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Abstract  

Theoretical investigations and computational studies have notoriously contributed to the 

development of our understanding of heterogeneous catalysis during the last decades, when 

powerful computers have become generally available and efficient codes have been written 

that can make use of the new highly parallel architectures. The outcome of these studies has 

shown not only a predictive character of theory but also provide inputs to experimentalists 

to rationalize their experimental observations and even to design new and improved 

catalysts. In this review, we critically describe the advances in computational 

heterogeneous catalysis from different viewpoints. We firstly focus on modelling because it 

constitutes the first key step in heterogenous catalysis where the systems involved are 

tremendously complex. A realistic description of the active sites needs to be accurately 

achieved to produce trustable results. Secondly, we review the techniques used to explore 

the potential energy landscape and how the information thus obtained can be used to bridge 

the gap between atomistic insight and macroscale experimental observations. This leads to 

the description of methods that can describe the kinetic aspects of catalysis, which 

essentially encompass microkinetic modelling and kinetic Monte Carlo simulations. The 

puissance of computer simulations in heterogeneous catalysis is further illustrated by 

choosing CO2 conversion catalysed by different materials for most of which a comparison 

between computational information and experimental data is available. Finally, remaining 

challenges and a near future outlook of computational heterogeneous catalysis are provided.  

Keywords:  Computational catalysis, DFT, microkinetic, kinetic Monte Carlo, CO2 

conversion  
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1. Introduction 

The need for a sustainable society requires that chemical commodities are obtained in an 

environmentally, friendly and energy efficient way, and this can only be achieved by means 

of efficient catalytic processes with high activity and selectivity at mild conditions. Leaving 

enzymes apart, catalysts can be roughly classified into homogeneous and heterogeneous, 

depending on whether the process takes place in one or more phases. Homogeneous and 

heterogeneous catalysts have pros and cons, the former usually exhibiting higher catalytic 

activities but, in general, being less stable and more difficult to reutilize, apart from 

separation issues that are far from being trivial. For large-scale production of useful 

chemicals, catalysts must be also stable and durable, resistant to sintering and poisoning 

species, and easily recovered and regenerated. 1  These are advantageous properties of 

heterogeneous solid catalysts and the reasons why they are broadly used for the continuous 

operation in chemical industries. 

Most of the current heterogeneous catalysts were found by trial-and-error 

approaches, which required time consuming experiments for the preparation and testing of 

potential candidates for a given reaction. With a few exceptions, as the case of pure metals 

or binary oxides, catalysts are generally obtained by mixing several different reagents, 

usually under harsh temperature and pressure conditions, resulting in very complex 

structures.2,3 There are several different kinds of solid catalysts,1,2 either based or supported 

on a given substrate, involving pure metals or metal alloys, binary or mixed oxides, 

multicomponent oxides as the broadly used zeolites, carbides, nitrides, sulphides, carbons, 

metal salts, hybrid materials such as metal organic frameworks, or periodic mesoporous 

organosilicas, and the recently discovered family of MXenes. In most catalysts, the nature 

of the active sites is not well understood, specially under operando conditions, and 

unanimity is rare about reaction mechanisms and/or formed intermediate species. Thus, 

with so many unknowns, the optimization of existing catalysts is not trivial, and finding of 

new ones involves time-consuming and expensive experiments. Microscopic understanding 

is surely a way to the rational design of catalysts and efforts in this direction have been 

addressed from experimental and theoretical sides. 
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The elucidation of the reaction mechanisms occurring at the catalyst surface 

requires significant knowledge about the surface structure and the surface chemistry. For a 

long time, detailed experimental spectroscopic, diffraction, and microscopic studies aimed 

at the identification of reaction sites and analysis of the formed reaction intermediates and 

products. This has been accomplished under ultra-high vacuum conditions on well-defined 

single crystal surfaces that have been used as catalyst models.4 Recent advances have been 

enabling the study of more complex, hence realistic, systems, and to predict catalysis under 

operando conditions. The experimental data were employed to benchmark results from ab 

initio theoretical methods and to aid the development of novel computational frameworks, 

in special methods based on the density functional theory (DFT), which have been used to 

predict adsorbate-surface structures, to elucidate reaction mechanisms and to propose 

descriptors that can facilitate the screening of potential new and improved catalysts.5  

The need for improved, more active, and selective catalysts is clear when realizing 

that human activities are the main responsible of the emissions of the greenhouse gases in 

the atmosphere over the last 150 years. Catalysts have been very useful to enhance 

production efficiency and reduce energy use and they may be key in transforming 

greenhouse gases into useful chemicals thus being able to contribute to a circular economy. 

Among the greenhouse gases, carbon dioxide (CO2) is considered the main actor in the 

well-known global warming, even though its lower global warming potential (GWP = 1) 

when compared with methane (CH4, GWP = ~30), nitrous oxide (N2O, GWP = ~ 280), or 

fluorocarbons derivatives (GWP > 1000);6 this clearly indicates the tremendous amounts of 

CO2 that have been sent to the atmosphere because of burning fossil fuels (e.g., 

transportation, electricity production, etc.), or production of goods (e.g., cement 

industries).7 At present, the current global atmospheric CO2 concentration is ca. 415 ppm as 

measured at the National Oceanic and Atmospheric Administration (NOAA)´s Mauna Loa 

Observatory on Hawai; 8  furthermore, 36.44 billion tonnes of CO2 come directly from 

burning fossil fuels and cement production.9 The latter indicator is estimated to decrease 

~8% in 2020 as consequence of the Covid-19 pandemics. Despite this, to keep the rise in 

global temperatures, emissions of carbon dioxide would have to be cut significantly from 

2020 onwards. In fact, in December 2015, approximately two-hundred Governments that 

participated in the 6th Annual Sustainable Innovation Forum, held in Paris,10 adopted the 
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Paris agreement —the first-ever universal, legally binding global climate change 

agreement— with the aim of undertaking rapid reductions of greenhouse gas emissions for 

limiting global warming to well below 2 ºC above pre-industrial levels in the year 2100. In 

accordance with the most recent scientific advances, the plan arising from the agreement 

intends a balance between emissions and removals by 2050, i.e., an economy with net-zero 

greenhouse gas emissions. Therefore, it is of utmost importance to optimize existing or to 

develop new chemical processes that are environmentally greener and more sustainable, 

relying essentially on renewable energy from clean and constantly replenished natural 

sources based on heterogeneous catalysis. In particular, it is expected that the contribution 

from computational modelling will contribute to speed-up the discovery of the needed new 

catalysts, given their in-depth analysis power.11 Herewith, we seek to provide an account of 

structural models and computational methods currently used in computational heterogenous 

catalysis and to examine their full potential to advance our knowledge about the reactivity, 

selectivity and reaction mechanisms of catalysts proposed for CO2 conversion into valuable 

products. 

2. From ideal to realistic structural models  

The atomistic modelling of a catalyst together with the methodology applied to predict its 

properties are two critical aspects defining the quality, and eventually the usefulness, of any 

given computational simulation. Ideally, one would seek for a representative model of the 

system under study, and treat it with a methodology that provides accurate and reliable 

results. However, whenever one of these two aspects is not fully met, the risk is getting 

partial, or even irrelevant information. For instance, a model distant from the reality could 

be treated accurately, but the results, even if certain for the chosen model, cannot —and 

should not— be related to the system of interest. On the other hand, a correct model, but 

treated with an insufficiently accurate methodology may deliver untrustworthy, and so less 

meaningful results. The worst case is, obviously, a poor model treated with an unsuited 

methodology, which simply offers nonsense results. 

The above apparently naïve description is core on a planned simulation. Realistic 

models treated with highly accurate methodologies are still not a solution because there are 

limits both on the number of atoms to be explicitly included in the model and on the 



5 
 

theoretical methodology, both being strongly related to the available computational 

resources. For instance, simulations of systems containing thousands of atoms by means of 

classical molecular dynamics (MD) using a non-reactive force field is standard nowadays, 

affordable even using desktop computers.12 However, an all-electron DFT study of systems 

with thousands of atoms is barely achievable nowadays.13 In fact, such calculations require 

highly parallelized codes such as the Fritz-Haber institute ab initio simulation package 

(FHI-AIMS) 14  and, simultaneously, high parallel supercomputers with thousands of 

connected nodes and processors, which are not always at disposal. 

Besides, when the interest implies dynamical aspects, the time of the simulation is 

and additional factor to take into account. For instance, even the more accessible MD 

simulations are challenged when one has to deal with millions of atomic coordinates in a 

given model, or, on the other side, a MD run of a suitable model of a thousand atoms is 

challenged when pretending to run s simulations with a fs timestep. This is simplified in 

size and time scales in Figure 1, revealing that to increase time and/or size of the studied 

system requires going to a less accurate methodology. Furthermore, notice that the 

employed model and methodology go by hand-to-hand, as the model size already delimits 

the type of methodology that can be currently applied. In the next subsections we address 

the most common and utilized models, from a time and evolution perspective. 

2.1. Catalyst models: Cluster vs. periodic 

When simulating a heterogeneous catalyst, a central, key point is the modelling of the 

catalyst material, particularly, of its exposed surfaces and surface defects and species, as 

they will be the part in contact with the reaction reagents, intermediates, and products. Two 

main approaches are commonly used when modelling a catalyst material; these are the 

cluster and the periodic models. Historically, cluster models were firstly developed and 

employed, due to their simplicity, which allow applying all sorts of wave-function based 

methods, up to the computationally highly expensive coupled-cluster single double and 

perturbative triples level of theory, i.e. CCSD(T), often recognized as a golden standard of 

accuracy by the quantum chemistry community.15 To investigate the chemistry of cluster 

models, the electronic structure modeller can make use of available molecular codes such 

as Gaussian,16 Turbomole,17 NWChem,18 Orca,19 Gamess-US,20 among many others. 
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The intricacy of cluster models lies then on the suitability to represent the system of 

interest and the property to be explored. Original research approached the materials surface 

by a single atom, as done, for instance, in analysing the carbon dioxide (CO2) interaction 

with alkali atoms, transition metal cations and anions,21-24 and possible formation of carbon 

monoxide (CO), or even the effect of binary model catalytic centres, like on a metal oxide 

unit.25 When a single atom is used to describe the catalytic active centre, see Figure 2a, one 

must realize that the electronic structure of a catalytic active atom in a catalyst is different 

from that of the isolated atom in gas phase. Apart from differences in the electronic ground 

state, that for an isolated atom will for sure involve open-shells, its catalytic activity is 

modulated by the surrounding atoms, which can indirectly affect its electronic structure, 

similarly to the ligand effect, or do indeed participate in the interaction with the reaction 

species. In that case, the surrounding atoms should be included in the models as they are 

part of the catalytic active site. In general, it is more practical to use cluster models of a few 

atoms in the actual description of the catalytic active centres, see Figure 2a. Indeed, gas 

phase or supported, small clusters can be regarded as explicit models, as they have been 

extensively studied both from the experimental and theoretical sides.26-28 In addition, these 

small clusters can be experimentally deposited or grown on a support and then used as 

catalyst models. Here, soft-landing techniques have been used to control the size of the 

deposited clusters.29,30 

However, the utilization of small clusters is not exempt of dangers. The lack of 

bonds between cluster atoms and those that exist in the material, which are neglected in the 

model, leads to a significant number of low-coordinate atoms with concomitant high-in-

energy electronic structures. Indeed, this instability is the driving force towards large 

structural deformations when the atomic structure of such a cluster model is fully optimized, 

particularly fostered by the large number of low lying structural isomers which exist in a 

narrow energy range, which are normally achievable through low energy barriers, pointing 

out their fluxionality.28,31 To avoid these problems the structure of the cluster models is 

normally kept as in the catalyst structure, often at the bulk experimental or theoretical 

optimized positions.32 A different situation appears when one pretends to model larger 

systems, such as large nanoparticles (NPs), allowing for the versatile description of regular 

surface sites and even defective sites, such as corner, edge, step, or kink sites, see Figure 2a. 
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Here, depending on the cluster size and on the goal of the simulation, one can make use of 

the optimized structure even if neglecting the effect of the underlying substrate. 

In the case of extended metallic systems, the use of small clusters forces a localized 

electronic structure, which is unnatural for an otherwise delocalized electronic structure 

system. Such a quantum confinement of the electron density leads normally to an enhanced 

chemical activity, which can be minimized by simply using larger models either cut from 

the bulk or in the form of NPs, as explained later, although efficient embedding schemes 

have been proposed that minimized the edge effects.33 In the case of ionic systems, one 

lacks the effect of the Madelung electrostatic potential as generated for the more distant 

ions. This missing piece can be solved by including point charges surrounding the studied 

cluster,34-36 while counteracting possible polarizations at the interface between the explicit 

cluster and the point charges.37,38 When it comes to covalent systems, zeolites and silicas 

being paradigmatic examples, the broken bonds when creating the cluster leave high-in-

energy dangling bonds, which may lead to unrealistic electronic structures, or, if optimized, 

to large structural rearrangements. To avoid so, normally such dangling bonds effect is 

cancelled by terminating such atom with covalent bonds with capping hydrogen atoms.38,39 

Thus, the proper description of the catalytic active centre surrounding atoms is 

pivotal in a good description, either to allow an electronic delocalization, to account for the 

Madelung electrostatic potential effect, or to properly describe covalent bonds. This 

particular point is what made simulations under periodic boundary conditions (PBC) so 

popular in the last couple of decades. The underlying idea is to use the theoretical 

framework as used in the description of crystalline bulk unit cells to model surfaces and 

other surface centres. Because of this, as in a bulk environment, see Figure 2a, one requires 

defining the unit cell lattice vectors and shape, and one ends carrying out the numerical 

integrations in the reciprocal unit cell, as a consequence of the Bloch theorem treating 

periodicity in crystal structures.40 This forces the exploration of the k-point space in which 

the electronic states are evaluated, and frequently dealt with a regular mesh of k-points, 

dense enough so as to provide converged energy results. Also, for consistency, the bulk 

material is normally optimized, and from that, either cluster models are cut, or periodic 

models are built. 
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The use of PBC has the tremendous advantage of including the effect of the infinite 

material on the catalytic active centre, and hence, large clusters, point charges, or 

embedding H atoms are not required to get reliable results. Indeed, the computational costs 

can be greatly reduced when using the primitive unit cell; for instance, regular rock-salt 

bulk crystal structures can be described having only four atoms in the unit cell. However, 

the use of PBC has its drawbacks; for instance, the necessity of having periodic 

wavefunctions popularized the use of plane-waves as a basis set, such as in the Vienna ab 

initio simulation package (VASP) code,41  but its use is detrimental when carrying out 

wavefunction based calculations, e.g., Hartree-Fock calculations, and also when making 

use of hybrid functionals involving a fraction of the Fock exchange. Other periodic codes, 

such as CRYSTAL,42 or the FHI-AIMS,14 circumvent this issue using atomic orbitals as 

wave functions either analytic or numerical, respectively.  

One must also point out that, the simulation of low-coverages situations or 

particular surface defects may require large supercells to avoid the lateral interaction of 

replicated surface species or defects, which can well lead to highly demanding simulations 

of hundreds of atoms, which, in turn, can be unfeasible depending on the employed code, 

method, and the available computational resources one would have. The peculiarities of 

such PBC models are treated in more detail in the explicit models described in the next 

section. Before closing this section, we want to highlight that, to a large extent, the cluster 

model approach has been mainly used for interpretative purposes. In fact, it is still used to 

understand activation and reaction of CO2 to other carbonaceous compounds on 

complicated adsorbents where other models cannot be easily used.43,44. In addition, we 

believe that the cluster model approach it is likely to play a significant role in the 

description of photocatalysis, where one needs to describe the reaction in a particular 

excited state potential energy surface, most likely using appropriate explicitly correlated 

wave functions.45,46  

2.2. Exemplary models  

As introduced in the previous section, clusters were the original models used in theoretical 

heterogeneous catalysis. These dominated the study of adsorbate↔surface interactions, and 

seminal catalytic reaction descriptions mainly in the 15 years spanning the 1980-1995 
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period.39,47 As above briefly introduced, the cluster edge effects may have a strong impact 

on the cluster electronic structure, and, eventually, affect its surface and catalytic properties, 

delivering strong oscillations with cluster size on inherent properties such as cohesive 

energies, or activity properties such as adsorption energies. The structural and electronic 

structure of these cluster models can significantly differ from those of the bulk material or 

of larger realistic NPs. Yet, small clusters may be indeed present in the real catalyst and, in 

this respect, the cluster structure optimization and the quests for finding global minima as a 

function of size are recurrent studies, approached using global optimization techniques such 

as basin-hopping or evolutionary algorithms, normally profiting from suited interatomic 

potentials to lower the computational burden. Given the vast literature on the field, we 

address the reader to excellent reviews.26,48-50 

Conversely, it is worth pointing out that, to a large extent, edge effects on cluster 

models directly cut from bulk are the responsible for strong oscillations on inherent and 

surface properties. In part, this can be avoided by larger clusters, as in metallic NPs of 1-10 

nm size, where delocalization of the electronic structure is allowed or in ionic systems 

where the Madelung electrostatic potential builds up. A good strategy to minimize the edge 

effects is by using NPs with shapes that minimize the surface energy. This is achieved by 

relying on the Wulff construction.51 This requires utilizing the surface energies  of (hkl) 

planes that can be routinely acquired using slab models. Since the total energy of a surface 

is given by the product of the surface energy   by the surface area A, one ends up assuming 

an equilibrium structure so that ∫ γ(hkl)·dA(hkl) = minimum for all the exposed surfaces; 

see an example of a metallic Wulff NP in Figure 2a. For a step-by-step description of Wulff 

theorem and its application to the generation of NPs, we refer to excellent reviews and 

books available in the literature,52,53 where even more sophisticated approaches considering 

edge and corner energies contributions are described, also treating bulk elasticity and 

relevant conditions of temperature and surface composition.54 

The Wulff construction allows one generating models with tailored shapes and 

exhibiting well-defined facets; computer codes are freely available for an automatic 

generation of NPs. 55  Here, the scalability concept becomes tremendously useful, as 

numerous studies in the past revealed that the strong oscillations, as observed in the small 
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cluster models, disappear when using larger, well-shaped NPs.53, 56  This allows having 

properties either converged with size, as the case of adsorption energies, or that linearly 

scale with the NP size, normally sized by n-1/3, where n is the number of atoms of the NP, 

see Figure 2b. The fact that scalable or converged results are obtained validates the 

utilization of NP models, also called nanocrystallites, to represent larger NPs of similar 

morphology. Notice, however, that different scalability onsets are found for different 

properties and different materials, and so, a validation check is required depending on the 

system and property prior to the scalability utilization. 

The computational cost of treating NPs in the scalable regime, normally containing 

~100-200 atoms, becomes very high, particularly when carrying out all electron 

calculations, which forced the exploitation of NP symmetry constraints. 57 , 58  The 

development of highly parallelized codes and the access to supercomputers with thousands 

of cores allows geometry optimization of large NPs without needing to restrain their 

symmetry.53,56 For instance, all-electron DFT calculations for the geometry optimization of 

NPs containing from hundreds up to thousands of atoms have been reported for oxide 

nanostructures such as TiO2 and ZnO.13,59-61 In these NPs, the shape, stoichiometry and 

polar surface endings are properly treated. Thus, the simulation of NPs of different types of 

materials within the scalable regime has become a standard, and popularized the study of 

their catalytic reactivity in all sorts of reactions.58, 62 - 64  More importantly, given their 

realistic size, these NPs constitute appropriate explicit models of experimental NPs, 

particularly when they are located in the 1-5 nm size region.  

On the other side, the PBC models evolved towards the description of surfaces 

through the so-known slab model, see Figure 2a, which has dominated the heterogeneous 

catalysis field from 1995 onwards.65-67 Within the slab model, a periodic unit cell is built 

containing a given number of materials layers. Depending on the basis set and 

computational code used, a vacuum region may need to be added perpendicular to the 

modelled surface plane. Concerning the slab model, different approaches are used 

concerning the atomic relaxation. Originally, asymmetric slabs were employed, where the 

layers in contact with the reactants are optimized, while the other ones are kept at bulk 

positions, this is, to correctly describe the bulk environment. Other approaches consider all 

atomic layers fixed, all relaxed, or a symmetric slab where both ending surfaces 
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terminations are relaxed, while some layers in the middle of the slab are kept at the bulk 

positions to provide an appropriate environment. Notice that such slab models require 

convergence tests of the properties of study, e.g., adsorption energies or reaction energy 

barriers, with respect the number of layers contained in the slab, and the added vacuum 

space. In general, there is not a single recipe since the model must represent realistically the 

system of interest and capture appropriately the specific properties to be investigated. 

The use of slab models, given their possibilities, accessibility, and moderate 

computational expenses, has become the de facto workhorse in the last two decades; 

particularly when modelling reactivity at high coverage regimes of the clean surfaces,68-70 

although lately the increased computational resources allowed studying situations at a low 

coverage, 71 - 73  and including also surface defects such as vacancies, 74 - 76  subsurface 

species,77-79 surface atoms,80-82 etc. Notice that slab models also permit to represent regular 

defects, such as surface steps, see Figure 2a, by using vicinal surfaces slab models,83-85 

allowing also chemical resolution studies on chiral surfaces.86-88  

One particular appealing aspect to have in mind is that different slab models can be 

combined so as to provide a more holistic description of more complex systems such as 

supported large NPs, particularly weighting the results by the Wulff proportions of surfaces 

under operando reaction conditions.89-91 Likewise, slab models can be complemented with 

nanocrystallite models, so as to accurately describe NPs extended facets and low-

coordinated sites such as edges and corners. Indeed, such nanocrystallites can be modelled 

directly using a molecular code or under PBC placing them in a large cubic cell with added 

vacuum in all three directions, so that the same computational setup and basis set can be 

employed on both the surface and NP model, allowing for a better, direct comparison.92-95 

Last but not least, slab supercell models allow one to model more complex 

structures permitting, for instance, to approach supported catalysts. Hitherto, studies for 

supported NPs on different oxide substrates have been reported, including Pd and Pt NPs 

on MgO(001),96 and Pt NPs on ZrO2(111),97 and SrTiO3(001).98 However, to model large 

supported NPs of size ca. 2 nm and sufficiently isolated from each other requires very large 

supercells and, consequently, very large computational resources. More recently, the 

advances on heterogeneous catalysis have been focused on metal NPs on oxide supports.99- 
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101 This has motivated the study of small supported clusters containing roughly 10-50 atoms 

as shown in the recent literature. 102 - 104  These systems have practical interest as 

experimental efforts are being pursued towards the synthesis of single atoms catalysts 

(SACs) as well as few-atom catalysts (FACs).105,106 Here, experiment and computational 

models nicely converge with a promising feedback between them. 

3. Exploring the potential energy surface 

Heterogeneous catalysis denotes processes in which the phase of the catalyst and reactants 

differs because the reaction involves gas (or liquid) phase molecules adsorbing on a solid 

surface. As in any chemical process, the overall reaction usually consists of a series of 

elementary steps, the key point here is that most of them occur on the catalyst surface. 

Unveiling the microscopic mechanism of a chemical reaction requires exploring in detail 

the corresponding potential energy surface (PES). In the case of heterogeneously catalyzed 

reactions, this implies understanding adsorption, diffusion of reactants through the surface 

of catalyst, bond breaking and bond forming to generate reaction intermediates and 

products, and their eventual desorption from the catalyst. Not surprisingly, these complex 

processes demand tasks to establish a deep knowledge at atomistic-level of the catalyst to 

identify the main intermediates and surface sites involved in the reaction in a space- and 

time-dependent multiscale approach.107,108  

To this purpose, theoretical calculations based on quantum chemistry have been 

broadly used as a fundamental tool to understand the reaction mechanisms and to 

investigate active sites on the catalytic surface.109,110 In particular, DFT based methods 

allow one investigating reaction mechanisms occurring on the active solid surfaces.111 The 

evaluation of reaction mechanisms involves (1) the conjecture of suitable pathways; (2) the 

geometrical optimization of the initial guesses, identifying stationary points in the PESs, 

locating and characterizing the local minima and transition states along each postulated 

reaction pathway (at 0 K); and, finally, (3) the inclusion of temperature and pressure effects 

through statistical thermodynamics. For the surface species, this requires the calculation of 

partition functions that include only vibrational degrees of freedom when treated in the 

harmonic approximation. For the gas-phase species, thermodynamic properties are obtained 

including all the degrees of freedom and assuming an ideal gas behavior.5 This three-step 
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strategy allows one to obtain the Gibbs free energy surfaces at the reaction conditions of 

interest. It is worth pointing out that, on going from total energy to Gibbs free energy, the 

main effect is on the relative position of all intermediates while the energy barriers for each 

elementary step become almost unaffected simply because the difference in entropy for the 

initial state and the TS is usually very small. In this sense, total energy and Gibbs free 

energy barriers for a given molecular mechanism almost coincide. 

In recent years, joint experimental and theoretical studies have become routine and 

have proven crucial to any fundamental understanding of catalysis at the molecular 

level.112,113 The following subsections introduce briefly the computational models based on 

quantum chemistry methods, DFT approaches in particular, and their usage in 

computational heterogeneous catalysis. 

3.1. Computational models 

Theoretical Chemistry focuses on the mathematical description of Chemistry and in finding 

appropriate methods and algorithms to approach the properties of interest. The 

implementation of these algorithms in a computer generates the field generally known as 

Computational Chemistry. Indeed, Computational Chemistry really took off with the 

advent of mainframe computers during the 1960s. 114  Noting that just few aspects of 

Chemistry can be computed exactly, but almost every aspect of it has been described in a 

qualitative or approximate quantitative computational scheme.115 One must keep in mind 

that numbers obtained from theoretical calculations are not exact, but they can offer a 

useful insight into real chemistry.116 

Different computational methods use different levels of theory to produce results 

with different levels of accuracy. There are two main types of models depending on the 

starting point of the theory and on the properties that are to be described. On the one hand, 

one has classical methods that use Newton mechanics, these are applicable to model the 

structure of large molecular systems but are not adequate to problems involving bond 

breaking and bond making. On the other hand, one has the Quantum Chemistry methods, 

which makes use of Quantum Mechanics 117  and are of general application even if in 

practice there are limitations. Over the last decades, Quantum Chemistry has become an 

essential tool in designing new catalysts to ensure at this stage their highly activation and 
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selectivity including high turnover rates, while maintaining thermochemical stability, 

thereby decreasing the industrial cost.109 These goals can be theoretically achieved or 

predicted at least by the underlying core technology that is the computational solution of 

the electronic Schrödinger equation.118 

3.2. DFT flavors 

Pierre Hohenberg and Walter Kohn showed that, for the electronic ground state of a non-

degenerate system, the Schrödinger equation formulated as an equation of N-electron 

wavefunction of 3N spatial plus N spin variables, could be reformulated as an equation of 

the electron density with only three spatial variables.119 This leads to the take-off of DFT 

methods that attempt to calculate the electronic ground total energy and other properties 

from the ground state electron density only. This formulation results in an enormous 

computational simplification, and systems with more than thousands of electrons can be 

treated by using DFT. An important step forward applying DFT to real systems was taken 

in 1965 when Kohn and Sham recast the Schrödinger equation for the electronic ground 

state into a problem of non-interacting electrons moving in an effective potential.120 There 

are many distinct implementations to Kohn-Sham (KS) theory based on the choice of the 

structural model used to describe the studied system —see above in Section 2—, on the 

choice of basis set, and by the approximation employed in the treatment of the so-called 

exchange-correlation effects.121  

To approach the solution of the KS equations, a basis set needs to be selected and 

the choice depends somehow on the models used to represent the system of interest and the 

properties to be investigated. For instance, localized functions are the usual choice in the 

above-described cluster-type models, whereas plane waves are most often used in slab-type 

calculations to simulate extended solids and surfaces.122 Nevertheless, plane waves can also 

be used for cluster model calculations using a sufficiently large supercell and localized 

basis sets can be used in periodic DFT calculations with the appropriate code. Often, 

especially when using plane wave basis sets, the core electrons are not treated explicitly, 

but instead are included as ‘frozen’ densities represented in the appropriate basis set or 

through a pseudopotential that mimics the effect of the atomic core on the valence electron 

density. Fortunately, the error generated by the choice of a particular structural model can 
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be controlled and minimized easily upon building more realistic models in terms of size, 

shape, and environment where it operates. Similarly, the error derived from basis set can be 

controlled by increasing its quality up to the point of convergence. However, one needs to 

find a balance between catalyst model and computational method so as to avoid an 

excessive computational cost while maintaining a reasonable accuracy. This leaves the 

choice of exchange correlation functional as the main approximation in the DFT 

calculations. 

3.3. Jacob’s elevator to computational heterogeneous catalysis 

The objective of DFT methods in the KS implementation is to develop accurate exchange 

correlation density functionals to approach the exchange-correlation energy (Exc). This is 

the only unknown energetic term in this, otherwise formally exact, formalism and accounts 

for the electron kinetic energy difference between the exact interacting system and the non-

interaction approximation, the corrections to avoid the Coulomb interactions of an electron 

with itself and to account for the fact that electrons are fermions and, hence, the electron 

density must arise from an antisymmetric N-electron wave function. Recently, Head-

Gordon and coauthors123 published a benchmark review including a total of ca. 200 density 

functionals developed in the last 30 years. Such a large number of density functionals 

developed to date shows the difficulty in obtaining the desired universal functional that, as 

postulated by the Hohenberg and Kohn theorems, should be able to describe any system of 

electrons interacting through the Coulomb potential and any ground state property. Note 

that the development of density functionals has systematically followed the best description 

of a particular property reducing the scope of them. Such strategy sacrifices universality by 

accuracy, although there have been efforts to develop new functionals describing a plethora 

of properties for families of systems, such as Vega-Viñes (VV) for transition metals.124 

This is the reason why one finds density functionals that provide accurate descriptions for 

properties like the nuclear resonance chemical shift,125 ionization potential,126 formation 

energy,127 or electronic band gap,128 just to name a few. 

The Exc term is generally divided into an exchange term (Ex) and a correlation term 

(Ec). The exchange term is related with the interactions between electrons with the same 

spin, whereas the correlation term stands for the interactions between electron with 
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opposite spin. Both terms are themselves functionals of the electron density. Despite the 

progress in the field, it is important to retain that the main source of inaccuracy in DFT is 

normally a result of the approximate nature of the exchange-correlation functional. 

Following the Jacob´s ladder proposed by Perdew and Schmidt,129 a general viewpoint 

about the Exc choice in the field of computational heterogeneous catalysis is described as 

strengths and weaknesses as follows. 

The simplest form to treat Exc is the local density approximation (LDA),120 which 

assumes a constant electron density. Despite of the simplicity, LDA functional works rather 

well to describe the atomic structure of isolated molecules, small clusters, and surfaces, 

which constitutes a real strength.130,131 Likewise, LDA works very well for bulk metals, 

where the electron density is indeed quite uniform. However, it fails when applied to study 

the energy related properties of molecular systems where the electron density accumulates 

in the bonding regions. As a consequence, LDA fails to describe the thermochemistry of 

simple molecules, tends to overestimate the binding energies and to underestimate lattice 

constants of solids. Clearly, this family of density functionals is not recommended for 

computational heterogeneous catalysis. Fortunately, a higher accuracy can be achieved by 

considering the density at each point and its gradient. This second rung of the Jacob´s 

ladder groups all methods that make use of the generalized gradient approximation (GGA) 

including PW91, PBE, RPBE, PBEsol and BLYP. 132 - 136  In general, GGA functionals 

perform better than the LDA functional when the PES becomes complex and are able to 

properly describe metals, a clear strength for their usage as shown in the case of H2 

chemisorption and dissociation on Cu(111).137 For this reason, GGA functionals have been 

adopted broadly in computational heterogeneous catalysis due to a good balance between 

accuracy and computational cost.  

Going upstairs in the Jacob´s ladder, one finds out the meta-GGA functionals138 that 

further approximately include the Laplacian of the local electron density. This family of 

functionals appears to be appropriate when one wishes to compute the vacancy formation 

energies in metal systems.139 The selection of meta-GGA functionals is therefore advised 

when vacancies play a relevant role during certain catalytic processes. Yet, GGA and meta-

GGA fail to describe the electronic structure of some semiconducting and insulating 

systems as commented in more detail below. Above the meta-GGA, one has the family of 
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hybrid functionals which mixes Hartree-Fock exchange with that of the DFT functional. 

Hybrid functionals, B3LYP being the paradigmatic example,140 were introduced to reach a 

good description of thermochemistry in molecules containing main group elements. 

Interestingly, B3LYP and other hybrid functionals have been broadly applied for the 

treatment of transition metal containing systems. 141  However, hybrid functionals are 

computationally expensive, especially when plane wave basis sets are employed, and have 

difficulties in describing correctly metallic systems, two drawbacks that make them less 

appropriate for computational heterogenous catalysis. In fact, GGA functionals win the 

balance between accuracy and computational efficiency against hybrid functionals.124,142 

A weak point of most DFT methods, including those of the LDA, GGA, meta-GGA, 

and hybrid families, is the neglect of the long-range electron interactions such as dispersion 

that govern non-covalent bonding interactions. This results in an inadequate and sometimes 

erroneous description of intermolecular or molecule-surface interactions.143 The later ones 

are particularly important in heterogeneous catalysis and should be included in some way. 

Klimes and Michaelides144 reported a perspective article that constitutes a recommended 

survey about the dispersion forces and their treatment within the DFT formalism. Although 

with some empirical flavor, the precalculated C6 coefficient for the dispersion energy 

proposed by Grimme,145,146 leading to methods termed DFT-D2 and DFT-D3, offers a 

simple and yet reliable means to correct the GGA calculations at a negligible additional 

computational cost. On the other hand, Tkatchenko and Scheffler evaluated the dispersion 

correction using reference atomic C6 coefficient, which are scaled depending on the atomic 

chemical environment.147 Further improvements upon vdW-DF functionals involve changes 

to both exchange and non-local correlation terms that show noticeable improvements in 

structural and energetic calculations.148 This set of approaches are widely employed but 

their need depends on the nature of investigated system. A rather recent method proposed 

to include dispersion is based on a Bayesian error estimation using cross-validation 

methods from machine learning, and has been termed BEEF-vdW. 149  The BEEF-vdW 

functional is competing well with GGA functionals in computing intramolecular bond 

energies, chemisorption energies, molecular reaction barriers, molecular reaction energies, 

bulk solid cohesive energies, lattice constants, and interaction energies of non-covalently 
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bonded complexes. Nowadays, both BEEF-vdW and PBE-D3 are becoming the most used 

density functionals in computational heterogeneous catalysis. 

Apart from the lack of dispersion, another limitation of the standard GGA 

functionals derives from the intrinsic self-interaction errors,150 which leads to an incorrect 

description of systems involving d- and f-electrons, e.g., transition metal oxides as TiO2, 

CeO2, Fe2O3 or NiO, with a severe underestimation of the electronic band gap, an incorrect 

description of localized electrons in the reduced oxides and an equally large overestimation 

of magnetic coupling in those systems where such shells are partially filled.35 These 

problems are partially addressed by hybrid functionals, which, however, may require larger 

computational resources, especially when using plane wave basis sets. A practical empirical 

solution consists in adding an empirical term that penalizes double occupancy of d or f 

orbitals,151 with the resulting method being usually referred to as GGA+U. Here, the U 

parameter is often determined empirically by comparison to experiment.152153 This type of 

method is needed in those heterogeneous catalytic processes where transition metal oxides 

are presented as active substrates like those discussed in the previous section and either the 

band gap needs to be described with some accuracy or where oxygen vacancies or reduced 

samples are involved. 

By knowing the limitations and approximations inherent to the different DFT 

approaches, these methods can be wisely employed in computational heterogenous 

catalysis to analyze the PES of a catalytic reaction in a sufficiently accurate and efficient 

way. However, one must realize that DFT calculations do not consider temperature effects 

and, thus, the computed PES corresponds to 0 K. The inclusion of the temperature requires 

accessing standard statistical thermodynamics to estimate the Gibbs free energy at the 

conditions of interest. This analysis is relevant in computational heterogeneous catalysis 

because one may further perform realistic simulations considering the pressure and 

temperature conditions for a given reaction. 

4. Bridging the length scales: From micro to macro 

DFT allows one to access to a reasonable description of the electronic structure and thus, 

deals with length scales of the order of 10-10 meters. Moreover, the information arising from 

DFT calculations correspond to 0 K while the identification of the surface structure and 
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composition, and the corresponding catalytic activity under the reactant partial pressure (p) 

and temperature (T) conditions must be considered. The so-called ab initio thermodynamics 

formalism described below provides a simple way to take p and T into account. 

 Another aspect to consider when aiming at a theoretical simulation of 

heterogeneously catalysed reactions is the time evolution, i.e., the dynamic aspects of the 

reaction. To this end one needs to handle the nuclear motion and this is possible by 

coupling DFT to classical mechanics in such a way that the forces acting on the nuclei are 

properly derived from the PES but where the nuclei motion is treated using the Newton 

equations. Depending on practical details the resulting methodology is termed Car-

Parrinello molecular dynamics (CPMD) or Born-Oppenheimer molecular dynamics 

(BOMD).154 A detailed description of CPMD and BOMD is out of the scope of the present 

work and they are mentioned here because the scales of time that can be explored cover a 

few ps at most, see Figure 1; recent developments regarding these techniques can be found 

in the recent work of Wang and Song. 155  However, the scalability of heterogeneous 

catalytic processes towards process engineering and production level takes place at 

macroscopic scale and require times scales of seconds or even longer ones, see Figure 1. 

Therefore, one of the main challenges is to bridge the gap between the atomistic description 

and the macroscopic scale based on stepwise multiscale modelling procedures that can 

significantly extend the length and time scales.  

4.1. Consideration of p and T in computational heterogeneous catalysis 

The inclusion of the effect of finite temperature and pressure requires combining DFT 

based calculations and concepts from statistical thermodynamics. The so-called atomistic 

(or ab initio) thermodynamics156,157 provides a simple yet powerful framework to predict 

surface structure and composition as a function of T and p from electronic structure 

theory.158 This formalism allows one to go beyond the information provided in the PES and 

to calculate appropriate thermodynamic potential functions as the Gibbs free energy for the 

surface at different conditions. This provides a very useful information which is particularly 

relevant in heterogeneous catalysis. In particular, one can easily identify the most stable 

surface structure and composition as a function of the environmental variables. 
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In the ab initio thermodynamics framework, one assumes that a substrate is in 

thermodynamic equilibrium with the surrounding gas phase, which is treated as a reservoir. 

Figure 3a illustrates that the CO2 environment acts as such reservoir because it can give (or 

take) any amount of CO2 to (or from) the surface without changing the temperature or 

pressure. To illustrate the formalism in the case of a system such as the one depicted in 

Figure 3a, we consider the Gibbs energy of a surface in contact with a gas at given 

temperature T and pressure p (Gsurf+gas) and we approximate it by its DFT total energy 

(Esurf+gas), the Gibbs energy of the clean surface (Gsurf) is also approximated as Esurf whereas 

that of the gas (Ggas) is estimated from statistical thermodynamics using the partition 

functions as calculated assuming an ideal gas behavior. Next, the surface free energy () is 

defined as the difference, normalized per surface area, in Gibbs free energy between the 

surface-adsorbate system and its separated components. Since Ggas depends on T and p, it is 

possible to plot  as a function of pressure (or gas chemical potential) at a given 

temperature and, in this way, predict phase diagrams. Using a similar reasoning it is 

possible to define the adsorption Gibbs energy per unit area as ∆𝐺𝑎𝑑(𝑇, 𝑝) = 𝛾𝑐𝑙𝑒𝑎𝑛 − 𝛾 

where 𝛾𝑐𝑙𝑒𝑎𝑛 is simply Gsurf per area unit. At equilibrium, the thermodynamically stable 

structure minimizes the surface free energy  (T,p) of the substrate or equivalently 

maximized ∆𝐺𝑎𝑑.  

Clearly, ab initio thermodynamics is a powerful framework with potential 

applicability in heterogeneous catalysis to study the thermodynamic aspects involved in a 

particular process. However, the accessibility to the kinetic properties and reaction rates in 

the modelling of heterogeneous catalysis demands more sophisticated methods as 

microkinetic modelling and kinetic Monte Carlo (kMC). 

4.2. Microkinetic modelling 

The identification of the molecular mechanism behind a particular heterogeneously 

catalysed reaction involves exploring the PES to locate all minima defining reactants, 

intermediates and products, as well as all transition states connecting the minima in the PES. 

The knowledge of the transition states provides reliable energy barriers, whenever possible 

including the contribution from the zero-point energy. The search for a saddle point along 

the reaction coordinate for a pre-set initial and final states is not a simple task although it is 
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now routinely done for gas phase reactions. For reactions taking place at a surface, several 

transition state searching techniques have been proposed and summarised by Henkelman et 

al.159 Different methods are adopted depending on the knowledge of the mentioned pre-set 

states, the nudged elastic band (NEB) is perhaps the most widely method whether initial 

and final states are used as input data.160 The NEB method analyses a generated and relaxed 

string of interpolated structures between the reactant and product, called images, that 

attempt to approximate the minimum energy path (MEP) in the PES. In addition, the 

modified climbing image NEB (CI-NEB) method allows the highest energy image to move 

towards the energy uphill resulting on its energetic maximization along the elastic band and 

minimization along all other directions. However, if only the initial state is known, the 

dimer method is more precise.161 Regularly, CI-NEB and dimer methods are employed 

synergistically, where the former provides the initial guess of the transition state, which is 

further refined by the latter one. Moreover, the dimer method is also the best choice when 

studying reactions on stepped surfaces in which the automatic generation of the NEB 

images is not trivial.162,163 On the other hand, the saddle point search with the dimer method 

may be computationally more efficient, especially in the improved version of Hayden et 

al.164 

Once the minima and transition state structures have been located and characterized 

by frequency analysis, one can readily obtain the activation energy (Ea) including the zero-

point energy contribution and can make use of the vibrational frequencies to approximate 

the partition functions entering into the transition state theory (TST) expression of the rate 

of that particular elementary step at a given temperature as 𝑘TST(𝑇) =
kB𝑇

ℎ

𝑞𝑇𝑆

𝑞𝑅
𝑒𝑥𝑝 (−

𝐸𝑎

𝑘𝐵𝑇
), 

where q terms are the partition functions associated with the transition state (TS) or the 

reactants (R), which for reactions at surfaces involve vibrational degrees of freedom only. It 

must be pointed out that 𝑘TST is formally equivalent to the Arrhenius rate constant but they 

differ in the associated units; 𝑘TST  units are s-1 where the units in the Arrhenius rate 

constants depend on the stoichiometry of the considered elementary step. This knowledge 

of the rates for each of elementary step in the reaction network plus the Gibbs free energy 

profile and thermodynamic equilibrium as a function of T and p provides useful 

information that can be compared to experiment, establishes the thermochemistry and 
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allows for further modelling of the time evolutions of the process under study by means of 

microkinetic modelling (MKM). 

Within the MKM strategy, a reaction network is considered for a given catalytic 

reaction, which consists of a series of elementary steps. Next, the information about the 

reaction rates is used to formulate coupled differential equations for each elementary step 

which are then solved numerically for a given set of initial conditions, with further details 

reviewed recently by Dumesic et al. 165  In this way, MKM connects quantitatively 

molecular-level modelling with experimental data by using as inputs the outputs obtained 

from first-principles calculations. MKM is particularly relevant in heterogeneous catalysis 

because it provides a description of complex reactions by identifying key reaction 

intermediates and the rate-limiting step, which ultimately controls the catalytic 

performance.166 The direct comparison to experiment has led to the development of several 

packages such as CHEMKIN, Cantera, CatMAP, MKMCXX, or Micki.167-171 

In general, the workflow of MKM starts with the identification of all elementary 

steps involved in the catalytic reactions as shown for instance by Stoltze and Nørskov for 

the study of ammonia synthesis172 or more recently by Gokhale et al.173 for the water gas 

shift reaction as catalyzed by Cu. Next, DFT calculations are carried out to locate and 

characterize reactants, intermediates, products and transition-state energy for each 

elementary step. From the DFT calculations the energy and Gibbs free energy profiles are 

derived, the later at the condition of interest. Likewise, TST rates are obtained and the 

system of differential equations corresponding to the reaction network numerically solved. 

This solution is within the mean-field approximation since all species taking part in the 

reaction are considered randomly distributed with a homogeneous distribution of adsorbates, 

fast diffusion and static active sites.174 However, the neglect of surface heterogeneity and of 

diffusion-related rate control are two aspects not considered in the microkinetic modelling 

that contribute to the mismatch in reaction rates between model predictions and 

experiments.175 To overcome the observed drawbacks in MKM simulations, kinetic Monte 

Carlo simulations are required. 

4.3. Kinetic Monte Carlo simulations 
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Monte Carlo based approaches cover many applications aiming to the resolution of 

complex problems by using random numbers.176 The versatility of these approaches has 

made them highly popular among the Computational Chemistry and Computational 

Materials Science communities.177 In this context, the kinetic Monte Carlo (kMC) method, 

formally attributed to Bortz et al.,178  constitutes a convenient way to solve the set of 

coupled differential equations for a given network without having to assume a mean-field 

approximation. 179  This is because all possible configurations involving reactants, 

intermediates or products at the catalyst surface are sampled. In the kMC algorithm 

trajectories that propagate the system correctly from configuration to configuration are 

generated in such a way that the average over the entire ensemble of trajectories yields 

probability density functions for all states fulfilling the master equation. As in the case of 

MKM, a kMC simulation provides information about the time evolution of a catalytic 

process for which the reaction network and the rates for each elementary step are known.180 

However, as a plus over MKM, the kMC method provides additional information regarding 

the occupancy of the surface sites. 

To understand how it works one may think about the diffusion of an isolated atom 

chemisorbed at a specific site on a substrate. At a certain temperature, the atom vibrates 

around this specific site with a certain frequency and eventually diffuses to neighboring 

sites with variable bond strength. To get a proper understanding of the system evolution, 

the time evolution must cover at least a time extent that includes several of the rare hops to 

neighboring sites.181 This is not always possible with classical MD because a very long 

simulation may be required before one can observe one of such rare events. The kMC has 

the advantage of solving the state-to-state dynamics as coarse-grained hops consisting in a 

sequence of discrete hops from site to site, where the random selection of the sequence of 

states that are next visited and how long does it take for such a hop to occur follows a 

Markov process.179, 182  Focusing on heterogeneous catalysis, the elementary events of 

adsorption, desorption, diffusion and surface reaction are simulated as instantaneous 

processes that happen at random times.183 A few packages are available for carrying out 

such simulations as ZACROS or KMC_Lattice.181,184 

The ideal bottom-up sequence in computational heterogeneous catalysis studies is 

shown in Figure 3b. It starts with the first principles calculations moving towards the 
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thermodynamic description at the conditions of interest and end up with suitable MKM 

and/or kMC simulations, this working road is directly connected with the schematic view 

of time and size scale depicted in Figure 1. Key selected examples of computational 

heterogeneous studies are reviewed below. 

5. Key issues regarding CO2 conversion and heterogeneous catalysis 

There is little doubt, if any, that global warming is a real problem affecting the whole planet 

and that the concentration of CO2 in the atmosphere is one of the major causes. Here, 

heterogeneous catalysis is called to play a key role using this greenhouse gas a raw material 

for production of bulk chemicals contributing at least to not increase the already too high 

concentration. In fact, while the U.S. emission of CO2 per capita in 2017 (16.2 tons) is 

practically the same that found in 1947 (16.8 tons), 185  the cumulative CO2 emissions, 

estimated from the sum of emissions produced due to burning fossil fuels and cement 

production, have been increasing almost exponentially (e.g., 135 million tons in 1847, 

9,000 million tons in 1897, 84,000 million tons in 1947, 28,4000 million tons in 1997, and 

400,000 million tons in 2017).185 Although U.S. energy-related CO2 emissions are 

predicted to decrease slightly until about 2035, as a consequence of shutting-down coal-

fired power plants, recent predictions point to an increase after 2035 as a result of the U.S. 

energy consumption growth of 0.3% per year expected from 2019 through 2050. 186 

Moreover, the U.S. Energy Information Administration (EIA) projects nearly 50% increase 

in world energy usage by 2050, led by growth in Asia,187 which will contribute certainly to 

increase the CO2 emissions. Therefore, to reach the goal of limiting global warming, 

considerable efforts are still needed, and researchers have been focusing on novel 

stratagems for sequestration and/or chemical transformation of CO2 into fuels or 

commodity chemicals. 

To decrease the amount of CO2 in the atmosphere, sequestration by means of carbon 

capture and storage (CCS) technologies have been proposed. These require materials that 

are able to capture CO2, eventually before its separation from a flue gas mixture. Available 

commercial solutions for CCS involve using ionic liquids or amines, or suitable porous 

sorbent materials.188 Next, transportation and subsequent release to suitable underground 

geologic formations is required for regenerating the sorbent. However, the global process is 
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quite energy intensive and economically unviable. Carbon capture and utilization (CCU) 

strategies, aiming at CO2 conversion into high-value chemicals, including easily 

manageable and transportable liquid fuels, look more interesting since they will lead, 

eventually, to the so-called carbon circular economy. 

In principle, high-volume chemicals can be produced from CO2 through CCU 

platforms using a reaction specific heterogeneous catalyst (cat.). For example, CO2 can be 

used in the dry reforming of methane (DRM) to produce syngas, with H2/CO ratio of 1:1, 

through: 

  CO2 + CH4
𝑐𝑎𝑡.
→  2CO + 2H2, ∆𝐻 = +247 kJ/mol   (1), 

that is favored at high temperature and low pressure. The resulting CO and H2 mixture can 

then be utilized for the synthesis of higher hydrocarbons through the Fischer-Tropsch 

process, which for production of straight-chain alkanes can be well described by the 

following chemical equation, 

  𝑛CO + (2𝑛 + 1)H2
𝑐𝑎𝑡.
→  C𝑛H(2𝑛+2) + 𝑛H2O (𝑛 = 1, 2, 3, … )  (2). 

The main problems affecting this reaction are the possible formation of carbon 

deposits at the catalyst surface, either from the disproportionation of CO, 

  2CO
𝑐𝑎𝑡.
→  C + CO2, ∆𝐻 = −172 kJ/mol    (3), 

or from the decomposition of methane, 

  CH4
𝑐𝑎𝑡.
→  C + 2H2, ∆𝐻 = +75 kJ/mol     (4). 

Methane may originate from natural gas or from potential renewable alternatives as 

biomass or biogas, the latter leading to effective CO2 abatement. Besides methane, dry 

reforming of ethanol (DRE), from agricultural raw materials,  

  CO2 + C2H5OH
𝑐𝑎𝑡.
→  3CO + 3H2, ∆𝐻 = +297 kJ/mol  (5), 

and of glycerol, a byproduct of biodiesel production,  

  CO2 + C3H8O3
𝑐𝑎𝑡.
→  4CO + 3H2 + H2O, ∆𝐻 = +292 kJ/mol (6), 
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have been suggested processes for utilization of CO2 with concomitant positive effects in 

its abatement. 

Renewable electricity from wind or solar farms can be used to split water into 

hydrogen and oxygen in an appropriate electrolyser; note, however, that strong efforts must 

be made in this specific area since most hydrogen is still produced from the steam methane 

reforming of natural gas or oil/naphta (78%) and from coal gasification (18%). The 

renewable hydrogen can then be combined with CO2 to obtain high-volume chemicals. 

Methanol can be produced through the reverse methanol steam reforming (RMSR), 

  CO2 + 3H2
𝑐𝑎𝑡.
→  CH3OH + H2O, ∆𝐻 = −49 kJ/mol   (7), 

and formic acid can be obtained through, 

  CO2 + H2
𝑐𝑎𝑡.
→  HCOOH, ∆𝐻 = −31 kJ/mol    (8). 

Upon reaction with hydrogen, hydrocarbons can be obtained from the carbon 

dioxide methanation reaction, also known as the reverse steam methane reforming, 

methanation or Sabatier reaction, 

  CO2 + 4H2
𝑐𝑎𝑡.
→  CH4 + 2H2O, ∆𝐻 = −165 kJ/mol   (9), 

or from the reverse water gas shift (RWGS) reaction, 

  CO2 + H2
𝑐𝑎𝑡.
→  CO + H2O, ∆𝐻 = +41 kJ/mol    (10), 

followed by subsequent hydrogenation of CO via the Fischer-Tropsch process, equation (3). 

In addition, several reactions may benefit from the incorporation of CO2 as an 

oxidant weaker than the widely employed O2 gas. A few examples are the oxidative 

dehydrogenation of paraffins into olefins, exemplified below through the reaction of ethane 

to ethylene, 

  CO2 + C2H6
𝑐𝑎𝑡.
→  C2H4 + CO + H2O, ∆𝐻 = +178 kJ/mol  (11), 

the oxidative coupling of methane to ethane, 

  CO2 + 2CH4
𝑐𝑎𝑡.
→  C2H6 + CO + H2O, ∆𝐻 = +106 kJ/mol  (12), 

or ethylene, 



27 
 

  2CO2 + 2CH4
𝑐𝑎𝑡.
→  C2H4 + 2CO + 2H2O, ∆𝐻 = +284 kJ/mol (13). 

Some other reactions where O2 is replaced by CO2 are covered in the review of Tao 

et al.189 but have been less studied (e.g., olefin to epoxides) or have many associated 

problems (e.g., alkanes to carbonyls). Note that the routes above differ from already well-

established industrial reactions that combine CO2 with petrochemically derived reagents, 

such as ammonia or phenol to yield urea and salicylic acid, respectively, but that do not 

lead to the abatement of CO2. 

6. Representative examples of computational studies for CO2 conversion 

The main problem encountered in CCU technologies (equations 1-13) arises from the very 

high stability of the CO2 molecule. In fact, all processes referred above involve severe 

energy requirements. Therefore, suitable catalysts with long-lasting stability are needed, not 

only to activate the CO2 molecule but also to selectively direct the reaction of interest 

towards the desired product(s) and, ideally, under mild reaction conditions. For example, 

the oxidative coupling of methane to ethane (eq. 12) requires catalysts that selectively 

activate only a single C-H of each methane molecule. Because of the enormous societal 

impact of CO2, significant efforts have been undertaken to develop novel catalysts that can 

cope with the desiderate, considering several different kinds of materials.190,191 

Over catalytic surfaces, one of the main routes for CO2 activation is through 

coordination to a metal centre in a substrate, which is followed by substrate→CO2 electron 

transfer, leading to the formation of a chemically active bent CO2
δ-

 moiety with elongated, 

i.e., weakened, carbon-oxygen bonds. Several different strategies for CO2 activation by 

catalytic surfaces were deeply discussed by Álvarez et al.192 and are outlined in Figure 4. 

The different strategies and different targeted reactions require specific catalysts. Therefore, 

significant experimental and computational efforts have been devoted to optimize existing 

catalysts or to develop new ones.189-195 Hereafter, we will focus on the gas-phase thermic 

CO2 conversion, and the reader is addressed to other recent reviews in cases of 

photocatalysis 196  and electrocatalysis. 197  Still, the literature is vast enough even when 

focusing on thermochemical conversion only. Thus, instead of an extensive and exhaustive 

description of the available literature we will comment on key paradigmatic examples 



28 
 

selected because of their efficiency and possible practical use and encompassing as well 

different employed models and computational approaches. 

6.1. Single-crystal metal surfaces 

Single-crystal transition metal surfaces have long been considered in catalytic studies since, 

as the number of active sites is limited, the understanding of catalytic reaction mechanisms 

is straightforward. In the specific case of the gaseous CO2, single-crystal surfaces have 

been found to be less interesting since, on most metal surfaces, CO2 simply physisorbs with 

a concomitant lack of activation, especially in the case of the highly stable Miller low-index 

surfaces. The picture is slightly different in the case of stepped surfaces or surfaces 

incorporating promoter species as Li, Na, or K,198 or in the electrochemical CO2 reduction 

reaction (CO2RR) where single-crystal metal electrodes, in special based on copper, have 

been heavily studied in the literature, both experimentally and computationally.199,200 

Recently, Ko et al. 201  performed a comparative computational study of the 

activation of CO2 upon adsorption on several low-index metal surfaces including Fe(110), 

Co(0001), Ni(111), Ru(0001), Rh(111), Pd(111), Ir(111), Pt(111), Cu(111), Ag(111), and 

Au(111), using the PBE density functional and adding dispersion by means of the D2 

method. Noting that, this analysis corresponds to a situation where just one single CO2 is 

anchored over such substrates, resulting in a low coverage situation. These authors 

confirmed that CO2 physisorbs on most of these surfaces with a bent structure, except for 

the coinage metal surfaces, and with calculated adsorption energies between -0.22 and -

0.34 eV where the minus sign indicates favourable adsorption with respect to the 

corresponding bare surface and gas-phase CO2. Clear chemisorbed structures were 

predicted for Fe(110) and Ru(0001), with adsorption energies of -0.93 and -0.65 eV, 

respectively, and O-C-O angles of ~121º and ~123º, respectively. In accordance with the 

computed chemisorption energies, ~1.1 and ~0.8 electrons were transferred from, 

respectively, the Fe(110) and Ru(0001) surfaces to the CO2 species, while in the remaining 

surfaces the charge transferred to the bent CO2
δ-

 moiety was always below ~0.6 electrons. 

These authors also calculated the activation energies for the dissociation of CO2 into 

chemisorbed CO and O species. Interestingly, the lowest activation energies were found for 

the Fe(110) and Co(0001) surfaces and no clear correlation between the activation energy 
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and the adsorption energy of CO2 was found. Correlations were found only when plotting 

the activation energies against the calculated reaction energies or the sum of the adsorption 

energies of the products of the dissociation reaction, see Figure 3c, with R2 values of 0.79 

and 0.72, respectively, nicely following the Brønsted-Evans-Polanyi (BEP) earlier 

introduced by Neurock and Pallassana,202 and broadly exploited by other groups.163,203,204 

The promotor effect of potassium on the CO2 activation was studied by Nie et al.198 

by comparing PBE+U (UFe = 3.8 eV) calculated results for the adsorption and dissociation 

of CO2 on the clean and K-covered Fe(100) surfaces. These authors found that potassium 

prefers to adsorb at 4-fold sites rather that at top or bridge locations. The analysis of the 

calculated Bader205 charges showed charge transfer from the K adatom to the Fe(100) 

surface. This excess charge in the K-covered surface stabilized not only the bent CO2
δ-

 

species (i.e., the initial state) but also the transition (OC···O) and dissociated (CO + O) 

states, from -0.92, -0.12 and -2.11 eV, respectively, in the case of the Fe(100), to -1.51, -

0.96, and -2.18 eV, respectively, in the case of the K/Fe(100), with the zero of energy being 

the separate catalyst surface and gaseous CO2 molecule. Hence, while the reaction energy is 

almost unchanged, the CO2 molecule is significantly activated by K/Fe(100) and the barrier 

for the C-O bond cleavage is reduced by 0.25 eV (from 0.8 to 0.55 eV) upon addition of 

K.198 

Lozano-Reis et al.206  carried out a complete study to investigate the molecular 

mechanism of CO2 hydrogenation on Ni(111); the motivation being the high activity 

demonstrated by Ni-based catalysts for this reaction. They carried out calculations with the 

BEEF-vdW density functional followed by kMC simulation considering a reaction network 

encompassing the global reactions described by eqs. 7, 9, and 10 above, totalizing 25 

different species (6 gaseous reactants/products and 19 adsorbed intermediates) and 86 

elementary processes, including adsorptions, desorptions, surface chemical steps and 

diffusions. The kMC involved a lattice model where each point corresponds to sites at the 

Ni(111) surface (i.e., fcc, hcp, bridge, or top). The steady-state coverages of the main 

surface species at pressures of 1 and 10 bar and temperatures of 573.15 and 673.15 K, 

which are typical Sabatier reaction conditions are provided in Table 1. As it can be seen, 

the surface coverage by the considered intermediate species is below 1%, with the 

exception of hydrogen adatoms that, depending on the reaction conditions, varies between 7 



30 
 

and 17%. These low values are the result of the too weak adsorption energies calculated for 

the reactants, intermediates and products on the Ni(111) surface. Since according to the Le 

Sabatier principle catalyst surfaces presenting too weak or too strong interactions with the 

adsorbates exhibit low activity, the extended Ni(111) surface is expected to be weakly 

active towards the CO2 hydrogenation. In fact, the turnover frequencies (TOF) calculated 

by Lozano-Reis et al.206 were all very low, which clearly suggest that the activity towards 

the RWGS and Sabatier reactions of Ni-based catalysts observed experimentally is due to 

Ni species with a rather different nature of the high-coordinated atoms on the extended 

(111) facets. Thus, the activity may be attributed to low coordinated atoms, either in 

corrugated surfaces or in particles deposited onto a support, without excluding possible 

synergic effects at the particle/support interface (see below). 

6.2. Free standing and supported metallic nanoparticles 

Metallic (nano)particles, usually deposited onto a substrate, have been shown to have 

enormous potential for catalytic reactions because of the presence of significant amounts of 

undercoordinated metal atoms while minimizing the amount of bulk metal atoms not 

participating in catalytic processes. The sizes of the metal particles can be changed to 

obtain different proportions of atoms with varied atomic environments, hence, having 

different reactivities. The preparation of catalysts with metal particles dispersed onto a 

substrate is nowadays carried out in a routine way 207  but recent developments have 

succeeded in controlling the size of the supported particles208,209 to reach the single atom 

catalyst limit.210 For example, recent CO2 activation studies reported the preparation of Ni 

SAC deposited or embedded on different substrates,211-214 and of Ni particles with sizes 

from 1 to 10 nm deposited onto a SiO2 substrate.215 Ni@MgO SAC were considered for the 

RWGS reaction (eq. 10) and found to be 100% selective towards CO at temperatures below 

300 K; DFT calculations supported the correlation between activity and amount of exposed 

Ni atoms attached to low-coordinated sites in the oxide support.214 Curiously, as the 

temperature increases, Ni clusters were found to form and methane appeared as a product 

of the reaction. The rather different catalytic properties of Ni@MgO SAC and tiny Ni 

clusters at MgO are very well rationalized in a separate DFT/kMC study by Zuo et al.216 

These authors compared the activities of MgO(100), Ni1@MgO(100) and Ni4@MgO(100) 

catalysts towards the DRM (eq. 1) and found that while Ni improves the binding properties 
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of MgO, one Ni atom is not enough to dissociate CO2 and CH4. In fact, while CO2 is highly 

bent (133.5o) when adsorbed on the bare MgO(100) surface, the reaction is highly 

endothermic (3.95 eV) because the products of its dissociation interact weakly with the 

catalyst surface. The same applied to methane which interacts very weakly with the 

MgO(100) surface (Eads = -0.04 eV). On the SAC, the adsorption energies of the products 

of reaction increase but that of CO2 decreased (the reaction became slightly less 

endothermic, 3.62 eV) and the barrier for the CH4 → CH3 + H was still very high (1.57 eV). 

In the case of the Ni4@MgO(100) catalyst model, CO2 adsorbed strongly (-0.99 eV) and 

the barrier for the dissociation becomes 0.35 eV only, and lower than that calculated on the 

extended Ni(111) surface (0.42 eV). Importantly, the quite small size of the Ni particle was 

found to be important to hinder the formation of C adatoms through CO → C + O because 

of the site confinement. The adsorption of methane was found to be more favorable on 

Ni4@MgO(100), Eads=-0.17 eV, than on MgO(100) and Ni1@MgO(100) and the barriers 

for methane dehydrogenation were calculated as 0.53, 0.55, 0.38 and 1.06 eV for CH4 → 

CH3 + H, CH3 → CH2 + H, CH2 → CH + H and CH → C + H steps, respectively. Thus, 

coke formation is unlikely and, even when C adatoms are formed, these species will be 

oxidized to CO through a calculated barrier of 0.56 eV only, significantly lower than the 

barrier associated with the last dehydrogenation step above. The DFT energies were used to 

feed a kMC study although diffusion barriers were neglected. This study assumed that the 

MgO substrate is too inert to participate in the reaction, which is supported by the DFT data, 

and that the DRM reaction is confined to occur at Ni triangle sites of the Ni4 cluster, 

without diffusion of adsorbates from one cluster to another. The kMC simulations 

confirmed the absence of coke formation and that the conversion and selectivity to H2 

increase with the temperature. 

The role of the support in the CO2 activation by nickel-based catalysts was deeply 

investigated by Silaghi et al.217 upon comparison of CO2 adsorption and dissociation on 

Ni(111) and stepped Ni(211) surfaces and on Ni13 or Ni55 particles, either bare or deposited 

onto (100) or (110) terminations of the -Al2O3 support. The results of their DFT based 

calculations with the PW91 density functional clearly suggest that for the unsupported Ni 

system, the CO2 adsorption strength and reactivity increases from Ni(111), to Ni(211), to 

Ni55, and to Ni13, which is clearly related with the decrease of the coordination number of 
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the exposed Ni atoms. They also found that the CO2 binding energies on the Ni13@ -Al2O3 

and Ni55@ -Al2O3 systems was significantly higher than on the bare nanoparticles, which 

shows the synergic effects of the support in enhancing the charge transfer to the adsorbed 

CO2 species. Importantly, they found also that most reactive system was Ni55@ -

Al2O3(110) in which the CO2 activation occurs at the interface between the metal particle 

and the support. The support not only stabilizes the cleaved O adatom but also allows to an 

increased separation of the CO and O fragments in the CO···O transition state. The 

importance of the support in the CO2 activation is also evident on Pt-based catalyst models. 

Kattel et al.218  used the same density functional to study CO2 hydrogenation on Pt46, 

Pt25@SiO2 and Pt25@Ovac-TiO2 systems and found that, while the bare nanoparticle is not 

able to catalyze the reaction due to weak CO2 binding, the hydrogenation towards methane 

progresses well on the supported Pt nanoparticles through RWGS and CO hydrogenation 

steps. As in the study of Silaghi et al.217 the sites at the Pt–oxide interface plays an 

important role in enhancing the catalytic activity. Thus, summing up, the inferior activity of 

pure metal catalysts towards the activation of CO2 are aligned with the conclusions from 

Lozano-Reis et al.206 described earlier. 

6.3. Transition Metal Carbides 

Transition Metal Carbides (TMCs), typically involving early transition metals, have 

emerged as promising materials for CO2 conversion. These materials are normally regarded 

as available and economic potential substitutes to catalysts based on scarce and expensive 

Pt-group late transition metals, displaying similar or even superior catalytic activities and 

selectivities.219 One appealing aspect of TMCs concerning CO2 conversion is that such 

materials display significantly strong CO2 adsorption energies,220 e.g., ranging from -0.61 

eV for the C-terminated orthorhombic -Mo2C (001) surface, to -3.27 eV for Mo-

terminated -Mo2C (001) surface, 221  as estimated by DFT means using slab supercell 

models and the PBE density functional.133 Regardless of the TMC crystal structure, a 

common feature is that CO2 gets not only strongly adsorbed, but also significantly 

activated; this is, with a bent geometry, see Figure 5a, and displaying a negative Bader 

charge.205 
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Indeed, TMCs have been investigated as CO2 capture and storage materials for a 

large diversity of conditions,222 including CO2 at air partial pressure, from exhaust gases, 

and even at standard conditions of 1 bar, upon comparison of computationally estimated 

rates of adsorption and desorption. The proper CO2 capture and activation are indeed 

critical for the possible CO2 conversion catalysed by these materials,223 either directly to 

CO, e.g., through the RWGS reaction (eq. 10) or to methanol through the RMSR reaction 

(eq. 7). Notice that the similar structure of Transition Metal Nitrides (TMNs) also points for 

their possible usage, yet so far less studied, with the accent put on the CO2 

electroreduction.224  

 As far as CO2 conversion on TMCs is concerned, one particular aspect to be 

regarded is the possible formation of O adatoms, eventually leading to the formation of 

oxycarbides.225 These have long been considered as inactive, and oxycarbide formation 

seen as a catalyst deactivation mechanism, killing the surface chemical activity. This has 

been observed, for instance, in the weakening of CO2 adsorption on the -Mo2C(001) 

surface upon increasing O adatom coverage226 with a concomitant overall effect on all the 

reaction energy path.227 This is the reason why the redox mechanism of the water gas shift 

(WGS) reaction should be avoided when using a TMC-based catalyst.227, 229  However, 

recent studies point out a change of paradigm, as oxycarbides surface models, particularly 

of group IV transition metals, were found to strengthen the CO2 adsorption and 

activation.230   

 Aside from the previous considerations, it is worth to mention that theoretical 

calculations have shown that the surface chemical activity of TMCs towards CO2 can be 

tuned on/off through different fashions; for instance, by doping the TMC surface so as to 

have surface doped single atom catalysts. These special sites have been predicted to tune 

the CO2 capturing capabilities while maintaining the CO2 activated mode.231,232 Although 

practical realization of this idea remains to be done, although such a strategy has been used 

to improve the electrochemical reduction of CO2 towards CH4 on TiC and TiN surfaces.233 

Another way of fine-tuning catalytic active centres towards CO2 is the generation of surface 

vacancies. These are intrinsically present in V8C7 and calculations for a (001) surface 

model reveal the key role played by these vacancy active sites, not only changing the 
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preferred RWGS mechanism from redox to associative when compared to the defect-free 

VC(001) surface, but also reducing the rate limiting step energy barrier for almost 1 eV.74  

Still with the RWGS reaction, it is worth highlighting the prominent performance of 

molybdenum carbide-based catalysts. For instance, hexagonal -Mo2C nanoparticle 

catalysts are able to reach the thermodynamic maximum CO2 conversion of 16% and a 

selectivity towards CO above 99% at the 673 K working temperature.89 Density functional 

calculations carried out to investigate the structure a -Mo2C NP by means of the Wulff 

analysis revealed that polar Mo- or C-terminated (001) surface, plus non-polar (101) and 

(201) surfaces accounted for ca. 84% of the exposed surface under working conditions.234 

Indeed, the theoretical modelling and calculated reaction free energy profile at 600 K with 

equal pressures of 0.2 bar of both CO2 and H2 reactants, see Figure 5b, revealed that all 

surfaces are well capable of adsorbing, activating, and easily breaking CO2, with energy 

barriers below 0.59 eV, and specially low for Mo-terminated surfaces, in line with previous 

results on tungsten carbides with barriers as low as 0.71 eV for W-terminated surfaces.220 

Similarly, H2 easily dissociates on all the explored TMCs220,235 indicating that they may be 

useful for CO2 conversion to methanol, formic acid, or CO in an H-assisted mechanism. 

An important aspect of the study commented above is that it reveals that, counter-

intuitively, the sites at (001)-Mo and (201) sites, exhibiting the lowest energy barriers for 

the CO2 dissociation, are not the responsible for the experimentally observed reactivity. The 

reason is that their low energy barriers are due to the stronger stabilization of the reaction 

step products, following the BEP relationship202-204 correlating energy barriers and reaction 

step energies, in such a way that the more exothermic the reaction step energy, the smaller 

the barrier. In the case of catalytic CO2 conversion by -Mo2C, the drawback is that the 

products reach a thermodynamic sink so that their desorption becomes too difficult and the 

catalyst becomes poisoned. In this sense, the (001)-C surface, and specially, the (101) 

surface reveal larger energy barriers of 0.59 and 0.57 eV, respectively, but the reaction 

products are just 0.59 and 0.21 eV away from products. Indeed, the (101) surface is the 

catalytically most suited surface, a point that coincides in the increasing catalytic activity 

while increasing the temperature, and the increasing exposure of (101) surfaces with 

temperature.234 This example shows the need to investigate in detail all aspects before 
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reaching conclusions that may prove to be incorrect simply because only a part of the 

history has been disclosed.  

Apart from the direct use of TMCs as catalysts, these materials exhibit very 

interesting properties as supports of metallic particles either for heterogeneous catalysis or 

electrocatalysis. Precisely, WC nanoparticles coated with transition metals have been 

appointed as efficient electrocatalysts for CO2 methanation and the RWGS.236,237 Likewise, 

TMC have been used as supports for small metallic clusters with experimental evidence of 

an increased activity when compared with the same metal on other supports. 238  This 

important effect has been attributed to the TMC support polarization of the electron density 

of the supported metal atoms or clusters. 239 - 241  The effect of this polarization is 

unexpectedly large, resulting in significantly enhanced catalytic activities and tuned 

selectivities in desulfurization reactions,242,243 the WGS reaction,244 and the RWGS and 

methanol formation reactions.245  

More recently, experiments have shown that the noticeable reactivity of the rock-

salt -MoC(001) surface is tremendously enhanced when small Cu clusters are deposited 

onto it. The experiments show a great improvement in the generation of both CO and 

methanol in Cu/-MoC compared to -MoC. Here, theoretical calculations explained the 

molecular mechanism that is found to proceed through the RWGS without CO2 

methanation. 246  More in detail, the computed PBE Gibbs free energy profiles at the 

working conditions, generated by using slab models with the supported Cu4 clusters, reveal 

a distinct reactivity for the supported Cu4 clusters compared to the bare -MoC(001) 

surfaces, see Figure 6. From the Gibbs free energy plots it becomes clear that on the -

MoC(001) surface the associative mechanism of the RWGS is preferred over the direct CO2 

dissociation, with Gibbs free energy barriers of 0.78 and 1.41 eV, respectively.  

Indeed, methanol formation is hindered in the posterior step of CH3O* formation, 

featuring a Gibbs free energy barrier of 0.86 eV. However, for the system with supported 

Cu4 clusters, the associative mechanism becomes blocked because of a prohibitive COOH 

formation Gibbs free energy barrier of 1.29 eV. On the other hand, the direct CO formation 

is greatly enhanced, with a Gibbs free energy barrier of 0.65 eV only. Indeed, methanol 

synthesis is also favoured when considering a bifunctional catalyst, where different parts of 

the reaction are carried out on different regions of the catalysts. Thus, assuming a suitable 
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flux of species between the Cu4 cluster and the support region, well possible because the 

diffusion energy barriers are almost always smaller than the reaction ones,247 the model 

catalyst study fully explains the observed experimental values of CO and methanol 

production increments, plus unfolding changes in the preferred reaction mechanisms. 

6.4. MXenes 

The so-called MXene materials, discovered in 2011,248 are few-layered transition metal 

carbide or nitride materials and, in this way, constitute bi-dimensional (2D) versions of 

rock-salt TMCs and TMNs. The 2D nature of the materials is precisely the reason to name 

them is such a way that it is reminiscent of graphene.249 MXenes have normally a Mn+1Xn 

stoichiometry, where M is typically an early TM, X = C or N, and n = 1-3, although 

MXenes with n = 4 have been isolated recently.250 These materials are obtained from MAX 

phases, where the A component, gluing the MXene patches, is usually a p-block element. In 

the MXenes synthesis, the A element is selectively extracted benefitting from a weaker M-

A bond compared to M-X. The most regular procedure is the A extraction using 

hydrofluoric acid (HF) or in situ generated HF,248,251  followed by a sonication step to 

separate the MXene layers. This typically leaves the MXenes as Mn+1XnTx, where Tx is the 

termination of their M surfaces, being composed of a mixture of –O, -OH, -F, and –H 

groups. However, annealing and hydrogenation procedures have been reported to generate 

pristine MXenes.252 Very recently other procedures have emerged to obtain other halide 

based MAX phases from which one can directly isolate pristine MXenes.253 It is also worth 

pointing out that the MXene family is vaster than expected, with the possibility of having 

carbonitrides, 254  as well as of having alloys within a metal layer, the so-called inner-

MXenes or i-MXenes, or different stacked metal layers, in the so-called o-MXenes.255 

MXene materials have been mostly proposed for energy conversion and storage 

applications as in supercapacitators and substrates for Li-based batteries.256 However, their 

use in catalysis has been gaining momentum,257 where photo- and electrocatalysis have 

risen as most prominent and studied fields.258,259  

Regarding the possible use of MXenes as catalysts for CO2 heterogeneous 

conversion is concerned two features are to be highlighted when comparing to bulk rock-

salt TMCs and TMNs. On one hand, their 2D structure provides high-surface effective 

areas, up to above 300 m2·g-1, which are ca. one order of magnitude superior to those of 



37 
 

typical TMC NPs. On the other hand, the MXenes basal (0001) planes are equivalent to 

TMCs and TMNs polar (111) surfaces, which normally display surface energies much 

higher than those of the (001) non-polar surfaces and, consequently, are rarely 

exposed.260,261  Indeed, the high surface energy, seized, for instance, by the exfoliation 

energy, is linked to a high chemical activity,262 indicating that MXenes may be active 

enough to catalyse bond breaking on highly stable molecules. This has indeed been 

predicted for N2 dissociation and ammonia synthesis.263,264  

The high chemical activity of MXenes is evidenced in theoretical prediction for CO2 

capture. Recent density functional calculations with the PBE-D3 method carried out to 

investigate the interaction of CO2 with pristine slab models of M2C MXenes revealed quite 

strong adsorption energies ranging from -1.13 (W2C) to -3.69 eV (Ti2C), which suggest that 

they may be used in CCS technologies for CO2 abatement. This is supported by comparing 

estimates of the adsorption and desorption rates as a function of CO2 partial pressure and 

working temperature extracted from collision theory and TST, respectively.265 Interestingly, 

the theoretical predictions have been later experimentally confirmed, with CO2 uptakes 

larger than the theoretical conservative estimates.252 Actually, the distinctive CO2 and CH4 

adsorption energies on M2C MXenes has been pointed out as a way of using such materials 

for an ultra-highly effective biogas upgrading.266 Moreover, the CO2 capturing capabilities 

were found to change very little with the MXenes width.267 Importantly, similar adsorption 

properties have been appointed for M2N MXenes.268 

The CO2 adsorption and desorption calculated rates as a function of the CO2 partial 

pressure, 𝑝𝐶𝑂2, and the system temperature can be used to build kinetic phase diagrams, 

which outline a map of CO2 capture conditions. The adsorptive modes of CO2 feature a 

bent geometry, with elongated C-O bonds, and a partial negative charge, as seen in Figure 7. 

This figure also shows that both bulk HfC(111) and Hfn+1Cn MXenes (0001) surfaces 

exhibit a larger area for CO2 capture ⎯ broader set of conditions⎯ than HfC(001) surfaces. 

Both HfC(111) and Hfn+1Cn MXenes (0001) are predicted to be good candidates for CO2 

abatement at normal conditions of temperatures for even very low 𝑝𝐶𝑂2.  

The intrinsic properties discussed above make MXenes very appealing materials for 

CO2 conversion, although the literature so far just succinctly grazed this possibility, and 

mostly from the electrocatalytic point of view through the CO2 reduction reaction, for 
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instance, found to be selective towards CH4 in the so called CO2 methanation, as shown for 

M2C and M3C2 types of MXenes.269,270 However, such studies electrocatalytic studies lack a 

kinetic treatment by analysing the reaction steps energy barriers, with only few examples, 

e.g., the easy CO2 hydrogenation into OCOH on Cr3C2 with an energy barrier of 0.38 eV.270 

In any case, energy barriers can be key in any process, and a significant scientific advance 

has been recently disclosed in what concerns the catalytic dry reforming of methane. In this 

reaction, the CO2 first C-O bond dissociation is regarded as the key rate limiting step but 

this appears to be easily achieved on a partially O-covered Mo2C MXene, with an estimated 

Gibbs energy barrier of solely 0.3 eV, see Figure 8.271 This is very much in line with the 

CO2 dissociation energy barriers of 0.21 and 0.17 eV for -Mo2C and -Mo2C Mo-

terminated (0001) or (001) surfaces, respectively, as both display a very similar hexagonal 

close-packed layer of surface Mo atoms.89,272 Indeed, CO2 is no longer involved in the rate 

limiting step, which corresponds to the CH4 first C-H bond scission with an energy barrier 

of ca. 2.35 eV, as a result of the little interaction of CH4 with the MXene, and the high 

stability of CH4, see Figure 8. 

7. Concluding remarks and outlook 

Catalysis is pivotal to advance in solving the energy and environmental crisis and, thus, 

highly efficient catalysts for the generation and storage of fuels are needed. The challenge 

is huge and research advances from all possible sides have to be invoked. In this review, we 

have presented and discussed the state-of-the-art modelling and computational techniques 

including also some historical hints, which, we believe, contribute to have a better 

perspective on the present status of the field. The power and limitations of the different 

models and methods have been illustrated taking the heterogeneously catalysed conversion 

of CO2 as case of study. The importance of using realistic models coupled to sufficiently 

accurate computational methods is highlighted as a prerequisite to provide reliable results 

that can be directly compared to experiments. This is no doubt one of the key challenges to 

contribute to catalysis by design. Linking catalytic performance to the properties of the 

catalyst and how the surface electronic structure determines somehow the resulting 

catalytic properties is fundamental to understand industrial catalytic processes under 

operando conditions as smartly explained by Nørskov et al.109  
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An important challenge in modern heterogeneous catalysis is to shed light on the 

nature of the active sites and to understand how their structures evolve when exposed to the 

realistic catalytic environments and temperatures. The computational approaches discussed 

here go from DFT modelling of the reaction mechanism to thermodynamic predictions on 

the equilibrium state of the catalyst at working conditions and, finally, the microkinetic 

and/or kinetic Monte Carlo simulations that are able to make a prediction of the total 

turnover frequency under practical conditions, either in laboratory or in industry. The sets 

of models and methods available provide a way to comprehensively sample the complex 

chemical space, to provide suitable candidates for the potential active site, to assess the 

thermodynamic stabilities as a function of the reaction conditions and to simulate the whole 

catalytic cycle. 

The advent of the digital era allowed big data management, and machine learning 

techniques are now at hand to screen materials in a powerful way. Initiatives such as the 

materials project,273 NOMAD,274 and Catalysis-Hub275 are likely to play an increasing role 

in the future. These new approaches will, and already have, contribute(d) to advance, and 

shape the field of heterogeneous catalysis. In particular, machine learning can be used in 

concert with DFT modelling to provide the necessary predictive mechanism that effectively 

enables the transition from the theoretical modelling to theoretical-guided catalyst 

design.276 However, even if machine learning can speed-up materials discovery, the need to 

understand and to rationalize the predictions remain and the feedback between these 

computational approaches is expected to facilitate catalyst discovery. In addition, the 

present databases are far from being representative of the vast number of systems 

encountered in practical heterogeneous catalysis as they are nurtured from the systems that 

have been considered hot by the computational heterogeneous catalysis community. Hence, 

more material models ⎯ideally including reactants, intermediates, and products⎯ need to 

be included to fully implement these new tools in heterogeneous catalysis research. Indeed, 

we need further data beyond ideal surfaces. Thus, realistic catalysts designed by facet 

engineering are demanded. This will help to bridge the gap bet between simplified 

descriptors-based bulk materials screening and detailed mechanistic/kinetic studies, ideally 

by developing meaningful surface descriptors.277  
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From a computational viewpoint, we would like to stress the need that authors 

report reaction mechanisms and the associated relevant data following the FAIR Data 

Principles that have been proposed to make data findable, accessible, interoperable and 

reusable. 278  This will allow meaningful and consistent comparison between different 

substrates. The need to carefully study the previous literature cannot be disregarded. Both 

aspects are intimately related and need to be promoted to reach optimum practices in 

computational heterogeneous catalysis. 
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Table 1. Steady state coverages of some species during the CO2 hydrogenation on the 

Ni(111) surface from the kMC simulations reported in Ref. 206. 

Coverage () 

T = 573.15 K T = 673.15 K 

p(H2) = 0.8 bar 

p(CO2) = 0.2 bar 

p(H2) = 8 bar 

p(CO2) = 2 bar 

p(H2) = 0.8 bar 

p(CO2) = 0.2 bar 

p(H2) = 8 bar 

p(CO2) = 2 bar 

𝜃(H) 12.69 ± 0.08 17.33 ± 0.06 7.69 ± 0.06 12.36 ± 0.09 

𝜃(CO) 0.031 ± 0.004 0.140 ± 0.019 0.007 ± 0.003 0.020 ± 0.004 

𝜃(O) 0.170 ± 0.011 0.227 ± 0.011 0.675 ± 0.028 0.810 ± 0.024 

𝜃(CO2) 0.769 ± 0.008 0.926 ± 0.018 0.695 ± 0.011 0.775 ± 0.023 

𝜃(OH) 0.007 ± 0.004 0.023 ± 0.006 0.055 ± 0.004 0.076 ± 0.004 
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Figure 1 Schematic view of time and size scales, and typical regions of applicability of 

different computational chemistry methods. Images nearby regions show atomic model 

examples. 
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Figure 2 (a) Schematic view of metal NP (grey spheres) supported on a rock-salt oxide 

surface (light and blue spheres). Notice how the substrate surface features terraces and steps, 

with defects. Nearby images represent different models used to represent different parts of 

the whole system, including cluster models (brown spheres), nanocrystallites (green 

spheres), cluster models showing substrate defects (orange and dark blue spheres), regular 

surface slab models (yellow and cyan spheres), and vicinal surfaces (pink and violet 

spheres). (b) Schematic representation of a given property evolution with size, here denoted 

as metal cluster and NP models of increasing size, revealing the oscillation of the property 

value with size in the non-scalable region, and the linear evolution towards the bulk from 

the scalable region onwards. 
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Figure 3 (a) Scheme of a solid surface in contact with the surrounding CO2 gas phase 

characterized by defined T and p. Generic free energy plot for a surface in equilibrium with 

a surrounding CO2 gas phase. (b) Schematic representation of the bottom-up computational 

strategy that aims to propagate the predictive power of first-principles techniques up to 

increasing length and time scales providing insights into the ongoing surface chemistry 

over a wide range of temperature and pressure conditions. (c) Brønsted-Evans-Polanyi 

(BEP) relationships between  the activation energy for CO2 dissociation into chemisorbed 

CO and O species on several low-index transition metal surfaces and the reaction energy 

(left panel) or the sum of the adsorption energies of the products of the dissociation reaction 

(right panel). Graphs made with data from Ref. 201.  
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Figure 4 Different pathways to activate CO2 over catalytic surfaces upon substrate→CO2 

electron transfer to form an active bent CO2
δ-

 moiety. Reprinted with permission from ref. 

192. 
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Figure 5 (a)Top (top) and side (bottom) views of activated, bent CO2, adsorbed on a six-

layered, 3 relaxed +3 fixed, (2√2×2√2)R45º TiC(001) slab model, either on a TopC (left) or 

an MMC (right) conformation. Carbon, Oxygen, and Titanium atoms are shown as brown, 

red, and blue spheres, respectively. Notice that fixed layers are shown in light colours. (b) 

Gibbs free energy surfaces of the CO2 dissociation to CO+O from most stable sites on 

different -Mo2C surfaces at the working conditions of T = 600 K, 𝑝𝐻2 = 𝑝𝐶𝑂2 = 0.2 bar, 

𝑝𝐶𝑂= 𝑝𝐻2𝑂 = 1 mbar. Based on the data from Ref. 89. 
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Figure 6 Gibbs free energy barriers, in eV, and side atomic views for different reaction 

steps through the COOH formation or the direct CO2 dissociation and posterior CO 

successive hydrogenations towards CH3OH, as computed on the Cu4@-MoC(001) (left) 

and -MoC(001) (right) surface models. Based on the data from Ref. 246. Mo, C, Cu, O, 

and H atoms are shown as violet, green, orange, red, and white spheres, respectively. 
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Figure 7 Kinetic phase diagram (top) for Hfn+1Cn MXene (0001) surfaces with results for 

HfC(001) and HfC(111) surfaces included for comparison. White dashed dot lines stand for 

the atmospheric 𝑝𝐶𝑂2of 40 Pa, at the exhaust gases 𝑝𝐶𝑂2 of 15·103, and at the 𝑝𝐶𝑂2 pure CO2 

stream generation of 105 Pa. Atomic top and sides views of CO2 adsorbed on sites of 

MXene (0001) surfaces and TMC(111) surfaces, where top and inner layer M atoms are 

shown as dark and light blue spheres, respectively, whereas inner carbon layer is 

represented by dark yellow spheres. The CO2 molecule oxygen and carbon atoms are 

represented by red and brown spheres, respectively. Adapted from data of Ref. 267. 
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Figure 8 Gibbs free energy profile of the dry reforming of CH4 catalysed by the (0001) 

surface of partially oxidized Mo2C MXene at 1073 K, with CH4 and CO2 partial pressures 

of 1 bar. Insets show top views of critical reaction steps, where pink, red, black, and white 

spheres denote Mo, O, C, and H atoms, respectively. 
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