7 research outputs found

    Nonlinear Precoding for Phase-Quantized Constant-Envelope Massive MU-MIMO-OFDM

    Get PDF
    We propose a nonlinear phase-quantized constant-envelope precoding algorithm for the massive multi-user (MU) multiple-input multiple-output (MIMO) downlink. Specifically, we adapt the squared-infinity norm Douglas-Rachford splitting (SQUID) precoder to systems that use oversampling digital-to-analog converters (DACs) at the base station (BS) and orthogonal frequency-division multiplexing (OFDM) to communicate over frequency-selective channels. We demonstrate that the proposed SQUID-OFDM precoder is able to generate transmit signals that are constrained to constant envelope, which enables the use of power-efficient analog radio-frequency circuitry at the BS. By quantizing the phase of the resulting constant-envelope signal, we obtain a finite-cardinality transmit signal that can be synthesized by low-resolution (e.g., 1-bit) DACs. We use error-rate simulations to demonstrate the superiority of SQUID-OFDM over linear-quantized precoders for massive MU-MIMO-OFDM systems

    Implicit vs. Explicit Approximate Matrix Inversion for Wideband Massive MU-MIMO Data Detection

    No full text
    Massive multi-user (MU) MIMO wireless technology promises improved spectral efficiency compared to that of traditional cellular systems. While data-detection algorithms that rely on linear equalization achieve near-optimal error-rate performance for massive MU-MIMO systems, they require the solution to large linear systems at high throughput and low latency, which results in excessively high receiver complexity. In this paper, we investigate a variety of exact and approximate equalization schemes that solve the system of linear equations either explicitly (requiring the computation of a matrix inverse) or implicitly (by directly computing the solution vector). We analyze the associated performance/complexity trade-offs, and we show that for small base-station (BS)-to-user-antenna ratios, exact and implicit data detection using the Cholesky decomposition achieves near-optimal performance at low complexity. In contrast, implicit data detection using approximate equalization methods results in the best trade-off for large BS-to-user-antenna ratios. By combining the advantages of exact, approximate, implicit, and explicit matrix inversion, we develop a new frequency-adaptive e qualizer (FADE), which outperforms existing data-detection methods in terms of performance and complexity for wideband massive MU-MIMO systems

    Implicit vs. Explicit Approximate Matrix Inversion for Wideband Massive MU-MIMO Data Detection

    No full text
    Massive multi-user (MU) MIMO wireless technology promises improved spectral efficiency compared to that of traditional cellular systems. While data-detection algorithms that rely on linear equalization achieve near-optimal error-rate performance for massive MU-MIMO systems, they require the solution to large linear systems at high throughput and low latency, which results in excessively high receiver complexity. In this paper, we investigate a variety of exact and approximate equalization schemes that solve the system of linear equations either explicitly (requiring the computation of a matrix inverse) or implicitly (by directly computing the solution vector). We analyze the associated performance/complexity trade-offs, and we show that for small base-station (BS)-to-user-antenna ratios, exact and implicit data detection using the Cholesky decomposition achieves near-optimal performance at low complexity. In contrast, implicit data detection using approximate equalization methods results in the best trade-off for large BS-to-user-antenna ratios. By combining the advantages of exact, approximate, implicit, and explicit matrix inversion, we develop a new frequency-adaptive equalizer (FADE), which outperforms existing data-detection methods in terms of performance and complexity for wideband massive MU-MIMO systems.ISSN:1939-8115ISSN:1939-801

    Massive MIMO 1-Bit DAC Transmission: A Low-Complexity Symbol Scaling Approach

    Get PDF
    CCBY We study multi-user massive multiple-input singleoutput (MISO) systems and focus on downlink transmission for PSK modulation, where the base station (BS) employs a large antenna array with low-cost 1-bit digital-to-analog converters (DACs). The direct combination of existing beamforming schemes with 1-bit DACs is shown to lead to an error floor at mediumto- high SNR regime, due to the coarse quantization of the DACs with limited precision. In this paper, based on the constructive interference we consider both a quantized linear beamforming scheme where we analytically obtain the optimal beamforming matrix, and a non-linear mapping scheme where we directly design the transmit signal vector. Due to the 1-bit quantization, the formulated optimization for the non-linear mapping scheme is shown to be non-convex. The non-convex constraints of the 1-bit DACs are firstly relaxed into convex, followed by an element-wise normalization to satisfy the 1-bit DAC transmission. We further propose a low-complexity symbol scaling scheme that consists of three stages, in which the quantized transmit signal on each antenna element is selected sequentially. Numerical results show that the proposed symbol scaling scheme achieves a comparable performance to the optimization-based non-linear mapping approach, while the corresponding performance-complexity tradeoff is more favorable for the proposed symbol scaling method
    corecore