7 research outputs found

    Implicit and Implicit-Explicit Strong Stability Preserving Runge-Kutta Methods with High Linear Order

    Full text link
    When evolving in time the solution of a hyperbolic partial differential equation, it is often desirable to use high order strong stability preserving (SSP) time discretizations. These time discretizations preserve the monotonicity properties satisfied by the spatial discretization when coupled with the first order forward Euler, under a certain time-step restriction. While the allowable time-step depends on both the spatial and temporal discretizations, the contribution of the temporal discretization can be isolated by taking the ratio of the allowable time-step of the high order method to the forward Euler time-step. This ratio is called the strong stability coefficient. The search for high order strong stability time-stepping methods with high order and large allowable time-step had been an active area of research. It is known that implicit SSP Runge-Kutta methods exist only up to sixth order. However, if we restrict ourselves to solving only linear autonomous problems, the order conditions simplify and we can find implicit SSP Runge-Kutta methods of any linear order. In the current work we aim to find very high linear order implicit SSP Runge-Kutta methods that are optimal in terms of allowable time-step. Next, we formulate an optimization problem for implicit-explicit (IMEX) SSP Runge-Kutta methods and find implicit methods with large linear stability regions that pair with known explicit SSP Runge-Kutta methods of orders plin=3,4,6 as well as optimized IMEX SSP Runge-Kutta pairs that have high linear order and nonlinear orders p=2,3,4. These methods are then tested on sample problems to verify order of convergence and to demonstrate the sharpness of the SSP coefficient and the typical behavior of these methods on test problems

    Embedded error estimation and adaptive step-size control for optimal explicit strong stability preserving Runge--Kutta methods

    Full text link
    We construct a family of embedded pairs for optimal strong stability preserving explicit Runge-Kutta methods of order 2≤p≤42 \leq p \leq 4 to be used to obtain numerical solution of spatially discretized hyperbolic PDEs. In this construction, the goals include non-defective methods, large region of absolute stability, and optimal error measurement as defined in [5,19]. The new family of embedded pairs offer the ability for strong stability preserving (SSP) methods to adapt by varying the step-size based on the local error estimation while maintaining their inherent nonlinear stability properties. Through several numerical experiments, we assess the overall effectiveness in terms of precision versus work while also taking into consideration accuracy and stability.Comment: 22 pages, 49 figure

    Implicit-explicit multirate infinitesimal GARK methods

    Full text link
    This work focuses on the development of a new class of high-order accurate methods for multirate time integration of systems of ordinary differential equations. Unlike other recent work in this area, the proposed methods support mixed implicit-explicit (IMEX) treatment of the slow time scale. In addition to allowing this slow time scale flexibility, the proposed methods utilize a so-called `infinitesimal' formulation for the fast time scale through definition of a sequence of modified `fast' initial-value problems, that may be solved using any viable algorithm. We name the proposed class as implicit-explicit multirate infinitesimal generalized-structure additive Runge--Kutta (IMEX-MRI-GARK) methods. In addition to defining these methods, we prove that they may be viewed as specific instances of generalized-structure additive Runge--Kutta (GARK) methods, and derive a set of order conditions on the IMEX-MRI-GARK coefficients to guarantee both third and fourth order accuracy for the overall multirate method. Additionally, we provide three specific IMEX-MRI-GARK methods, two of order three and one of order four. We conclude with numerical simulations on two multirate test problems, demonstrating the methods' predicted convergence rates and comparing their efficiency against both legacy IMEX multirate schemes and recent third and fourth order implicit MRI-GARK methods
    corecore