported by interatomic-potential-based electrostatic analyses. Our results highlight the critical role of on-site electrostatic potentials in determining the absolute energy levels in metal oxides, implying a dynamic evolution of band edges under catalytic conditions

    Computational Techniques

    Get PDF
    This chapter introduces fundamental computational approaches and ideas to energy materials. These can be divided into two main streams: one dealing with the motion of atoms or ions described at a simplified level of theory and another focusing on electrons. The modeling framework, which covers both streams, is outlined. The atomistic simulation techniques discussed in the chapter are concerned with describing the energy landscape of individual atoms or ions, where classical mechanics can be usefully employed as the first successful approximation. Multiscale approaches could be the method of choice if one is interested in large molecules, inhomogeneous solids, complex environments or geometrical arrangements, systems that are far away from equilibrium or have particularly long evolution times. One of the principal objectives of atomistic simulations is to derive an accurate and coherent approach to the prediction of defect structure, energetics and properties. Two of the most widely employed methods are outlined. This edition first published 2013 © 2013 John Wiley & Sons, Ltd

    Hydrogenation of CO on a silica surface: an embedded cluster approach

    Get PDF
    The sequential addition of H atoms to CO adsorbed on a siliceous edingtonite surface is studied with an embedded cluster approach, using density functional theory for the quantum mechanical (QM) cluster and a molecular force field for the molecular mechanical (MM) cluster. With this setup, calculated QM/MM adsorption energies are in agreement with previous calculations employing periodic boundary conditions. The catalytic effect of the siliceous edingtonite (100) surface on CO hydrogenation is assessed because of its relevance to astrochemistry. While adsorption of CO on a silanol group on the hydroxylated surface did not reduce the activation energy for the reaction with a H atom, a negatively charged defect on the surface is found to reduce the gas phase barriers for the hydrogenation of both CO and H2C = O. The embedded cluster approach is shown to be a useful and flexible tool for studying reactions on (semi-)ionic surfaces and specific defects thereon. The methodology presented here could easily be applied to study reactions on silica surfaces that are of relevance to other scientific areas, such as biotoxicity of silica dust and geochemistry

    Concepts, models, and methods in computational heterogeneous catalysis illustrated through CO2 conversion

    Get PDF
    Theoretical investigations and computational studies have notoriously contributed to the development of our understanding of heterogeneous catalysis during the last decades, when powerful computers have become generally available and efficient codes have been written that can make use of the new highly parallel architectures. The outcomes of these studies have shown not only a predictive character of theory but also provide inputs to experimentalists to rationalize their experimental observations and even to design new and improved catalysts. In this review, we critically describe the advances in computational heterogeneous catalysis from different viewpoints. We firstly focus on modeling because it constitutes the first key step in heterogenous catalysis where the systems involved are tremendously complex. A realistic description of the active sites needs to be accurately achieved to produce trustable results. Secondly, we review the techniques used to explore the potential energy landscape and how the information thus obtained can be used to bridge the gap between atomistic insight and macroscale experimental observations. This leads to the description of methods that can describe the kinetic aspects of catalysis, which essentially encompass microkinetic modeling and kinetic Monte Carlo simulations. The puissance of computer simulations in heterogeneous catalysis is further illustrated by choosing CO2 conversion catalyzed by different materials for most of which a comparison between computational information and experimental data is available. Finally, remaining challenges and a near future outlook of computational heterogeneous catalysis are provided.publishe
    • 

    corecore