6 research outputs found

    Text-Independent Automatic Speaker Identification Using Partitioned Neural Networks

    Get PDF
    This dissertation introduces a binary partitioned approach to statistical pattern classification which is applied to talker identification using neural networks. In recent years artificial neural networks have been shown to work exceptionally well for small but difficult pattern classification tasks. However, their application to large tasks (i.e., having more than ten to 20 categories) is limited by a dramatic increase in required training time. The time required to train a single network to perform N-way classification is nearly proportional to the exponential of N. In contrast, the binary partitioned approach requires training times on the order of N2. Besides partitioning, other related issues were investigated such as acoustic feature selection for speaker identification and neural network optimization. The binary partitioned approach was used to develop an automatic speaker identification system for 120 male and 130 female speakers of a standard speech data base. The system performs with 100% accuracy in a text-independent mode when trained with about nine to 14 seconds of speech and tested with six to eight seconds of speech

    Temporal integration of loudness as a function of level

    Get PDF

    Tracking moving objects in surveillance video

    Get PDF
    The thesis looks at approaches to the detection and tracking of potential objects of interest in surveillance video. The aim was to investigate and develop methods that might be suitable for eventual application through embedded software, running on a fixed-point processor, in analytics capable cameras. The work considers common approaches to object detection and representation, seeking out those that offer the necessary computational economy and the potential to be able to cope with constraints such as low frame rate due to possible limited processor time, or weak chromatic content that can occur in some typical surveillance contexts. The aim is for probabilistic tracking of objects rather than simple concatenation of frame by frame detections. This involves using recursive Bayesian estimation. The particle filter is a technique for implementing such a recursion and so it is examined in the context of both single target and combined multi-target tracking. A detailed examination of the operation of the single target tracking particle filter shows that objects can be tracked successfully using a relatively simple structured grey-scale histogram representation. It is shown that basic components of the particle filter can be simplified without loss in tracking quality. An analysis brings out the relationships between commonly used target representation distance measures and shows that in the context of the particle filter there is little to choose between them. With the correct choice of parameters, the simplest and computationally economic distance measure performs well. The work shows how to make that correct choice. Similarly, it is shown that a simple measurement likelihood function can be used in place of the more ubiquitous Gaussian. The important step of target state estimation is examined. The standard weighted mean approach is rejected, a recently proposed maximum a posteriori approach is shown to be not suitable in the context of the work, and a practical alternative is developed. Two methods are presented for tracker initialization. One of them is a simplification of an existing published method, the other is a novel approach. The aim is to detect trackable objects as they enter the scene, extract trackable features, then actively follow those features through subsequent frames. The multi-target tracking problem is then posed as one of management of multiple independent trackers

    Temporal integration of loudness as a function of level

    Full text link

    Brain Computations and Connectivity [2nd edition]

    Get PDF
    This is an open access title available under the terms of a CC BY-NC-ND 4.0 International licence. It is free to read on the Oxford Academic platform and offered as a free PDF download from OUP and selected open access locations. Brain Computations and Connectivity is about how the brain works. In order to understand this, it is essential to know what is computed by different brain systems; and how the computations are performed. The aim of this book is to elucidate what is computed in different brain systems; and to describe current biologically plausible computational approaches and models of how each of these brain systems computes. Understanding the brain in this way has enormous potential for understanding ourselves better in health and in disease. Potential applications of this understanding are to the treatment of the brain in disease; and to artificial intelligence which will benefit from knowledge of how the brain performs many of its extraordinarily impressive functions. This book is pioneering in taking this approach to brain function: to consider what is computed by many of our brain systems; and how it is computed, and updates by much new evidence including the connectivity of the human brain the earlier book: Rolls (2021) Brain Computations: What and How, Oxford University Press. Brain Computations and Connectivity will be of interest to all scientists interested in brain function and how the brain works, whether they are from neuroscience, or from medical sciences including neurology and psychiatry, or from the area of computational science including machine learning and artificial intelligence, or from areas such as theoretical physics
    corecore