60,216 research outputs found

    Efficient Implementation of a Synchronous Parallel Push-Relabel Algorithm

    Full text link
    Motivated by the observation that FIFO-based push-relabel algorithms are able to outperform highest label-based variants on modern, large maximum flow problem instances, we introduce an efficient implementation of the algorithm that uses coarse-grained parallelism to avoid the problems of existing parallel approaches. We demonstrate good relative and absolute speedups of our algorithm on a set of large graph instances taken from real-world applications. On a modern 40-core machine, our parallel implementation outperforms existing sequential implementations by up to a factor of 12 and other parallel implementations by factors of up to 3

    Magic-State Functional Units: Mapping and Scheduling Multi-Level Distillation Circuits for Fault-Tolerant Quantum Architectures

    Full text link
    Quantum computers have recently made great strides and are on a long-term path towards useful fault-tolerant computation. A dominant overhead in fault-tolerant quantum computation is the production of high-fidelity encoded qubits, called magic states, which enable reliable error-corrected computation. We present the first detailed designs of hardware functional units that implement space-time optimized magic-state factories for surface code error-corrected machines. Interactions among distant qubits require surface code braids (physical pathways on chip) which must be routed. Magic-state factories are circuits comprised of a complex set of braids that is more difficult to route than quantum circuits considered in previous work [1]. This paper explores the impact of scheduling techniques, such as gate reordering and qubit renaming, and we propose two novel mapping techniques: braid repulsion and dipole moment braid rotation. We combine these techniques with graph partitioning and community detection algorithms, and further introduce a stitching algorithm for mapping subgraphs onto a physical machine. Our results show a factor of 5.64 reduction in space-time volume compared to the best-known previous designs for magic-state factories.Comment: 13 pages, 10 figure

    Approximating the Held-Karp Bound for Metric TSP in Nearly Linear Time

    Full text link
    We give a nearly linear time randomized approximation scheme for the Held-Karp bound [Held and Karp, 1970] for metric TSP. Formally, given an undirected edge-weighted graph GG on mm edges and ϵ>0\epsilon > 0, the algorithm outputs in O(mlog4n/ϵ2)O(m \log^4n /\epsilon^2) time, with high probability, a (1+ϵ)(1+\epsilon)-approximation to the Held-Karp bound on the metric TSP instance induced by the shortest path metric on GG. The algorithm can also be used to output a corresponding solution to the Subtour Elimination LP. We substantially improve upon the O(m2log2(m)/ϵ2)O(m^2 \log^2(m)/\epsilon^2) running time achieved previously by Garg and Khandekar. The LP solution can be used to obtain a fast randomized (32+ϵ)\big(\frac{3}{2} + \epsilon\big)-approximation for metric TSP which improves upon the running time of previous implementations of Christofides' algorithm

    Heuristics for Network Coding in Wireless Networks

    Get PDF
    Multicast is a central challenge for emerging multi-hop wireless architectures such as wireless mesh networks, because of its substantial cost in terms of bandwidth. In this report, we study one specific case of multicast: broadcasting, sending data from one source to all nodes, in a multi-hop wireless network. The broadcast we focus on is based on network coding, a promising avenue for reducing cost; previous work of ours showed that the performance of network coding with simple heuristics is asymptotically optimal: each transmission is beneficial to nearly every receiver. This is for homogenous and large networks of the plan. But for small, sparse or for inhomogeneous networks, some additional heuristics are required. This report proposes such additional new heuristics (for selecting rates) for broadcasting with network coding. Our heuristics are intended to use only simple local topology information. We detail the logic of the heuristics, and with experimental results, we illustrate the behavior of the heuristics, and demonstrate their excellent performance

    Adaptive Partitioning for Large-Scale Dynamic Graphs

    Get PDF
    Abstract—In the last years, large-scale graph processing has gained increasing attention, with most recent systems placing particular emphasis on latency. One possible technique to improve runtime performance in a distributed graph processing system is to reduce network communication. The most notable way to achieve this goal is to partition the graph by minimizing the num-ber of edges that connect vertices assigned to different machines, while keeping the load balanced. However, real-world graphs are highly dynamic, with vertices and edges being constantly added and removed. Carefully updating the partitioning of the graph to reflect these changes is necessary to avoid the introduction of an extensive number of cut edges, which would gradually worsen computation performance. In this paper we show that performance degradation in dynamic graph processing systems can be avoided by adapting continuously the graph partitions as the graph changes. We present a novel highly scalable adaptive partitioning strategy, and show a number of refinements that make it work under the constraints of a large-scale distributed system. The partitioning strategy is based on iterative vertex migrations, relying only on local information. We have implemented the technique in a graph processing system, and we show through three real-world scenarios how adapting graph partitioning reduces execution time by over 50 % when compared to commonly used hash-partitioning. I

    SAT Modulo Monotonic Theories

    Full text link
    We define the concept of a monotonic theory and show how to build efficient SMT (SAT Modulo Theory) solvers, including effective theory propagation and clause learning, for such theories. We present examples showing that monotonic theories arise from many common problems, e.g., graph properties such as reachability, shortest paths, connected components, minimum spanning tree, and max-flow/min-cut, and then demonstrate our framework by building SMT solvers for each of these theories. We apply these solvers to procedural content generation problems, demonstrating major speed-ups over state-of-the-art approaches based on SAT or Answer Set Programming, and easily solving several instances that were previously impractical to solve
    corecore