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ABSTRACT
Mining large graphs is critical for several real-world systems
such as social networks. Such graphs typically consist of
hundreds of millions of vertices and edges and are highly dy-
namic, with their structure continuously evolving over time.
The current data deluge is making this problem even harder:
bigger graphs must be processed even faster than before.
Appropriate graph partitioning is crucial to scale to large
graphs and reduce processing time. However, partitioning
large dynamic graphs is challenging: current techniques ei-
ther do not scale well as they require global graph knowledge
or do not handle changes in the graph.

In this work, we introduce a general purpose graph parti-
tioning algorithm that adapts to dynamic structural changes
in massive graphs. The algorithm works by iteratively adapt-
ing the partitions using only local information. We show how
the application of our algorithm to three real-world scenarios
can speed up the execution of graph analyses by over 50%,
while adapting the partitioning to a high volume of changes
to the graph.

Categories and Subject Descriptors
G.2.2 [Mathematics of Computing]: Graph Theory, Graph
Algorithms; H.3.4 [Systems and Software]: Distributed
Systems

Keywords
Large scale optimisation, dynamic graphs, adaptive graph
partitioning, distributed algorithm

1. INTRODUCTION
Graphs underlie many real-world systems, such as social

and communication networks and even the stock market.
Several critical analytical tasks in these systems, like rank-
ing and recommending online content or discovering groups
of correlated stocks, depend on the ability to mine huge
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graphs that may consist of millions of vertices and billions
of edges. The importance of managing graphs of that scale is
evidenced by the emergence of numerous distributed graph
storage and graph processing systems in recent years [21, 9,
27, 1, 7, 33, 20, 16, 36].

Graph partitioning is crucial in attacking large-scale graph
management problems. It impacts both the performance of
graph mining algorithms and the scalability of the under-
lying storage and graph processing systems. For instance,
popular algorithms for content ranking converge faster if ini-
tialised with a good graph partitioning [38]. Further, dis-
tributed graph processing systems benefit from intelligent
graph partitioning that reduces communication and achieves
load balancing across the system, eventually achieving scal-
ability and efficiency [21]. This makes graph partitioning an
indispensable step in the graph management lifecycle.

However, in accordance with trends observed in data ana-
lytics today, graph management faces a new challenge: data
are becoming increasingly time-sensitive. Graphs are highly
dynamic by nature and several real-world analytical applica-
tions now require near real-time response to graph changes.
For instance, the Twitter graph may receive thousands of
updates per second at peak rate [3] that can potentially
indicate new trending topics. Topic recommendation ana-
lytics must reflect these changes within minutes, otherwise
they become irrelevant. Similarly, telcos must detect frauds
by mining the Call Detail Record graph in real-time [41].

As graph partitioning is an integral phase of these analyti-
cal pipelines, it is critical that it can keep up with the graph
update rate. However, existing graph partitioning meth-
ods overlook this dynamic nature of real graphs. Graph
dynamism may render the existing partitioning of a graph
obsolete within minutes. Current approaches either allow
the partitioning to diverge from the optimal as the graph
changes, hurting processing time, or require re-partitioning
of the graph every time, a costly process that effectively also
increases processing time.

We believe that to enable graph mining applications in
real-world environments, such as online social networks, we
need scalable partitioning algorithms that take the dynamic
nature of the graphs into consideration. Essentially, this
requires the ability to quickly and efficiently adapt the par-
titioning as the graph changes.

1.1 Challenges
However, partitioning large dynamic graphs is a challeng-

ing task. First, ensuring good application performance, our
ultimate goal, requires graph partitions that minimise com-



munication and achieve load balancing. Minimising com-
munication allows more parallelisation and improves system
scalability, while load balancing can have a significant im-
pact on overall processing time [21, 35]. However, these are
often conflicting requirements. For instance, random par-
titioning has good load-balancing properties, but results in
high communication overheads.

Second, the graph partitioning algorithm must scale it-
self to large graphs. Most existing partitioning methods do
not scale because they require global information about the
graph and involve complex coordination mechanisms. Ad-
ditionally, they may incur high processing times, rendering
any potential speed up of the graph mining task useless.
Instead, a graph partitioning algorithm must afford a scal-
able and lightweight implementation. Simplicity as a design
choice is, therefore, necessary for a real large-scale imple-
mentation, a requirement recognised in [35] as well.

Third, real-world graphs evolve rapidly. To maintain good
application performance as the graph changes, the existing
partitioning must be updated fast even in the face of high
update rates. Otherwise, the time spent adapting the parti-
tioning may render the potential savings useless. Adaptive
partitioning must incur minimum costs, making efficient use
of available resources, such as the network.

1.2 Our Approach
To address the challenges in processing massive dynamic

graphs, we propose a scalable graph partitioning algorithm
that reacts to graph topology changes with minimum over-
head. Our algorithm is based on decentralised, iterative
vertex migration. Starting from any initial partitioning,
the algorithm migrates vertices between partitions trying
to minimise the number of cut edges, while at the same
time keeping partitions balanced, until convergence. The
migration heuristic is based on local per-vertex information
and requires no global coordination, affording a scalable dis-
tributed implementation. Furthermore, our approach natu-
rally supports dynamic graph changes. Updates in the graph
topology trigger the vertex migration process, adapting the
partitioning to the new topology.

This paper makes the following contributions: 1) The
first heuristic capable of adapting massive graph partitions
to dynamic changes in the topology of the graph relying
only on local information which boots the scaling potential
and adaptation rate. 2) The extension of the core heuris-
tic and its integration into a real processing system based
on Pregel [21]. We show that implementing our algorithm
inside such a system can speed up processing through parti-
tioning optimisation. 3) An extensive evaluation of our tech-
nique through both simulations and system deployments,
using synthetic and real datasets.

The rest of the paper is organised as follows. In Section 2,
we describe our algorithm in more detail. Section 3 describes
some relevant pitfalls that need to be overcome when real-
ising the algorithm into a real system. The algorithm is
then tested at scale in a series of lab experiments and real
world use cases in Section 4. Section 5 contextualises our
approach by presenting the related work. We present the
main conclusions and discussion in Section 6.

2. ADAPTIVE ITERATIVE PARTITIONING
In this section, we present an iterative algorithm that pro-

duces balanced partitions (avoids concentrating too many

vertices in a few partitions). Note that the iterative nature
of the algorithm guarantees adaptation to changes in the
graph topology. We have designed the algorithm relying on
local information only, so that it I can be efficiently com-
puted, and enables a scalable implementation. We start by
presenting the algorithm at a logical level. In Section 3, we
show how it can be naturally implemented in a distributed
scalable fashion. Before we present the algorithm, let us
start with a few definitions.

Definition (Graph Partitioning). Given a graph G = (V,E),
let P t be the set of partitions on V at time t and P t(i) the
individual partition i, with |P t| = k. These partitions will

be such that
k⋃
i,t

P t(i) = V and P t(i) ∩ P t(j) = ∅ for any

i 6= j. The edge cut set Ec ⊆ E is the set of edges which
endpoint vertices belong to different partitions.

At a high level, the algorithm starts with an initial parti-
tioning: the graph is loaded on the different partitions. The
most commonly used strategy in large scale graph processing
systems is hash partitioning. Given a hashing function H(v),
a vertex is assigned to partition P 0(i) if H(v) mod k = i.
This strategy is effective as it is lightweight, it does not
require a global lookup table, and, depending on the char-
acteristics of the vertex I’dDs, it can scatter the vertices
uniformly across the partitions. Unfortunately, it introduces
many cut edges. In addition, this method does not guaran-
tee adaptation to changes in the topology of the graph, since
its initial partitioning is never updated.

2.1 Greedy Vertex Migration
Additional processing is required for the partitions to keep

track with the changes in the structure of the graph. On
every iteration after the initial partitioning, each vertex will
make a decision to either remain in the current partition, or
to migrate to a different one. Migration decisions are only
based on local information available to the vertex, where the
goal is to “get neighbours together” in order to minimise the
number of cut edges |Ec|.

For this individual decision we evaluated multiple heuris-
tics based on local information [35, 28]. We chose a sim-
ple greedy heuristic that had the strongest performance and
lowest computational cost. The heuristic works as follows.
At each iteration, a vertex will decide to migrate to the par-
tition where the highest number of its neighbouring vertices
are. With this premise, the candidate partitions for each
vertex are those where the highest number of its neighbours
are located. Formally, for a vertex v, the list of candidate
partitions is derived as follows cand(v, t) = {P t(i) ∈ P t, ∃
w, w ∈ (P t(i) ∩ Γ(v, t))}, where Γ(v, t) is the set of v plus
its neighbours at iteration t1. Since migrating a vertex po-
tentially introduces an overhead, the heuristic will preferen-
tially choose to stay in the current partition if it is one of
the candidates.

The heuristic is compatible with the approach described
in Section 1.2: relying on local information. A vertex v is
only aware of its own neighbours and it uses this information

1Note that we measure time in number of iterations, decou-
pling the heuristic from implementation considerations. The
actual time taken by an iteration to complete will depend
on the system and the specific load of the system at that
iteration.



to choose its destination partition. This restriction fosters
a lightweight heuristic, avoiding the need of coordination
mechanisms and greatly boosting scalability .

2.2 Maintaining Balanced Partitions
The greedy nature of the presented heuristic will naturally

cause higher concentration of vertices in some partitions.
We refer to this phenomenon as node densification. As our
goal is to obtain a balanced partitioning, a capacity limit
must be introduced for every partition. The approach does
not guarantee an optimal balanced k-way partitioning, but
it limits the unbalance of vertices distribution across the
partitions.

Definition (Partition Capacity). Let C(i) be the capacity
constraint on each partition. At all times t, for each partition
i, |P t(i)| ≤ C(i).

In order to control node densification, vertices need to be
aware of the maximum partition capacities capacity C(i).
The remaining capacity of each partition i at iteration t is
Ct(i) = C(i)− |P t(i)|.

The local and independent nature of migration decisions
make these capacity limits difficult to enforce. At iteration
t the decision of a vertex to migrate can only be based on
the capacities Ct(i) computed at the beginning of the it-
eration. These capacities will not be updated during the
iteration, which implies that without further restrictions all
vertices will be allowed to migrate to the same destination,
potentially exceeding the capacity limit.

The only way to ensure that the capacity of each partition
will not be surpassed, with only the information available to
the vertex, is to work on a worst case basis. We split the
available capacity for each partition equally and we use these
splits as quotas for the other partitions. Hence, the maxi-
mum number of vertices that can migrate from partition i to

partition j over an iteration t is defined as: Qt(i, j) = Ct(j)
|P t|−1

;

j 6= i. See Section 3 for details on how this was implemented.
This strategy to manage partition capacities introduces

minimum coordination overhead. Vertices base their deci-
sion on the location of their neighbours, and the partition-
level current capacity information, which must be available
locally to every node. Propagating capacity information is
scalable, as it is proportional to the total number of parti-
tions k.

2.3 Ensuring Convergence
The independent nature of the migration decisions endan-

gers convergence of the heuristic. Local symmetries in the
graph may cause pairs (or higher cardinality sets) of neigh-
bour vertices independently decide to “chase each other” in
the same iteration, as the best option is to join its neighbour.

We have addressed these issues by introducing a random
factor to the migration decisions. At each iteration, each
vertex will decide whether to migrate with probability s,
0 < s < 1. A value of s = 0 causes no migration whatsoever,
while s = 1 allows the vertices to migrate on every iteration
they attempt to. Intermediate values in the range address
the chasing effect, but lower values also affect the overall
convergence time.

We explored the effect of different values of s with an
extensive set of experiments on different graphs, assessing
convergence time and node densification. Details about the
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Figure 1: Effect of s into Convergence and Number
of Cuts (normalised to the total number of edges in
the graph). Average of 10 experiments performed
over two graphs: 64kcube (A) and Epinions(B) from
Table 1, partitioning over 9 nodes.

selected graphs are provided in Section 4.1. We assumed full
convergence when the number of vertex migrations was zero
for more than 30 consecutive iterations, although the num-
ber of migrations decreases exponentially with the number
of iterations. Figure 1 shows the effect of s on convergence
time and normalised number of cuts for two different graphs.
In both cases, there was no statistical difference in the num-
ber of cuts achieved by the heuristic, regardless of the value
of s. Similar results were obtained for the remaining graphs
used in our study, shown in Table 1.

However, s can have a significant impact on convergence
time. Low values os s limit the number of migrations exe-
cuted per iteration, potentially increasing the time required
for convergence. On the other side, high values fail to fully
compensate the neighbour chasing effect, introducing wasted
migrations per iteration that delay convergence and increase
computation time. This is particularly evident in Figure
1 (B). From our experience, a constant intermediate value
(s = 0.5) will have adequate performance over a variety of
graphs: the reduced message overhead makes processing dif-
ferences (due to variations in s) negligible. This is specially
true in the context of long running (continuous) processing
systems.

3. LARGE SCALE IMPLEMENTATION
To validate our approach, we implement a distributed ver-

sion of our algorithm and integrate it into a large-scale graph
processing system inspired by Pregel. Here, we describe the
details of our implementation.

Our iterative graph algorithm runs as a background appli-
cation fully compatible with Pregel’s computational model.
Figure 2 shows the layered architecture of the implemented
system. The implementation differs from Pregel in two as-
pects: 1) once the graph has been loaded into memory,
computation is run continuously; 2) vertices/edges can be
injected/removed from the graph during the computation
from a stream. These two aspects motivate the implemen-
tation of an adaptive graph partitioning algorithm that runs
in the background of the system, while the user applications
process the graph.

Having a well-defined heuristic is not enough to come
up with a usable implementation at large scale. Here, we



WORKER WORKERWORKER WORKER WORKER WORKER

GRAPH PARTITIONS

PREGEL APIPARTITIONING API

USER APPLICATIONSGRAPH PARTITIONING ALGORITHM

Figure 2: Layered architecture of the implemented
system. Both the graph partitioning algorithm and
the user applications make use of the Pregel API to
process the graph. The partitioning algorithm uses
an extension of the API to migrate the vertices and
access capacities.

present a short roadmap to overcome the main implementa-
tion pitfalls we faced while implementing the algorithm for
large-scale graph processing systems.

Deferred Vertex Migration.
At any iteration t, neighbours do not know where any of

their (potentially) migrated neighbouring vertices will be at
iteration t + 1, when messages will actually be delivered.
Migrating a vertex instantly after its decision would require
one of the following adaptations to avoid losing messages(see
Figure 3 (top)): either forwarding the incoming messages
to the new destination of the vertex, or update the mes-
sages in the outgoing queues of the other workers with the
updated destination. However, these solutions require ad-
ditional synchronisation and coordination capabilities that
would greatly limit the scalability of the algorithm.

We solve this coordination problem by forcing vertices to
wait for one iteration before they migrate. At the end of
iteration t, at which the vertex requested the migration, the
worker notifies the other workers about the upcoming mi-
gration, so that they will have been notified at the start of
the following iteration t+1, and the new messages produced
during iteration t + 1 can be sent directly to the new desti-
nation (see Figure 3 (bottom)). This way the computation
is not directly affected by the migrations.

Worker to Worker Capacity Messaging.
Each worker must send a message notifying the |Ci(t)| of

its partitions to the other workers. Scalable remote messag-
ing has to follow the one iteration delay enforced by Pregel.
Therefore, workers must actually send information about
their capacity at iteration t + 1, ensuring partial freshness.
The predicted capacity will be Ct+1(i) = Ct(i)− V t+1

o (i) +
V t+1
i (i), where V t

i (i) ⊂ V are the vertices migrating to i in
t + 1, and V t

o (i) ⊂ V are the vertices migrating from i to
partition j in t+ 1. Both V t+1

o (i) and V t+1
i (i) are known by

the worker at iteration t+ 1: the migration delay for incom-
ing vertices ensures that the workers will be aware of this
value, and outgoing vertices are notified locally, overcoming
any communication restrictions.

4. EVALUATION
In this section, we present the evaluation of our algorithm

on different datasets. First, we evaluate the quality of the
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Figure 3: Deferred Vertex Migration to Ensure Mes-
sage Delivery. Top: Failed message delivery due to
incorrect synchronisation. Bottom: Correct deliv-
ery. The dashed-red circle indicates when the ver-
tex is in a “migrating” state waiting for one iteration
(step) before actually migrating.

partitioning with respect to minimising the number of cut
edges. In particular, we establish the quality of the parti-
tioning along with its dependence on the strategy used for
the initial partitioning, the type and size of the graphs. Sec-
ond, we evaluate the impact of running our adaptive graph
partitioning algorithm on a real large-scale graph processing
system. Here, we assess the impact of the graph partitioning
on the actual computation time of the processing system.

4.1 Datasets
We have selected a representative collection of graphs (see

Table 1), including synthetic graphs and real world graphs,
of multiple sizes (up to 300 million edges) and edge distri-
butions: homogeneous, like in finite-element meshes (FEM)
and power-law degree distribution.

Regarding the synthetic graphs, the synthetic meshes have
a 3d regular cubic structure, modelling the electric connec-
tions between heart cells [37]. Power law synthetic graphs
have been generated with networkX, using its power law de-
gree distribution and approximate average clustering [13];
the intended average degree is D = log(|V |), with rewiring
probability p = 0.1. These are static graphs, to mimic dy-
namic changes we employed a“forest fire”model and created
a synthetic extension [18]. This extension was injected fol-
lowing different time distributions, here we present the worst
case: simultaneous creation of all the new vertices (see Sec-
tion 4.3).

In addition to these graphs, we also used two real world
sources of dynamic data: 1) We processed tweets from Twit-
ter’s streaming API access level in real time; 2) We processed
one-month data of anonymised calls in a mobile European
operator, consisting of 21 million vertices, 132 million recip-
rocated social ties, with a mean geodesic distance of 9.4, an
average degree of 10.1 network neighbours, and a giant com-
ponent containing 99.1% of all vertices was analysed. We fed
these data chronologically, building a dynamic graph of call
interactions, and calculated the maximal clique at any time.

4.2 Quality of the Partitioning
Obtaining a high quality partitioning for large scale graphs



is one of the main goals of the adaptive algorithm. We
adopted the cut ratio, i.e. the number of cut edges nor-
malised to the total number of edges in the graph, as gold
standard for assessing the quality of the partitioning. All
the experiments shown below are the mean of n = 10 rep-
etitions. Errors are reported in the form of estimated error
in the mean.

4.2.1 Sensitivity to Initial Partitioning
As a first step, we wanted to rule out variations on perfor-

mance arising from using a different initial partitioning. Af-
ter initialising the partitions with one of four different initial
strategies, we ran our adaptive iterative algorithm until no
vertex migration was requested for 30 iterations. The initial
partitioning strategies we tested were: 1) Hash Partition-
ing (HSH): the destination partition is computed for each
vertex as described in Section 2; 2) Pseudorandom Partition-
ing (RND): vertices were assigned to partitions through a
pseudorandom generator, still ensuring balanced partitions;
3) Deterministic Greedy (DGR): stream-based “linear deter-
ministic greedy” as presented in [35]; 4) Minimum Number
of Neighbours (MNN): applies the same stream-based ap-
proach to the “minimum number of neighbours” heuristic
presented in [28].

The results show that the iterative partitioning signifi-
cantly improves the cut ratio (by 0.2 to 0.4) for FEM (Fig-
ure 4A) and power law (Figure 4B) graphs for three out
of four initial partition strategies. It only slightly improves
the cut ratio when starting from the DGR heuristic since
the heuristics have a similar nature, and the results are al-
ready close to the benchmark provided by partitioning using
METIS [14], a state-of-the-art centralised graph partitioning
algorithm. In other words, our heuristic seems to improve
widely used alternatives towards this lower limit. It is worth
noting that DGR depends on full graph knowledge (desti-
nations of already allocated vertices), which poses limits to
its scalability and its applicability to real deployments.

Video 12 shows how partitioning evolves in real time in a
2d slice of a 3d cube of a 1000000 mesh graph, where every
vertex is physically surrounded by its neighbours. As can
be observed, the initial hash partitioning across 9 partitions
(represented with a different colour each) is improved by
increasing the number of neighbours placed together.

4.2.2 Dependence on the Type of Graph
Ruling side effects due to differences in initial partitioning

out is as important as proving our heuristic behaves the

2https://dl.dropbox.com/u/5262310/reducedCuts.avi

Table 1: Summary of the datasets employed in this
work.

Name |V | |E| Type Source
1e4 10000 27900 FEM synth

64kcube 64000 187200 FEM synth
1e6 1000000 2970000 FEM synth

1e8 108 2.97 ∗ 108 FEM synth
3elt 4720 13722 FEM [34]
4elt 15606 45878 FEM [34]

plc1000 1000 9879 pwlaw synth
plc10000 10000 129774 pwlaw synth
plc50000 50000 1249061 pwlaw synth
wikivote 7115 103689 pwlaw [19]
epinion 75879 508837 pwlaw [30]

uk-2007-05-u 1000000 41247159 pwlaw [2]
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Figure 4: Normalised number of cut edges after ap-
plying the iterative algorithm, starting from four ini-
tial partitioning strategies. 9 partitions, with max-
imum capacity equal to 110% of the balanced load.
The horizontal dashed line represents the results ob-
tained using METIS.
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Figure 5: Average cuts for each graph after run-
ning the iterative heuristic over four different initial
partitioning strategies.

same for a variety of graphs. Figure 5 shows the final cut
ratio values for a few graphs in our dataset. The analysed
FEMs generally get better results, while synthetic power law
graphs with high average degree perform noticeably worse.
The difficulties encountered also by DGR and METIS, show
that these graphs are very difficult to partition.

These results point out that the proposed heuristic is com-
patible with different initial partitioning strategies and can
improve the partitioning quality of a wide range of graphs.

4.2.3 Scalability
To test the scalability of our algorithm we generated six

homogeneous FEMs with a number of vertices ranging from
1000 to 300000 vertices. Figure 6 shows the performance
of the algorithm with respect to both cut ratio and con-
vergence time (measured in number of iterations). Conver-
gence time increases with the size of the graph, with a O(log
(N)) growth rate, therefore pointing to feasible application
in large-scale scenarios. The quality of the obtained parti-
tioning slightly improves with the increase in the problem
size, which can be derived from the constant ratio between
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9 partitions, with s = 0.5

average vertex degree and number of partitions, while the
total graph size increases.

We repeated the experiment with a family of power law
graphs of equal number of vertices, generated with the same
parameters for power law graphs described above. In this
case the average convergence time grows at a much slower
rate than in the case of meshes and the cut ratio remains al-
most constant, slightly degrading with the increase in graph
size. These results are in line with what was reported in [35].
These authors worked on optimising the initial partitioning
of a graph and did not present any adaptation mechanism
for massive graphs.

4.3 Real Word Use Cases
We validated our algorithm in the wild, integrating it into

a Pregel-inspired system, and testing its effect over three
real-word use cases. We assessed three aspects of the al-
gorithm in these experiments: the ability to partition large
scale graphs in realistic scenarios, the ability to cope with
dynamic changes in the graph structure, and the perfor-
mance impact of improving the quality of the partitioning.
We believe that the diversity in the workloads of each appli-
cation helps to support the general validity of our heuristic.

Adaptation in Biomedical Simulations.
This scenario assesses the impact of the partitioning al-

gorithm in large scale biomedical simulations, where FEMs
are common place. The main goal was to observe the be-
haviour of the adaptive algorithm implementation under ex-
treme scaling conditions and prove that our heuristic rapidly
reduces the number of edge cuts and, therefore, the commu-
nication cost without introducing a huge overhead due to
vertex migration.

The input graph was a 100 million vertex/300 million
edges FEM representing the cellular structure of a section
of the heart. Each vertex computes more than 32 differ-
ential equations on one hundred variables representing the
way cardiac cells are excited to produce a synchronised heart
contraction and blood pumping [37]. Using a static parti-
tioning(without the adaptive algorithm), simulation time is
dominated by the exchange of messages (more than 80% of
the time), even though CPU time is not negligible (more
than 17%).

Figure 7 represents the evolution of quality of the parti-

tioning (cuts), overhead (migrations) and performance (time
per iteration) for two scenarios: 1) initial optimisation of the
poorly performing hash partitioning that is common practice
in most large scale graph processing systems; 2) absoprtion
of a huge increase in the number of new vertices and edges,
see Figure 7(b).

When the graph is initially loaded into memory with plain
hash partitioning, the number of cuts is very high. Our
heuristic dramatically reduces the number of cuts at the ex-
pense of moving vertices around for a better placement, see
Figure 7(a). The time it takes to compute a whole iter-
ation (represented by the green dotted triangles and right
hand side Y axis) has been normalised to the one obtained
with static hash partitioning, which is a direct comparison
to most other large scale processing systems. This time in-
creases drastically (21 times) due to the massive amount
of vertices being migrated (16 million) and quickly starts
to decay exponentially. With our partitioning an iteration
is computed two times faster (compare first and last green
triangle in the series).

After this initial optimisation, we modified the graph struc-
ture dynamically and tested the ability of the algorithm to
adapt to the changes. To this end, we injected a forest fire
expansion of 10 % of the size of the graph (10 new million
vertices and 30 new million edges). This triggers a moder-
ate increase in the number of cuts (30 million new edges),
movements (1.5 million vertices being moved) and time per
iteration (4.6 times bigger than with plain hash partition-
ing). The peak is rapidly absorbed by our heuristic getting
back to similar levels of cuts and performance, but having
10 % more vertices/edges.

This test proves that our algorithm is highly scalable and
responds nicely to extreme conditions and peaks in load.
Its performance is twice as fast as the one obtained through
hash partitioning, due to a reduction of' 50% in the number
of cut edges. This is achieved at the expense of a moderate
overhead, due to migrations, that exponentially decreases
until it vanishes after convergence, leaving just the perfor-
mance gain.

Adaptation in Online Social Network Analysis.
The second use case assesses the adaptation capabilities

of the algorithm when applied to a continuously evolving
dynamic graph. Making use of local information to migrate
vertices should result in a reduced number of accesses to the
network and, therefore, in less variability in computing each
iteration, given properly dimensioned resources, e.g. lack of
swapping.

We captured tweets in real time from Twitter Streaming
API, and built a graph where edges are given by mentions
of users. Over this power law graph, we continuously esti-
mated the influence of certain users by using the TunkRank
algorithm [39]. In this test, execution time is bound by the
number of messages sent over the network at any point in
time (over 80% of the iteration time)

We ran the experiment simultaneously in two separate
clusters: One cluster used the adaptive algorithm, while the
other used static hash partitioning instead. In Figure 8 we
can observe the average results from processing tweets col-
lected in the London area over a whole day (Friday, 5th Oct
2012), after running continuously for 4 days. The red line
shows the rate at which tweets are received and processed
by the system, while the blue and orange lines show aver-
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(b) Absorption of a huge peak in load

Figure 7: Biomedical use case with a 100 million node/300 million edge graph which is expanded using a
forest fire adding 10 million vertices and 30 million edges. Performance is normalised to the value obtained
with a static hash partitioning. Results were obtained in a cluster of 63 Worker Blades (64GB RAM, 10GbE
and 12 Cores)
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Figure 8: Throughput and performance obtained by
processing the incoming stream of tweets from Lon-
don. Each point represents the average of 10 min
of streaming data. The sudden drop in throughput
and superstep time is due to a failure in one of the
workers that led to the triggering of recovery mech-
anism.

age execution times per iteration, with and without adapta-
tion, respectively. As it can be clearly observed, the average
execution time is significantly improved when applying the
adaptive algorithm, (mean of 0.5 secs instead of 2.5 secs, in-
cluding the added overhead). Importantly, the optimisation
of the partitioning with local information only significantly
lessens variability in execution times, by reducing the impact
of network communications (more neighbours are local).

Adaptation in Mobile Network Communications.
The final use case computes the maximum cliques on a dy-

namic graph, generated from one month of mobile telephone
calls. The graph changed by adding nodes and vertices cor-
responding to new calls as they arrived to the system, and
removing them if they were inactive for more than one week.
The maximum clique was obtained as follows. In the first
iteration, each vertex sends its lists of neighbours to all its
neighbours. On the next iteration, given a vertex i and each

of its neighbours j, i creates j lists containing the neigh-
bours of j that are also neighbours with i. Lists containing
the same elements reveal a clique. As these lists can get
large, this algorithm produces heavy messaging overhead for
large graphs, especially if these are dense, and not negligi-
ble CPU costs, although not as much as the biomedical’ use
case above.

In contrast with the previous two scenarios, this appli-
cation requires freezing the graph topology until a result is
obtained, therefore requiring to buffer all the graph changes
until the computation finishes. This characteristic makes the
scenario more challenging than the previous one, as every it-
eration will trigger the adaptation to a batch set of changes
to the graph. Call data was streamed into the system with
a speed up factor of 15, to increase the amount of buffered
changes per iteration, further testing the adaptive algorithm
performance. The dataset yielded weekly addition/deletion
rates of 8 and 4%, respectively, which is higher than those
reported previous studies due to the shorter period of analy-
sis [10]. This turnover is low enough to advise to keep most
of the unchanged graph in memory, rather than re-loading
from scratch.
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Figure 9: Evolution of the number of cuts nor-
malised to the total number of edges (Left) and aver-
age iteration (step) time (Right) during the 4 weeks
of available data. The experiments were performed
in a cluster of 5 96GB RAM, 10 GbE, 12 core work-
ers.

.



We run the clique finding application in two separate clus-
ters, with and without the adaptive algorithm. Figure 9
shows the weekly results in both cases. It can be seen
that the adaptive partitioning maintained a stable number
of cuts, resulting in consistently reduced time per iteration
(less than 50% time per iteration). Moreover, weekly trends
show the the non-adaptive option experiences farther per-
formance degradation over time due to the higher cut ratio.

5. RELATED WORK
To the best of our knowledge, there is no single approach

that satisfies all the challenges we outlined in Section 1.1.
Our algorithm adapts partitioning to large scale graph changes
while 1) minimising the number of cut edges to reduce com-
munication overhead, 2) producing balanced partitioning
with capacity capping for load balancing, and 3) relying only
on decentralised coordination based on a local vertex-centric
view. The heuristic is generic and can be applied to a variety
of workloads and application scenarios.

The idea of partitioning the graph to minimise network
communication is not new and it has inspired several tech-
niques to co-locate neighbouring vertices in the same host
[5, 26, 15, 23, 6, 4, 11]. These approaches try to exploit the
locality present in the graphs, whether due to the vertices
being geographically close in social networks, close molecules
establishing chemical bonds, or web pages related by topic or
domain, by placing neighbouring vertices in the same parti-
tion. The work presented in [35], where the authors authors
evaluate a set of simple heuristics based on the idea of ex-
ploiting locality, and apply them on a single streaming pass
over a graph, with competitive results and low computa-
tion cost. The authors show the benefits of this approach
in real systems. However, the streaming technique adopted
requires global information, which can become an scalability
bottleneck whereas our approach relies only on local infor-
mation.

Community detection algorithms concentrate on finding
groups vertices that are more densely connected internally
than with the rest of the network. Unfortunately, as these al-
gorithms are designed to extract the underlying community
structure, they do not focus on finding balanced partitions
in the number of vertices or edges. Moreover, given these
algorithms are very sensitive to the graph structure, small
changes to the graph can lead to very different partitions
and too many vertex migrations [17].

The parallel version of METIS [14], ParMETIS [25], lever-
ages parallel processing for partitioning the graph, through
multilevel k-way partitioning, adaptive re-partitioning, and
parallel multi-constrained partitioning schemes but requires
a global view of the graph that greatly reduces its scalability
[32]. Other techniques have been explored that study graph
properties projected onto a small subset of vertices [18, 11].
These may be effective in some particular contexts, but they
are not broadly applicable. [40] uses label propagation [29],
to feed a linear programming solver that iteratively opti-
mises the partitioning. However, the approach makes use
of global information, which complicates its application as a
scalable solution for adapting to graph dynamism.

The need to continuously adapt to the evolution of the
graph, without the overhead of re-loading an updated snap-
shot of the graph or re-partitioning from scratch, has been
recently reported in practical [31, 22, 12] and more theoret-
ical [24] studies. However, the previously mentioned tech-

niques cannot handle structural graph changes, either de-
grading partition quality, or fully triggering the partition
process. Recently, a different approach attempts to dynam-
ically adapt the partitioning of the graph to the bandwidth
characteristics of the underlying computer network to max-
imise throughput [8]. Their decisions are not local and their
scalability level was tested up to 100 GB graph, while our
100 million vertex graph occupied 3 TB once loaded in RAM.

6. CONCLUSIONS
We have presented the first algorithm for adaptive par-

titioning of large dynamic graphs. We consciously chose a
lightweight heuristic that relies on local per-vertex informa-
tion only, allowing the algorithm to scale to large graphs but
also accommodate high graph update rates. Our heuristic
provides a good tradeoff between minimising the number of
cut edges across partitions and balanced partitioning. We
have shown that the algorithm can adapt the partitioning to
the dynamism of the underlying graph at very large scales
under extreme conditions (instantaneous addition of an ad-
ditional 10% of a massive graph). Indeed, in some scenarios
its performance is competitive with centralised best-of-breed
partitioning algorithms like METIS.

By integrating the algorithm as a component of our paral-
lel and distributed graph processing system, we have demon-
strated its effect on performance for real-world graph anal-
ysis. The algorithm copes with continuous changes to the
graph structure, maintaining the quality of partitioning over
time. Despite the small additional computational cost intro-
duced by the algorithm it diminishes effectively (more than
halves in our experiments) the total computational time on a
series of problems. This is achieved by diminishing the inter-
node communication between the cluster nodes, as a result
of the minimisation of the cut edges. The initial overhead
incurred by moving vertices to other partitions is rapidly
overcome by the gain obtained from better placement.

For our future work, we would like to explore two main
directions. First, as many graph algorithms like PageRank
have a complexity that is proportional to the number of
edges, we would like to extend our heuristic to create parti-
tions that are balanced on the number of edges. This should
have an impact on the load balancing of the system. Second,
we would like to take into account runtime statistics, such
as the hot spots (i.e. partitions that are more active than
others), in order to achieve a better load balancing of the
system.
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