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Abstract

The thesis looks at approaches to the detection and tracking of potential objects of
interest in surveillance video. The aim was to investigate and develop methods that
might be suitable for eventual application through embedded software, running on
a fixed-point processor, in analytics capable cameras.

The work considers common approaches to object detection and representation,
seeking out those that offer the necessary computational economy and the potential
to be able to cope with constraints such as low frame rate due to possible limited
processor time, or weak chromatic content that can occur in some typical surveillance
contexts.

The aim is for probabilistic tracking of objects rather than simple concatenation
of frame by frame detections. This involves using recursive Bayesian estimation.
The particle filter is a technique for implementing such a recursion and so it is
examined in the context of both single target and combined multi-target tracking.

A detailed examination of the operation of the single target tracking particle
filter shows that objects can be tracked successfully using a relatively simple struc-
tured grey-scale histogram representation. It is shown that basic components of
the particle filter can be simplified without loss in tracking quality. An analysis
brings out the relationships between commonly used target representation distance
measures and shows that in the context of the particle filter there is little to choose
between them. With the correct choice of parameters, the simplest and computa-
tionally economic distance measure performs well. The work shows how to make
that correct choice. Similarly, it is shown that a simple measurement likelihood
function can be used in place of the more ubiquitous Gaussian.

The important step of target state estimation is examined. The standard weighted
mean approach is rejected, a recently proposed maximum a posteriori approach is
shown to be not suitable in the context of the work, and a practical alternative is
developed.

Two methods are presented for tracker initialization. One of them is a simplifi-
cation of an existing published method, the other is a novel approach. The aim is
to detect trackable objects as they enter the scene, extract trackable features, then
actively follow those features through subsequent frames. The multi-target tracking
problem is then posed as one of management of multiple independent trackers.
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Chapter 1

Introduction

1.1 Intelligent video analysis

The development of automatic intelligent video content analysis [1], or video ana-

lytics, is an important goal for both the commercial and public sector surveillance

industry [2, 3]. The field of computer vision has made some progress towards that

goal in the last twenty years. The detection and tracking of well defined objects

such as faces is now a standard feature in many low cost digital cameras; video

systems capable of automatic number plate recognition (ANPR) and analysis are

commonplace on motorways, controlled car parks and petrol station forecourts. The

ubiquity of such systems might suggest that machines are approaching animal vision

capabilities. The reality is that the success in the fields of face detection and ANPR

has been reliant on the particular distinctiveness and repeatability of the features

being detected. Computational systems in the field of general object detection and

tracking are still very far from those developed by nature.

The aspirations and expectations of the closed circuit television (CCTV) and

surveillance community for video analytics are high. The mainstay of the CCTV

industry remains that of recording footage for post-event forensics. If it were possible

for systems to recognize image sequences with potential content of interest, within

hours of relatively event free video, then they might be able to intelligently adjust

recording rates and increase the efficiency of image storage. Alternatively, analytics

systems might simply produce a record of frame numbers and times at which events

of interest may have occurred, so that scrutiny of the recorded footage might be

made a little more efficient. A current common approach is to use triggers based

upon video motion detection (VMD). This works by monitoring predefined regions

within the video frame and simply looking for increased pixel variability. But video

analytics aims for much more than simply archiving footage showing increased pixel

intensity variation. Potential content of interest might be unusual behaviour of
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objects in the field of view, such as running, loitering, fighting, increased crowd

activity, area perimeter violation, illegal parking or vehicle driver behaviour etc.

In addition to event logging, automatic recognition of this content might be used

to alert CCTV control room operators with the responsibility of monitoring mul-

tiple feeds in real-time leading to greater observational efficiency. Detection and

tracking of objects of interest can also lead to statistical analysis of video content

to determine commercially useful information such as navigational strategies of cus-

tomers in stores, consumer pause behaviour linked to either product placement or

promotional signage etc.

Analytics applications such as those described above require the detection and

tracking of objects that are more variable and less well defined than faces and vehicle

licence plates. Pedestrians and vehicles, for example, can present a variety of ap-

pearances and colours dependent upon angle of view, perspective and lighting. The

intense academic activity in the analytics related fields during the last twenty years

has led to a wide range of avenues being explored with some impressive theoretical

advances [4, 5, 6]. But despite those theoretical advances there has been relatively

little successful transfer to commercially useful analytics products.

1.2 Aims and constraints

The overall aim of the work was to examine approaches to object detection and

tracking with a focus on the development of computationally economic analytics-

related algorithms for possible product development in specific surveillance CCTV

systems [7]. The eventual analytics real-time applications would be expected to

run as embedded software in a particular digital signal processor (DSP). It was

not an aim of the work to develop the embedded software itself; it was, instead, to

look for pathways from the recent theoretical advances to practical interpretations,

approximations and simplifications in order to increase the chances of commercially

useful implementation.

The constraints were defined both by the architecture of the processor and the

typical circumstances in which the analytics software would be expected to oper-

ate. The processor of interest was from the CW5XXX family of video signal pro-

cessors (VSPs) [8]. The CW5631 System on Chip (SoC) processor was designed

specifically for imaging applications. It is a single instruction multiple data (SIMD)

device providing sixteen 32-bit parallel processor data paths that can work off a sin-

gle instruction. The SoC contains a fixed-point DSP and an ARM RISC processor

for control operations and system code. The main role of the processor is to deal

with video capture from the imaging sensor, carry out basic image processing and
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camera related tasks such as contrast adjustment, MPEG compression etc. Any an-

alytics software would have to share processor time with those tasks. The maximum

processor speed is 360MHz, so processing time would be limited in comparison to

PC based systems. An initial design aim was for a working rate of 5 frames per

second (fps) for analytics applications. The low frame rate would put constraints

on the techniques available: calculations of optical flow, for example, are not going

to be reliable at those frame rates.

The fixed-point nature of the DSP meant that operations like division, extrac-

tion of square roots, calculations of logarithms and trigonometric functions etc. are

going to be time consuming, so an aim was to find approaches that do not rely heav-

ily on such calculations. The absence of floating point representation meant that it

will be prudent to avoid approaches that might be sensitive to arithmetic rounding

errors. The SIMD nature of the processor meant that algorithms that are paral-

lelizable would be attractive; algorithmic stages that are not readily parallelizable

would lead to computational bottlenecks. Analytics software for CCTV security

and surveillance applications can expect to meet situations in which chromatic in-

formation is weak [1]. Street sodium lighting can return a near monochromatic

image. Similarly, fluorescent lighting in public areas such as subways can return

little colour information. This, coupled with the tendency for people to adopt low-

key colours for their clothing, and for some locations to have a predominance of

overcast weather, suggests that it would be prudent to develop a tracker capable of

operating with intensity information only. Systems developed to operate effectively

with intensity only input have the added commercial attractiveness of the potential

to be used with legacy monochromatic systems and with the developing infra-red

camera technology [9].

The video sequences used for the exploration of the techniques were chosen to

reflect the constraints and present particular challenges. Example frames from some

of the sequences are shown in Figure 1.1. The ‘Overhead’ sequence, Figure 1.1(a),

shows targets that change shape significantly as they move through the view. There

is a step change in the background illumination (around row 200) such that the

targets show an additional appearance change as they move across the step. In

addition there are illumination changes as the camera auto-iris responds to sunlight

on the floor in the upper half of the frame. The ‘Square’ sequence, Figure 1.1(b),

offers a perspective view with pedestrian targets having varying heights in the frame.

Two of the targets have similar appearance and their paths cross. The overlapping

pedestrians in the foreground of the frame have clothes items with colors close to

that of the background. The ‘Yard’ sequence, Figure 1.1(c), involves a group of

pedestrians with similar appearance. They move closely and overlap in some frames.
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Figure 1.1: Example frames from sequences used
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The ‘iLIDs’ sequence [10], Figure 1.1(d), focuses on vehicles for which the size varies

significantly as they move through the frame. The sequence involves some slight

camera movement and sunlight illumination changes. The ‘PETS2001’ sequence [11],

Figure 1.1(d), offers a mixture of pedestrians and vehicles. The pedestrians are

relatively small in the image and hence involve the need for the system to track

small groups of pixels. The vehicle moves across the frame, stops, and then reverses

into the road junction. It presents a significant change of appearance, over a short

sequence of frames, as it moves out of the junction. The ‘PETS2006’ sequence [12],

Figure 1.1(d), presents a group of pedestrians, with similar and relatively uniform

appearance, that overlap as they move past each other.

The aim is to produce a single tracking system capable of dealing with the variety

of appearances found in such sequences.

1.3 Approaches to object detection for tracking

Animal vision systems have evolved to respond to changes against a background

scene, focus attention on that change and track it [13]. They are capable of quickly

evaluating the change and determining if it is associated with a known object class

or otherwise. There is no fundamental requirement that artificial vision systems

should have algorithmic architectures directly drawn from animal ones but the broad

principles do apply: objects of interest show up in frame-to-frame differences and

image regions that differ from background. One approach to object tracking is to

detect those differences, find some features of the object linked to those differences

and track the signature.

An alternative approach is to start from the characteristics of a known object

class and carry out frame-to-frame searches for evidence of that class. Once an

object of interest is detected, keeping track of it can reduce the search area and help

to resolve difficulties when it might become temporarily occluded. Detection and

tracking complement each other, high-quality detection helps to maintain reliable

tracking, reliable tracking can help to produce high-quality detection. The difficult

step is that of extracting high-quality trackable characteristics at the point where

a target of interest is first detected. Cannons [4] points out it is very common in

the research field to see tracker initialization carried out either manually or via a

separate detection module. Commercial systems cannot have the convenience of

manual tracker initialization, they must automatically respond, discriminate and

track.

Typical commercial systems rely on static camera views, background scene mod-

eling and ‘blob’ production by thresholded subtraction of a background reference
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image from the current video frame. While background subtraction blob-based sys-

tems are common, they can suffer significantly at the blob interpretation step. The

blobs do not necessarily correspond to complete targets, multiple targets can merge

into single blobs. Simple tracking of blob centroids is not sufficient for analytics

application. The property of being ‘not background’, however, is one of a number

of features that can be drawn upon for potential target identification.

With this in mind the thesis starts by considering the common background mod-

eling approaches found in the literature. It recognizes that animal vision supple-

ments the ‘not background’ and ‘consistent motion’ features by interpreting the

information in terms of known object models. It is common in tracking to try to fit

‘top down’ information, such as templates or contours, onto the blob patterns [4]; ex-

amples are considered where appropriately sized simple shapes are used in this way.

In attempts to be free of difficulties linked to background modeling some tracker

initialization and update approaches have been based upon salient characteristics

of target objects; examples of such approaches are considered in order to illustrate

their computational overheads.

1.4 Probabilistic vs concatenative tracking

In cases where targets are expected to be well separated and the image preprocessing

returns distinct blobs corresponding to the targets then tracks can be constructed

by connecting blob centroids with their nearest neighbour in the preceding frame.

A similar process can be used if object positions are extracted in the salient feature

approaches. But the aim of tracking is much more than simply constructing paths

by concatenation of target detections, its role is to produce a predictive system in

which a model of the motion can be developed.

Comaniciu’s popular mean-shift approach to tracking [14] has concatenative

characteristics; it builds on recent observations using the last frame object position

as the starting point of a gradient-descent style optimization movement towards the

position in the current frame. It does not have an in-built mechanism for speculative

search. The previous-frame object tracking window has to overlap the target in the

current frame for the process to succeed. Fast moving or occluded objects are likely

to be lost.

Probabilistic tracking of objects in video sequences allows the system to use

information from recent frames to predict the location in the current frame. This

limits the object detection search space so that computational resources can be

efficiently used. It also helps in the resolution of occlusion issues when similar

objects pass each other, or when tracked objects disappear behind obstacles.
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The sequential nature of video frames means that Bayesian probability ap-

proaches will be appropriate. In a Bayesian approach the probability density of

a proposed target position can be constructed using a transition probability, de-

rived from the estimated target position in the preceding frame, complemented by

a likelihood factor derived from measurements in the current frame.

1.5 Thesis structure

The thesis aims to explore all aspects of the target tracking task. This involves

making decisions about the most appropriate target representation, efficient tracker

maintenance, whether to track targets individually or to see individual target track-

ers as components in a composite tracking system. An overview of object detection

techniques is presented in Chapter 2. It is a context-setting treatment. It focuses

on approaches that have become standard and form the basic toolkit for workers in

the field. It allows for the development of broad concepts and terminology that can

be drawn on in later chapters.

Chapter 3 looks at the general basics of sequential Bayesian estimation. The

mathematics of Bayesian recursion is reviewed and details of approaches that im-

plement the recursion are given. In the restricted case in which prediction and mea-

surement error are assumed to be Gaussian, and the prediction and measurement

functions are linear, the recursion can be implemented using the Kalman filter (KF).

In cases where the linearity constraints are not fully met the Extended Kalman fil-

ter (EKF) can be used. Both the KF and the EKF require that a separate detection,

or measurement, step be used to deliver the proposed target position. The task of

the filters is then to return the best estimate of state and uncertainty given the

detections. In the case of noisy measurements the best estimates of state can re-

turn a relatively smooth trajectory through the scatter. In the event of occlusion or

other track loss events the trajectory can be maintained until reliable detection is

recovered.

A more general method that can incorporate the measurement step directly in

its implementation, and return estimates of state and trajectory, is the particle

filter (PF). This is a Sequential Monte Carlo (SMC) method that does not rely

upon function linearity or Gaussian uncertainty. The particle filter is introduced, a

broad picture of its implementation is developed, and an indication is given of some

variants found in the literature.

Chapter 4 presents a selection of approaches to the multi-target tracking problem.

The aim is to give an overview of the range of approaches developed in attempts

to deal with multi-target tracking problems that arise in different contexts, and to
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consider if the approaches, or elements of them, should be adopted in the context

of this work.

Given the scene setting aspects of chapters 2 to 4, Chapter 5 takes the first steps

in looking at practical tracker implementation issues. It looks at each stage of the

filtering process, and illustrates the stages with simple single tracker examples.

Chapter 6 makes a deeper consideration of implementation practicalities with a

critical examination of the choice of particle filter parameters, likelihood functions

and distance measures etc. The aim is twofold: to see if any choice of parameters or

functions is more likely than others to give more reliable tracking, and to consider

if computationally more attractive simplifications of the functions could be applied.

Chapter 7 focuses on the state estimation and particle re-sampling steps. The

consideration of the re-sampling step is an examination of approaches in terms of

their quality and computational demand. The consideration of the state estimation

step is motivated, on one hand, by a recent claim of a theoretically optimal approach,

on the other hand by its importance in the issue of maintaining tracker identity in

multi-target situations with occlusion and possible track coalescence.

Chapter 8 considers practicalities of tracker initialization. The overview of object

detection and representation techniques in Chapter 2 led to the conclusion that only

limited aspects of them would be usable given the constraints of the problem being

considered. Two practical alternative detection approaches are suggested for the

identification of trackable objects. One of the approaches calls for background image

construction; a simple and effective method is described.

Overall conclusions, followed by suggestions for further development, are given

in Chapter 9.

1.6 Contributions

The work suggests that object tracking can be carried out effectively in low-resolution

grey scale video using simple particle filters. It examines the choice of feature dis-

tance measures, likelihood functions and parameters in the basic particle filter and

concludes that, if the parameters are chosen appropriately, the choices of distance

measure and likelihood function are not critical. The findings were published in the

journal Image and Vision Computing with the title ‘Choice of similarity mea-

sure, likelihood function and parameters for histogram based particle

filter tracking in CCTV grey scale video’ [15].

It is common in the application of the particle filter to choose the weighted mean

of the states as the filtered state. It is also common to see that choice being criticized

in the field. In Chapter 7 a recent (2008) suggestion [16] of a theoretically sound
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particle-based maximum a posteriori (MAP) estimator is examined and found to

be not adequate in practice. A practical alternative is developed, based upon the

recognition that target probability density functions (pdfs) often are characterized

by only a couple of dominant modes. The alternative simply identifies the dominant

and the strongest sub-dominant modes and chooses the one of them most likely to

belong to the tracked object. It is shown that this mode selection process works

well with crossing and closely moving similar targets.

In Chapter 8 a practical simplification of an established pedestrian detection

technique is described. In addition, an alternative and novel histogram based detec-

tion method is developed. The method was presented at the ‘International Confer-

ence on Emerging Security Technologies 2011’ and published in International Jour-

nal of Grid and Distributed Computing with the title ‘Histogram-based detection

of moving objects for tracker initialization in surveillance video’ [17]

1.7 Mathematical notation

It is a feature of the field of study that a consistent symbolic convention for the

description and labeling of images and object tracking processes has yet to emerge.

There are almost as many conventions as there are academic groups working in the

field. Different groups often use the same notation to describe different things, and

many differ in the notation they choose to describe things that are common across

the groups. An attempt has been made in this thesis to describe the work of others

using a consistent mathematical notation.

Scalar variables are described using European or Greek letters in lower case

normal font e.g. ns for number of states, ρ for histogram dissimilarity distance etc.

A lower case subscript t is used to indicate both continuous or frame stepped time.

Lower case superscripts are used to label members of a set e.g. wi
t indicates the

ith weight at time t. Where there might be confusion between a label index and a

mathematical power the index is enclosed in brackets e.g. w
piq
t .

Vectors are described using lower case bold font e.g. xt for target state at time t,

ν for multi-dimensional process noise etc. Matrices are described using upper case

normal font. All images are described using a normal font upper case I and their

type is indicated using subscripts. For example, the Greek ∆ indicates differences

so a difference image produced by background subtraction would be I∆B, a binary

image produced by background subtraction and then thresholding with a threshold

θ would be I∆Bθ. A temporal difference image will be I∆t, but to indicate an image

at time t the time subscript is separated from the description subscripts by a comma

e.g. I∆B,t to represent the image produced by background subtraction at time t.
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In order to be consistent with the notation used in the majority of papers in the

field of multi-target tracking, the multi-target state and measurement are described

using upper case bold letters e.g. X and Z respectively. In some works the multi-

target state represents a set of single target states, in others it is a vector formed

by concatenation of single object states, and in others it is a matrix. The notation

chosen embraces all of the alternatives and it is assumed that the interpretation can

be inferred from the context.

There are a few instances where it is clearer to use a research group’s original

notation; in such situations the alternative symbolic convention is described in the

text.
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Chapter 2

Object detection and

representation

2.1 Introduction

The aim of this chapter is to provide an overview of the object detection ‘toolkit’ that

has underpinned approaches to the development of algorithms for object tracking

in video. Most of the approaches generally have been associated with desktop PC

based implementation with access to GHz processing and no restrictions on floating

point operations. Their transferability to a more restricted processing environment

is limited, but a consideration of their principles of operation is of value. It provides

the opportunity for informed rejection of some approaches whilst selecting useful

elements of some of them for practical application. Object detection can have a role

both in the initialization of trackers and the subsequent update of the trackers as

the object moves through the scene, although it is not essential that the detection

method is the same in both cases.

A good proportion of commercial analytics products developed to date, such as

virtual tripwires and object trackers, appear to use static cameras and background

subtraction, so a significant section of the chapter, Section 2.2, is spent consider-

ing basic background modeling methods. Alternatives based upon temporal frame

differencing are considered in Section 2.3. Section 2.4 looks at approaches that fit

shapes to blob patterns resulting from background subtraction

In recognizing the limitations of background subtraction based methods other

research paths have led to systems designed to look for specific characteristics of

objects of interest; Section 2.5 looks at methods that involve image search for salient

object characteristics. Some particle filter based trackers have incorporated such

approaches in the initial detection stage so it is of interest to outline the principles

of the methods.
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SUBTRACTION

It is common, in published work, to see studies of tracker development and

behaviour after manual initialization of the track. A representation, or signature, of

the target is extracted at the initial step and then subsequent frames are searched

for evidence of that representation. The outcome of the search then constitutes the

frame detection. The representation is updated to accommodate slight variations

evidenced by that outcome. Vision related particle filters, being based upon a

likelihood calculation, tend to be representation based. Section 2.6 looks at a range

of methods that have been used to extract a trackable target representation.

2.2 Detection approaches based upon background

subtraction

In background modeling based target identification a representation of the image

background is developed and subtracted from the current image in order to produce

foreground. It is generally assumed that both the background scenery and the

camera remain fixed in position. A background reference image IB is built up over

a sequence of frames. A binary ‘blob’ image I∆B is made by pixel-wise subtraction

between the background and the current image frame It and then thresholding the

absolute differences:

I∆Bpx, yq “ p|IBpx, yq ´ Itpx, yq| ą θq (2.1)

where θ is a scalar threshold.

Drawing on the psychophysical definition of visibility of an object, Fuentes and

Velastin [18] chose to use luminance contrast instead of intensity difference. Working

with the luminance component of the luminance chromacity (YUV) color system,

they defined luminance contrast as the relative difference between object luminance

Yt and the surrounding background luminance YB i.e.

Cpx, yq “
Ytpx, yq ´ YBpx, yq

YBpx, yq
(2.2)

As the expected component values were in the range r0, 255s they redefined null

(zero) values for the background to be 1 to avoid infinities in the contrast. They

found that a manually selected absolute contrast threshold value of between 0.15

and 0.2 produced satisfactory segmentation.

A problem with background subtraction, especially in the case of monochrome

images, is that regions within the object of interest having pixel values close to

background will not be identified. It is generally necessary to apply to the blob
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(a) (b)

Figure 2.1: Background subtraction: (a) intensity image, (b) blob image

image morphological operations of dilation, erosion, hole filling etc. to remove noise

and produce well defined regions for further analysis. A typical resulting binary

image is shown in Figure 2.1(b).

Background modeling approaches that are commonly quoted in CCTV surveil-

lance analytics systems are identification of pixel temporal consistency, approximat-

ing median, Gaussian representation, mixture of Gaussians, local region histograms

and local region classifiers. The underlying principles associated with those ap-

proaches are described in the following sections.

2.2.1 Identification of temporally consistent pixel values

An early method for background reference image construction involved a simple

classification of pixel values into those associated with probable moving objects

and those that are probably part of the fixed scene. Collins et al. [19] determined

that a pixel could be classified as belonging to a moving object if the ‘three frame’

differences were greater than a threshold i.e.

|Itpx, yq ´ It´1px, yq| ą θtpx, yq ^ |Itpx, yq ´ It´2px, yq| ą θtpx, yq (2.3)

If the absolute differences were less than the threshold, resulting in a ‘non-

moving’ classification, then the pixel value could be classed as background. The

initial background was taken to be the first image, i.e. IB,0px, yq “ I0px, yq and the

initial threshold θ0px, yq was manually set to a non-zero value. With the assumption

that the variation of background pixel intensity over time might be described by a

normal distribution, the threshold was developed to be an approximation to 5 times

the standard deviation of the pixel value. When the temporal differences indicated

that the pixel should be classed as ‘non-moving’ the background value was fraction-

ally updated with the current intensity value, otherwise the background value was
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unchanged i.e.

IB,tpx, yq “

$

&

%

αIB,t´1px, yq ` p1 ´ αqItpx, yq x is non-moving

IB,t´1px, yq x is moving
(2.4)

The threshold was updated in a similar way using the absolute deviation of the

intensity value from the current background:

θtpx, yq “

$

&

%

αθt´1px, yq ` p1 ´ αqp5 ˆ |Itpx, yq ´ IB,tpxq|q x is non-moving

θt´1px, yq x is moving
(2.5)

where α is a constant determining the update rate.

In a given frame the pixels classed by the temporal differences as ‘moving’ were

clustered into connected regions. Holes in the resulting ‘blobs’ were filled using

background subtraction to identify the additional pixels associated with the moving

objects.

2.2.2 Temporally consistent pixel regions and colour edges

A related approach was used by Piscaglia et al. [20], but in this case the foreground-

background weighting was a little more complicated. Pixels in the incoming frame

Itpx, yq were subtracted from the current background IB,tpx, yq to produce a back-

ground subtraction image. The incoming frame was also subtracted from the imme-

diately preceding frame to produce the temporal difference image. A moving object

presents foreground intensity values at its leading edges and uncovered background

values at its trailing edges. By comparing pixel values in the temporal difference

image and the background subtraction image, and then using a region growing pro-

cess to find ‘flat’ intensity zones in the background and current images, i.e. groups

of pixels that are locally connected by intensity uniformity, they were able to as-

sign a background probability weight WItpx, yq to current frame pixels. The new

background pixel value was a weighted combination of current frame and recent

background values:

IB,tpx, yq “
WIB,t´1

px, yqIB,t´1px, yq ` WItpx, yqItpx, yq

WIB,t´1
px, yq ` WItpx, yq

(2.6)

WIB,t
“ WIB,t´1

px, yq ` WItpx, yq (2.7)

The approach was developed further by Cavallaro et al. [21, 22, 23]. They looked

at local 5 ˆ 5 pixel windows. It was assumed that background pixel temporal vari-

ation could be described by a Gaussian distribution. The squared deviation of each
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pixel intensity from the mean of the background values within the window was cal-

culated. The sum of the 25 pixel squared deviations from the mean in the window

could then be expected to have a χ2 distribution. For foreground object detection

the segmentation threshold could then be set as a standard statistical significance

value based upon a χ2 test.

Object detection was also reinforced by focusing on the consistency of colour

edges in the separate Y, Cr, and Cb channels of the video. The absolute differences

between each channel in the current frame and those in the background reference

frame were extracted. A Sobel edge detector was used on the differences. The edge

maps from each channel were then fused using a logical or operator. This allowed

the identification of edges that would be lost in a straight intensity subtraction where

different hues might have similar brightness. The resulting fused edge map was then

successively dilated and eroded to close the contours and fill in the region.

2.2.3 Temporal median of pixel values

Using a simplifying assumption that in a sequence of video frames a pixel value

might represent the background more frequently than it represents an object mov-

ing through the scene, one could take either the mode or the median of the se-

quence of values to represent the background. It would, however, demand memory

space in order to store a representative batch of frames from which to extract the

statistics. To avoid the need for accumulating a batch of pixel values, McFarlane

and Schofield [24] maintained a running estimate of the median, referred to as the

‘Approximating Median’, by incrementing the background pixel value by 1 if the

corresponding pixel values in the current image is greater than background, and

decrementing by 1 if it is less than it. This estimate eventually converges to a value

for which half of the input pixel values are larger than and half are smaller than it

i.e. the median.

The principle was extended in the Σ ´ ∆ (i.e. sum-difference) background es-

timation method described by Manzanera and Richefeu [25] by applying the same

principle to the absolute deviation of the current pixel value from the background

in order to maintain an approximating standard deviation. This was then used for

segmentation purposes: pixel values that were more than one standard deviation

from the median were taken to be foreground.

A drawback to the Approximating Median approach is its slow response to change

and progressive contamination by slow moving foreground objects. If an initial

background representation is being built up from a starting frame, with objects

moving to reveal background, then an intensity difference having a numerical value

∆ between background pixel and an object pixel, with unit pixel value increments,
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would require a sequence of frames ∆ long to adapt.

The slow update means that it is sensitive, like other background schemes, to

rapid global illumination changes. Vijverberg et al. [26], using the Approximating

Median, compensated for fast illumination changes by first computing the current

background differences I∆B,tpx, yq “ Itpx, yq ´ IB,tpx, yq, then building a histogram

of differences h∆rus with u P r´255, 255s for all pixel locations. They applied a best

fit Gaussian, a mixture of Gaussians or a Laplacian to the histogram. They then

segmented the foreground IF,tpx, yq if the measured differences I∆B,tpx, yq differed

significantly from the mean µt of the fitted distribution i.e:

IF,tpx, yq “

$

&

%

255 if |I∆,tpx, yq ´ µt| ą θ

0 otherwise
(2.8)

2.2.4 Gaussian representation of background pixel values

An alternative to recursive median or mean update is to explicitly represent the

background pixel value by a Gaussian i.e. IB,tpx, yq „ N pµtpx, yq,Σtpx, yqq. The

model mean µt and covariance Σt are learned from observations of the pixel value

over a sequence of frames. Rather than extracting the parameters from a batch of

image frames they can be estimated recursively from a sequence. Wren et al. [27],

in their human body motion modeling system, modeled each background pixel as a

multi-variate Gaussian in YUV colour space. The authors’ main focus was that of

tracking a single person in a relatively static office type environment. They identified

the person by the colour and ‘blob’ shape in the background subtracted image. Non-

person regions could then be classed as background. For each background pixel the

Gaussian mean and variance were updated using simple adaptive filters:

µtpx, yq “ αItpx, yq ` p1 ´ αqµt´1px, yq (2.9)

σ2
t px, yq “ αpIt´1px, yq ´ µt´1px, yqq2 ` p1 ´ αqσ2

t´1px, yq (2.10)

The absolute difference threshold in Eq.(2.1) would then be set as a simple

multiple of the standard deviation i.e. θpx, yq “ kσpx, yq.

Bramberger et al. [28] use a similar Gaussian and simple filter approach with

grey scale video in their Smart Camera Stationary Vehicle Detection system. In

this case, rather than using a simple filter update, a frame buffer holds a small

batch of frames from which the statistics update is drawn.
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2.2.5 Mixture of Gaussians

The approaches described above assume that each background pixel can be repre-

sented by a single set of statistical parameters. In practice the distribution of values

at a single pixel can often be multimodal due to periodic motion of background

objects e.g. swaying tree branches, or regular passage of shadows etc. Stauffer

and Grimson [29, 30] developed an adaptive method that uses a Mixture of Gaus-

sians (MOG) to model a pixel value. It is assumed that each mode in the background

values will have a relatively narrow variance and that the variances of the different

components are independent. Temporal adaptation of the means and variances of

the (typically 2 or 3) Gaussians are determined using an incremental version of the

Expectation Maximization (EM) algorithm. Pixels in the current frame are checked

against the background model with each Gaussian having a probability associated

with it. If a match is found then the parameters of the matched Gaussian are up-

dated. If no match is found then a new Gaussian is introduced into the mixture

with the mean equal to the current pixel value and some initial variance assigned.

Isard and MacCormick [31] took the Gaussian principle further in their BraMBLe

multiple-blob tracking system. They used a 4-component Gaussian mixture for

background pixels and a 16-component mixture for foreground. They used a training

image sequence with foreground objects moving against a static background in order

to determine the most likely component parameter sets.

2.2.6 Multimodal mean

Apewokin et al. [32] developed a system that had similar segmentation performance

to that of the MOG but operated about six times faster, required less storage per

pixel and used only integer operations. Each pixel is associated with a set of up to

k “ 4 mean background representations called ‘cells’, i.e. 4 different background

states are allowed per pixel. Each cell maintains three mean colour component

values. A pixel is associated with a cell if each of the incoming frame pixel colour

components i are within an error margin θEi
of the mean µi for that cell i.e.

ľ

i

|It,ipx, yq ´ µt´1,ipx, yq| ă θEi
(2.11)

Where
Ź

represents multi-variable logical conjunction. When a pixel is found to

match a cell, the component values are used to update a running sum Si“1,2,3px, yq

and increment a counter Cipx, yq associated with each of the three RGB colours for
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that cell. If a match is found for a sequence greater than a count threshold θFG i.e.

˜

ľ

i

|It,ipx, yq ´ µt´1,ipx, yq| ă θEi

¸

^ pCt´1px, yq ą θFGq (2.12)

where θFG is a count below which the pixel is classed as foreground, then the

sums and the counts are updated. At any given time t the component mean val-

ues for a colour component at a given pixel location are computed as µt,ipx, yq “

St,ipx, yq{Ct,ipx, yq. In the authors’ experiments they used θFG “ 3 and θEi
“ 30.

In order to stop the background becoming unrepresentative of gradual change they

decimated the cells every 400 frames by halving both the sum and the count. The ap-

proach has similar characteristics to the MOG, having a variable number of means,

but with preset measures of spread and avoiding the analytical maximization el-

ements. Its simple counting nature makes it attractive for embedded computing

applications.

2.2.7 Local region histograms

Rather than modeling the behaviour of single pixels, local region histograms look

at the colour or intensity profile within a neighborhood region of pixels. This can

accommodate background pixel intensity variation due to slight movement. Ko et

al. [33] allowed for the region intensity histogram associated with each pixel lo-

cation to be temporally updated using a simple recursive filter of the form pt “

p1 ´ αqpt´1 ` αqt, where pt was the developing background histogram associated

with the region, and qt was the corresponding current frame pixel region histogram.

Foreground segmentation was carried out by thresholding the Bhattacharyya dis-

tance [34] between the current and background histograms at each pixel.

Noriega et al. [35] describe a more sophisticated approach in which the back-

ground reference image was partitioned into 12 ˆ 12 pixels overlapping squares. A

colour histogram was computed for each square. The pixel contributions to the his-

togram were modified by a spatial Gaussian kernel such that the central region of

the square carried a higher weight than those at the edges. Within the histogram

the effects of bin quantization were mitigated by sharing each pixel value between

bins using a Gaussian weight.

2.2.8 Local region classifiers

Li, Huang et al. [36] described a Bayesian approach using probabilities of pixel

features based on colour intensity, local colour gradients and temporal colour con-

sistency to characterize the background. The probabilities were updated frame by
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frame using recursive temporal updates of the form described above. They devel-

oped histograms of the principal features to allow them to select the dominant ones

at any time.

Grabner and Roth [37] developed a background modeling approach using a grid

of small overlapping image patches. For each of the patches a classifier was trained

using Adaboost [38] with Haar features, gradient orientation histograms and local

binary patterns. The grid of background classifiers was developed first in a learning

phase and then updated frame by frame using on-line boosting. A similar classifier

was developed for expected foreground objects and the background was updated

when no foreground classes were identified at a grid position. This meant that all

non-object background elements could be incorporated into the background classifier

making it robust to dynamically changing scenery, illumination variations etc.

2.3 Approaches using temporal frame differenc-

ing

Temporal frame differencing offers the advantage of computational simplicity but

its disadvantages make it a poor candidate for object detection. Stationary objects

cannot be segmented. The change mask shows object boundary pixels at the motion

leading edge and background uncovered regions (‘ghosts’) at the trailing edge. It

suffers from a type of ‘aperture problem’ in which uniformly coloured regions within

a moving object boundary do not show in the difference image. However, the ap-

proach has been combined with background approaches described above to reinforce

segmentation decisions.

2.3.1 Using statistics of differences

Cheung and Kamath [39] combined information from both background subtraction

and temporal frame differencing in order to identify foreground objects. They first

found the mean µd and the standard deviation σd calculated from all the pixel

absolute intensity differences between the current and preceding frame. A binary

temporal difference mask was then constructed by identifying pixels for which the

absolute intensity difference was a chosen number of standard deviations away from

the mean i.e:

I∆tpx, yq “

ˆ

||Itpx, yq ´ It´1px, yq| ´ µd|

σd
ą θt

˙

(2.13)

The background model was maintained by tracking the pixel intensity values with a

KF. The state of the KF was described by the background intensity value IB,tpx, yq
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and its temporal derivative I 1
B,tpx, yq. The intensities of those pixels for which the

temporal differences were less than the threshold were used as measurements for the

KFs associated with the pixels.

They partitioned the image into a regular array of rectangular regions. For each

region they constructed a colour histogram for those pixels identified as background.

They fitted bounding ellipses to the combined leading and trailing edges in associated

object blobs in the temporal difference mask. They found the nearest corresponding

object in the previous frame and used the intersection between the two objects to

identify likely object intensities and build a histogram of them. They then used

the background and object histograms to determine the pixels within the current

bounding ellipse that had the greatest probability of being not background and set

them to represent the object.

2.3.2 Looking for object boundary evidence

Yoo and Park [40] used temporal differencing directly to identify foreground objects.

They suggested that when an object moves in front of a uniform background, covered

and uncovered regions appear in pairs around the boundaries and that they have

opposite signs in the difference image. They matched components of the pairs using

the Earth Mover’s Distance (EMD). In this approach local regions of positively

signed difference values were taken to be able to ‘fill’ the negatively signed regions.

The cost of the filling process was proportional to the distance between the regions.

Pixels from positive and negative regions were used as nodes in a bipartite graph.

The capacity of each node was set to the difference associated with it and the cost of

transporting values from one node to the next was set to be the Euclidean distance

between corresponding positions in the difference image. The bipartite graph was

solved using linear programming. To reduce the computational cost they split the

image into 16 ˆ 16 pixel rectangular blocks and calculated the cost of transporting

the information between blocks. Successful pairing allowed them to identify blocks

with significant motion. Appropriate combinations of blocks could then be classified

as target objects. However, the assumption of a uniform background is a weakness

in the approach.

2.3.3 Regions of consistent optical flow

Bugeau and Peréz [41] developed a change detection approach capable of segment-

ing and tracking objects that can be applied to both static and moving cameras.

Each point in a sub-grid of image pixels was described by a 3D YUV colour vector

and a 2D optical flow vector. Optical flow was calculated using the Lucas-Kanade
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method [42]. Points in the feature space were clustered using the mean-shift al-

gorithm [43]. Primary object segmentation was carried out by identifying outliers

against the dominant optical flow. Moving objects were finally segmented by repre-

senting the clusters as a graph in a bi-partitioning graph-cut framework [44]. The

energy function that was minimized had terms describing probabilities for between-

pixel colour, colour gradient, and optical flow.

2.4 Object detection using target model fitting

and tracking

A difficulty with background subtraction blob-based detection is that the detected

foreground regions do not always correspond to objects. The output is dependent

upon the thresholding strategy used. The process can result in single objects seg-

menting as multiple disconnected blobs, single objects producing larger blobs due

to local soft shadowing, and multiple close or overlapping objects producing sin-

gle blobs. The problem can be addressed by either fitting object shape models to

the blob patterns or directly computing the likelihood of a non-background region

corresponding to target objects. In contrast to the methods described above, the

examples described in this section also include tracking through video sequences as

the segmentation is generally based upon information update from frame to frame.

2.4.1 Generalized cylinders

In the BraMBLe multi-blob likelihood approach [31] humans were modeled using a

set of four horizontal discs to produce a ‘generalized cylinder’. The discs, specified by

their radius and height above the ground, defined the areas in the world coordinate

system corresponding to the feet position, the waist position, the shoulders and

the top of the head. The transformation of the cylinder disc extrema from world

coordinates to image coordinates resulted in a stretched octagonal shape in the image

plane. The process required camera calibration. Using a 20-component Gaussian

mixture (4 background classes, 16 foreground classes) they could assign class labels

to points in a grid of 5ˆ5 pixel rectangular regions. Object shapes were then fitted to

the likelihood image and the overall coverage maximized. The objects were tracked

through a multi-frame sequence using a particle filter in which the state vectors had

dimensionality encompassing position, velocity and object shape, and state weights

linked to the model coverage likelihood. The system was computationally intensive

but the authors report that they could achieve real-time tracking, for a small number

of people, using a 447MHz Pentium II workstation.
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2.4.2 Overlapping ellipsoids

Zhao and Nevatia [45] modeled the human shape using overlapping ellipsoids to

describe the head, torso and legs. They allowed for limited configurations of the

leg ellipsoids: both legs together, left leg forward and right leg forward. Similarly,

the allowed angles between the components in the various configurations were quan-

tized into a limited set. The world plane 3D shape model was projected into a 2D

mask using a camera calibration model and an assumption that the objects move

in the ground plane. The identity of individuals was determined by extracting a

colour histogram of the model region. The pixels contributing to the histogram

were weighted using a convex kernel centred on the model. The effect was to give

more weight to pixels in the centre of the object than to those on the boundary so

that contributions from the background were minimized.

A Gaussian background was modeled with components in each of the three colour

channels. The segmentation task was formulated as a Bayesian problem in which

the most probable outcome was expressed in terms of a likelihood given a prior

state. The process sought to maximize the likelihood. The prior had two parts.

The first part was constructed with object area based penalties for overlapping hu-

man models and small size. It also set the expectation of the height, fatness and

inclination of the models with their values being drawn from Gaussian distributions.

The second part was the prior dependent on the previous frame. The temporal de-

velopment of the shape components was tracked using Kalman filters. Probabilities

associated with object addition and subtraction from the set were linked to dis-

tances from entrances and exits. Single object likelihoods were calculated in terms

of the Bhattacharyya distances between the proposal histograms and the object and

background histograms. The object transition from the last state to the current one

was carried out using colour-based mean-shift. The likelihood of the whole image

was maximized rather than separate maximization of individual object likelihoods.

The maximum a posteriori (MAP) state space was explored using a Markov chain

Monte Carlo (MCMC) approach with Metropolis-Hastings acceptance.

2.4.3 Coaxial cylinders

A simpler approach is described by Zhang, Venetianer and Lipton [46]. They used a

standard background modeling of the type described in Section 2.2.1 and produced

blob images by thresholded background subtraction. Their 3D human target model

consisted of three coaxial cylinders representing head, torso and legs. Using a pinhole

camera calibration they mapped the 3D model into the 2D image plane so that

they could determine the expected object appearance for all image positions. They
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matched models to blobs by adjusting positions and maximizing a matching score

based upon the percentage of the blob covered by the human target model, the

percentage of the human model covered by the observed target and penalties based

upon model overlaps. The score maximization also involved some refinement of blob

appearance by filtering out peripheral pixels that might be associated with shadows

and reflections. The 3D target footprint locations were tracked using Kalman filters.

The system was implemented on a Texas Instruments TMS320DM642/600 DSP, in

a commercial application, and ran at 10fps.

2.4.4 Simple human model and mean-shift

Beleznai et al. [47] worked on the unthresholded intensity difference image produced

by current frame and background subtraction. The background reference image

was constructed using the Collins background modeling method described in Sec-

tion 2.2.1. They identified positions of intensity difference maxima and used those

as starting points for mean-shift iteration in the difference image. They used human

sized rectangular kernels initially centred on the maxima. This particular version of

the mean-shift procedure involved finding the difference intensity centre of gravity

of the rectangle and relocating the centre to that point. The process was repeated

until the stepwise shift became insignificant. The integral image (Section 2.5.2) was

used for rapid calculation of image areas. They identified proposed person positions

by locating basins of convergence in the mean-shift paths. Once identified, people

could be tracked by shifting from the last known position. Groups of people were

segmented by looking for maximum-likelihood combinations of rectangles. The au-

thors reported that the overall process was capable running in real-time on a 2.5Ghz

PC, and worked well for separated objects, but it could be prone to track association

errors when targets crossed.

2.5 Approaches based upon salient object charac-

teristics

2.5.1 Haar wavelets used with a Support Vector Machine

Papageorgiou and Poggio [48] describe a car and pedestrian detector based upon lo-

cal regional differences in image intensity typical of the target object. Their approach

to pedestrian detection is considered in order to illustrate the general processes in-

volved.

They used two dimensional Haar wavelets of the kind shown in Figure 2.2. Ap-
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Figure 2.2: Edge detecting Haar wavelets: (a) vertical, (b) horizontal and (c) diag-
onal

(a) (b) (c)

Figure 2.3: Haar wavelet convolution responses: (a) training image, (b) vertical edge
wavelet, (c) grey scale representation of wavelet response

plication of a wavelet to a region within an image involves subtraction of adjacent

image areas and the absolute value of the response is returned. A high wavelet

response indicates the presence of an intensity edge, a weak response indicates a

uniformly textured region. 1800 images of people were used, together with the

images horizontally reflected, for the training phase. The images were scaled and

clipped to 128 by 64 pixels. Wavelets with dimensions 16 ˆ 16 and 32 ˆ 32 pixels

were convolved with the images using a shift of 4 and 8 pixels respectively. Fig-

ure 2.3(a) shows a typical training image, 2.3(b) shows a 32 ˆ 32 Haar wavelet in

one of the 65 positions that it takes as it is scanned across and down the image.

Figure 2.3(c) shows a grey scale representation of the strength of the convolution

response associated with that wavelet. It can be seen that the response emphasizes

the symmetry of the target.

The wavelet scans resulted in 1326 dimensional feature vectors. Moving the

32 ˆ 32 wavelets in steps of 8 pixels in both the vertical and horizontal directions

produces 65 of the vector components, moving the 16 ˆ 16 wavelets in steps of

4 pixels in both the vertical and horizontal directions produces a further 377 of

the vector components. The use of three different wavelets results in a total of

3 ˆ p377 ` 65q “ 1326.

The feature vectors, developed from both positive and negative examples, were

used to train a Support Vector Machine (SVM). The SVM classifier clusters data
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into two classes by finding the maximum marginal hyperplane separating them.

The maximized margin of the hyperplane is defined as the distance between the

hyperplane and the closest data points, referred to as the ‘support vectors’. The

classes correspond to object and non-object.

With the characteristics of the separating hyperplane known, an image region

feature vector can be assigned to one of the two classes. In order to classify regions

of an image wavelet, sets are scanned across the image at different scales and feature

vectors are built at each position.

The images were scaled between 0.2 and 1.5 times the original image size in

increments of 0.1 to deal with varying object size in the image plane. To reduce

computational cost they concentrated their search into regions likely to contain the

objects of interest e.g. doorways, roadways etc.

The use of the high dimensional vector produced a slow overall response. Perfor-

mance was improved by selecting a subset of 29 the strongest components: 6 vertical

and 1 horizontal at the coarse wavelet scale, 14 vertical and 8 horizontal at the finer

scale.

This approach to pedestrian detection has limits. Pedestrians come in a variety

of shapes, garment colours and types etc. They can be occluded and have parts that

can be difficult to distinguish from background. Recognizing that it might be more

efficient to detect individual components, such as head, legs and arms, and then

combine the detections with geometrical constraints on their positions, the team

developed a wavelet and SVM based pedestrian component detector [49] and used

a further SVM to classify the combinations.

2.5.2 Haar wavelets used with Adaboost

Rather than scan the wavelet across the sub-image it is more common for Haar

wavelets to be used in a different way. The feature classifier is defined by fixing

the position of the wavelet within the sub-image window and then determining the

best positions, wavelet style and size that result in the feature response able to

distinguish between class and non-class. A manually labelled training set, similar

to the one described above, is used. Features selected are those that produce at

least some bi-modality in the frequency distribution of responses. In the version of

the classifier described by [50, 51, 52], for each wavelet labeled υ the weak classifier

hkpυq consists of a feature response fkpυq and a parity pk:

hkpυq “

$

&

%

1 if pkfkpυq ă pkθk

0 otherwise
(2.14)
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where θk is a threshold situated between the modes and pk indicates the direction

of the inequality sign i.e. whether the target mode is above or below the chosen

threshold.

The object classifier is built by combining the feature classifiers. The process of

selecting the most discriminatory features and combining them is known as ‘adaptive

boosting’ or Adaboost [38]. Each selected weak classifier is given a weight α “

1
2
log 1´ε

ε
, indicating its discriminatory strength, where ε is a weighted measure of

the error rate for that classifier. The error weight is increased for misclassified

examples forcing the next feature chosen to focus more on those difficult to classify.

The final classification is carried out using a weighted sum of nk feature classifi-

cations:

Cpυq “

$

’

&

’

%

1 if
nk
ř

k“1

αkhkpυq ě 1
2

nk
ř

k“1

αk

0 otherwise

(2.15)

The ubiquity of the rectangular Haar-based classifier is due to the fact that it can

be computed quickly and in constant time independent of area using the ‘integral

image’ introduced by Viola and Jones [53]. The integral image is a summed area

table (SAT) computed once over the entire image such that the value at each pixel

location is the sum of values from the origin to that point i.e.

SAT px, yq “
ÿ

iăx,jăy

Ipi, jq (2.16)

The pixel sum Spx, yq over a rectangular area of size w ˆ h based at the location

px0, y0q can then be extracted quickly using:

Spx0, y0q “ SAT px0, y0q `SAT px0 `w, y0 `hq ´SAT px0, y0 `hq ´SAT px0 `w, y0q

(2.17)

Viola, Jones and Snow [51] went beyond the use of Haar wavelets with the basic

pedestrian shape and incorporated motion as an additional distinguishing charac-

teristic. They used pairs of images of size 20ˆ15 pixels taken from successive frames

in video sequences. From those they generated five further images: the temporal

intensity difference image and four intensity difference images formed by subtracting

the second image displaced in the horizontal and vertical directions. They applied

the Haar features to the first image of the pair and to each of the difference images.

They also extracted a measure of the motion in the images by a simple rectangular

sum of the difference image pixel values. This would give a minimum value in the

displacement image in the direction of pedestrian motion. They trained their Ad-

aboost based classifier using this rich feature set and reported a much higher ratio
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of detection to false positives than using a simpler detector trained on static images.

They allowed for varying pedestrian size in the image plane by running the detection

over an image pyramid using a scale factor of 0.8 for each layer. The detection rate

was reported as being of the order 90%.

2.5.3 Edge detection

The detectors described above operate on the basis that regions of the object of

interest have average intensity values differing from the immediately surrounding

regions and show characteristic classifiable patterns. Wu and Nevatia developed a

part based detection approach based upon characteristic edges [54]. Their ‘Edgelet’

features are short linear or curved groups of pixels linked to edge shapes from head

and shoulder, torso, and leg regions of the body. With the positions and normal

vectors of the k points in an edgelet denoted by tuiu
k
i“1 and tnE

i uki“1 respectively, and

the edge intensity and normal at position p in the image I represented byM Ippq and

nIppq, the affinity between the Edgelet and the image at position w was calculated

by:

Spwq “ p1{kq

k
ÿ

i“1

M Ipui ` wqxnIpui ` wq,nE
i y (2.18)

This is a sum of products of edge strengths and cosines of the angle between the

Edgelet and image edge derived from the scalar product between the normals. They

simplified the calculation by quantizing the angle range r0˝, 180˝q into six bins and

approximating the cosines for those bins as t1, 4{5, 1{2, 0, 1{2, 4{5, 1u.

They used a variant of the Adaboost algorithm [38] to train their feature clas-

sifiers for individual Edgelets on 1700 sample images of size 58 ˆ 24 pixels. For

detection they used an image pyramid with scale factor 1.2 and used a probabilistic

combination of feature responses to determine the presence or otherwise of a body

part. They reported a processing rate of 1 frame per second with 288 ˆ 384 pixel

images on a 2.8GHz processor.

Gavrila [55] describes an edge based method in which the extracted candidates

are matched against a database of edge-based shape exemplars. The matching is

carried out by computing the Chamfer Transform [56] of the edge image. This

transform converts a binary image into a non-binary one in which each pixel value

denotes a distance to the nearest edge pixel in the edge image. The transform

is illustrated in Figure 2.4. Edge templates are matched to the edge image by

placement of the template on the chamfer transform image and summing the chamfer

values under the template edge pixels. The template is translated, rotated and

scaled to find the minimum match sum. The exemplars are selected by a Bayesian
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Figure 2.4: Chamfer transform: (a) pedestrian image, (b) edge image (Sobel) (c)
transform distances

probabilistic stepwise path through a database tree structure until an adequate

match is found. The detector ran at 7-15 Hz on a 2.4GHz processor.

2.5.4 Intensity gradients

Shapelets, developed by Sabzmeydani and Mori [57], follow a similar path to Edgelets

but focus on local intensity gradient patterns rather then edge segments. Low-level

shape features Sd, linked to a given direction d, are formed by convolving the in-

tensity image I with the basic gradient kernel Gd “ r´1, 0, 1s and its transpose to

extract gradient information in the directions d P t0˝, 45˝, 90˝, 135˝u. The gradient

magnitudes in each direction are smoothed using a 5 ˆ 5 box filter B i.e.

Sd “ |I ˙ Gd| ˙ B (2.19)

where ˙ denotes convolution.

The detection window, similar to that in Figure 2.3(a), is subdivided into sub-

windows of sizes 5 ˆ 5, 10 ˆ 10 and 15 ˆ 15 pixels. Each of the low level features

within the window are used in an Adaboost training cycle to produce a weighted

combination of them. The combination is the Shapelet feature. The object classifier

is then constructed by using Adaboost again to produce a weighted combination of
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Shapelet features within the detection sub-window. The overall effect is to produce

a classifier based upon the gradient information around the periphery of the object

of interest.

Dalal and Triggs also developed a human detection system based upon intensity

gradient patterns [58]. The detection windows had typical size 128 ˆ 64 pixels

with the target centred such that there was a 16 pixel margin on all sides. They

reported that the best gradient operator was the simple Sobel r´1 0 1s used with no

smoothing. The detection window was subdivided into 16ˆ16 pixel blocks consisting

of four 8ˆ 8 cells. For each cell an oriented gradient 9-bin histogram was extracted.

The orientations were quantized within the range r0, πq. Each pixel voted for its

gradient orientation weighted by its gradient magnitude with the vote interpolated

linearly between neighbouring bins. Neighbouring cells were grouped into the blocks

and the bin values normalized. Blocks were stepped through the window with an 8-

pixel stride and the histograms concatenated to form a high dimensional Histogram

of Oriented Gradients (HOG) feature vector. The vectors were then used to train a

SVM classifier.

2.6 Target representation

The problem with all of the methods described up to this point is that they assume

that the objects of interest can each be described by a relatively small range of

characteristic shapes. But, in practice, trackable objects expected to be of interest

in a surveillance setting can be subject to significant unpredictable deformation and

rotation. Figure 2.5 shows some typical examples. From a commercial point of

view it is better to find systems that are applicable in a range of situations and can

be adapted easily to new ones. It would be of value to develop a single approach

that could be applied to objects as dissimilar as vehicles and pedestrians. It is true

that object classifiers of the type described in Section 2.5 can be adapted to any

object through appropriate training or template development. But commercially it is

inconvenient to develop products that need tailoring to specific situations, so the aim

is to find a target representation that is generalizable and can cope with variability

such as object deformation and rotation. Colour and edge histograms have been

studied as potential representations capable of responding to target variation.

2.6.1 Colour histogram representation

Updateable colour histogram based representations are capable of distinguishing a

trackable object from background. They can be independent of object type and can
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2.6. TARGET REPRESENTATION

(a) (b) (c)

(d) (e) (f)

Figure 2.5: Illustrating target variability. (a - c) showing different object shapes, (d
- e) same objects some frames later
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Figure 2.6: The Epanechnikov kernel

cope with partial occlusion and object deformation. A variety of colour spaces have

been investigated for their suitability. Comaniciu et al. [14] opted for the standard

Red, Green, Blue (RGB) colour space with their mean-shift based tracker. They

used histograms with 16ˆ 16ˆ 16 bins extracted from elliptical regions. The pixels

were weighted with an Epanechnikov kernel that diminished the background pixel

contribution from the edges of the ellipses. The kernel for an object with width 2u,

shown in Figure 2.6, has the form:

Kpuq “

$

&

%

3
4

p1 ´ u2q if |u| ď 1

0 otherwise
(2.20)

A similar approach was taken by Nummario et al. [59] but they used a more
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economical 8 ˆ 8 ˆ 8 bins. Czyz et al. [60] also used 8 ˆ 8 ˆ 8 bin RGB but

with rectangular regions and lower weighting applied to periphery pixels. Maggio

and Cavallaro [61] carried out a study of the effectiveness of seven different colour

spaces, with 10 bins for each dimension, and concluded that the RGB space gave

the best performance. But others have opted for the Hue-Saturation-Value (HSV)

space in order to decouple chromatic information from shading effects. Lu et al. [62]

followed Pérez et al. [63] in using a 2 dimensional 10 ˆ 10 bin histogram for the HS

components and a 10 bin one for the V component, to give a dimensionality of 110

bins.

2.6.2 Spatiograms

Whilst a colour histogram representation allows targets to deform and rotate, it also

has the potential of making it difficult to distinguish individual targets that might

have similar overall colour signatures but with different colour layouts. Similarly

regions of background might match closely to the simple histogram. Compromising

on the versatility of the histogram, some have looked to make the representation a

little more descriptive by incorporating either general shape or spatial colour distri-

bution information. Birchfield and Rangarajan [64] introduced the ‘Spatiogram’ as

a way of doing this. Their representation augments the histogram bins with spatial

moments of the pixels contributing to the bin i.e:

hpbq “ tnb, µb,Σbu (2.21)

where nb is the number of pixels falling in the bin b, µb and Σb are respectively the

mean vector and covariance matrix of the pixel coordinates. The distances between

the target and candidate histograms ρph, h˚q were computed with an additional

bin-wise weighting based upon the spatial information:

ρph, h˚q “

B
ÿ

b“1

ψbρpnb, n
˚
b q (2.22)

where

ψb “ ηN pµb;µ
˚
b , 2pΣb ` Σ˚

b qq (2.23)

where N pa;µ,Σqq is a pµ,Σq Gaussian evaluated at a. The multiplier η is a nor-

malizing factor. The authors reported that they had applied the approach to both

mean-shift and particle filter trackers, and demonstrated its superiority over a range

of alternative features on the sequences used. They used 3D colour histograms with

good resolution.
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2.6.3 Edge orientation histograms

Yang et al. [65] supplemented object colour information with an additional edge

representation. Instead of the standard colour histogram they split the target into

rectangular regions and calculated the mean RGB values within that region. They

then converted the colour image into greyscale and calculated the vertical and hori-

zontal Sobel edges. At each pixel they calculated the edge magnitude and direction.

The histogram was constructed with the bins representing the orientations and the

bin value representing the sum of the strengths for each angle range. By constructing

integral images for each bin they could build up an integral histogram for fast fea-

ture extraction. Colour and edge histograms similarities were calculated separately

to produce likelihoods of the form:

p pzt|xtq 9 exp
`

´ρpppxtq,qq
2
{σ2

˘

(2.24)

where ρpppxtq,qq is the Euclidean distance between the candidate vector ppxtq and

the reference vector q.

2.6.4 Multi-part histograms

Others encoded spatial information by simply concatenating histograms extracted

from different regions across the target to be tracked. For example, Okuma et al. [66]

presented a colour histogram particle filter tracker in which the target regions were

split into upper and lower rectangular sub-regions. But whilst the combination of

the regions was simple, they still felt a need to use a 110 bin HSV representation.

Iwahori et al. [67] went further by splitting a target rectangular region into a number

of vertically stacked rectangular sub-regions. For each of the sub-regions they ex-

tracted a HSV histogram and calculated the similarity against the reference region

histogram. They then returned an overall similarity using the mean value of them.

Maggio and Cavallaro [61] complemented their colour space study with an in-

vestigation into multi-part histogram representations. They devised a multi-part

elliptical representation of the target. A histogram was constructed for the full el-

lipse, four histograms were extracted from quadrants bounded by the major and

minor axes, one was extracted from a half sized version of the full ellipse, and an-

other from the ‘annulus’ formed by subtracting the half sized from the full sized one.

The seven histograms were then concatenated to produce the feature vector. The

dissimilarity between the model and candidate histograms was calculated using the

Bhattacharyya distance. The four quadrants introduced spatial information to the

measure in order to recognize rotations. They compared the responses of a verti-

cal two part rectangular histogram representation, the concentric ellipses, the four
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ellipse quadrant representation, and the full seven part combined representation.

They found that the seven part one outperformed the others.

2.7 Discussion

The methods described in this chapter paint a general picture of the way that the

problem of target object detection has been tackled in the last two decades. In many

of the cases the focus has been on object identification and localization within the

images without necessarily using the detection as a starting point for tracking. If

the methods were efficient then it might be argued that frame by frame detection

could be adequate. But one aim of tracking is to maintain some model of the motion

so that problems thrown up by occlusion and loss of track might be resolved. As

computational resources are limited, and the implementation of a tracker might draw

substantially on those resources, it is essential to keep the demands of the detection

element under control. In addition, in the context of commercial CCTV it would

be useful to develop a tracker that is not finely tuned to following a single class

of object. The tool developed has to work equally for vehicles as for pedestrians

or small groups of people; so detection methods, such as the SVM and Adaboost

approaches, that rely on training specific object classifiers, are unattractive.

It is true that a real-time particle filter tracker incorporating Adaboost person

detection has been reported [66], and continues to be developed [62], but it relies

on desktop PC level GHz processing, deals with a rather special case and would be

difficult to extend into a general purpose approach. The edge based methods simi-

larly draw on either classifier training or tree based template matching. Enzweiler

and Gavrila’s edge based pedestrian detection approaches [55, 68] were explored

specifically for in-vehicle embedded processing. Their work indicated a preference

for HOG/SVM approaches at high resolution and a Haar-type Adaboost approach

at lower resolution. But they still demand GHz processing, and that is before a

tracker has been incorporated.

Even with static cameras the background modeling approaches with current

frame subtraction do not offer a full solution. No matter how much computational

effort is put into the development of the reference image, there is still a need to

develop intelligent thresholding procedures to produce good quality blob images.

Also, the blob image has to be further interpreted to identify objects of interest. The

Gaussian based background approaches offer a degree of mathematical sophistication

but there is no fundamental reason to believe that temporal sequences of image

pixel intensity values follow a Normal distribution. The histogram and classifier

based approaches consume memory, call for distance measures that rely on floating
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point calculations, and return blob images that are not significantly superior to the

others. Out of the background methods considered the multi-modal mean is the

closest candidate for consideration. It assumes no underlying statistical model and

is computationally simpler than the others.

But the approaches considered offer some tools that can be employed. In the

spirit of animal vision the general features that will guide detection are that the

targets are not background, that they have movement, they will have a size charac-

teristic of the targets of interest, and that they have a trackable chromatic signature.

So a foundation element, at least for the initial detection of objects for tracking, will

be background subtraction. A mean-shift approach similar to that of Beleznai et al.

(Section 2.4.4) will allow the placement of a simple template over blobs entering the

field of view, so it can be expected that the integral image will be used.

Without definitely classifying the detected object it will be necessary to identify

which of the blob pixels are foreground and which are background so it is likely that

there will have to be inclusion of some element of background region histogram, at

least at the tracker initialization stage. A histogram based signature, that can be

used to follow a deforming and rotating object in subsequent frames, will have to

be built from the proposed foreground pixels

The suitability of the spatiogram approach was considered, but it was found that

with 8-bin grey scale histograms the contribution of the spatial component did not

justify the extra computation involved. Object deformation and rotation, coupled

with unpredictable illumination and histogram quantization effects, meant that the

spatial component could vary significantly within a grey scale slice from frame to

frame. This was especially noticeable at low frame rates. But combinations of 8-bin

grey scale histograms with a rectangular spatial layout, as described in Section 2.6.4,

showed promise in terms of tracking consistency and computational economy, so that

approach suggests it will be the first choice for target representation for tracking.
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Chapter 3

Sequential Bayesian Estimation

3.1 Introduction

This chapter considers basic theory associated with the particle filter. It starts

from first principles and traces out the steps from basic Bayesian recursion to the

Sampling Importance Re-sampling (SIR) particle filter. It draws upon material from

standard sources but supplements it in order to clarify steps in the arguments. For

notational convenience the concepts are developed in terms of a single target state

x and measurement z. Extension to the multi-target state occurs in the following

chapter.

The two main tools for tracking are the Kalman filter (KF) and the particle

filter (PF) so both are described with a degree of detail. Although the PF is the

tool of choice for this work, the discussion of the KF is included to clarify the reasons

for that choice.

An important practical step in the operation of the PF is re-sampling, so the

basics of that process are described in order to set the context for a more detailed

discussion later in the thesis dealing with simplifications and improvements. The

chapter concludes with a brief overview of variants of the basic filter.

3.2 Bayesian recursion

Sequential estimation relationships can be derived using Bayes’ probability rule and

the Chapman-Kolmogorov equation. Given the equivalent conditional probabilities:

ppA,Bq “ ppB|AqppAq (3.1)

and

ppA,Bq “ ppA|BqppBq (3.2)
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Bayes’ rule follows as:

ppA|Bq “
ppB|AqppAq

ppBq
(3.3)

The Chapman-Kolmogorov equation is:

ppA|Bq “

ż

ppA|CqppC|BqdC (3.4)

It is essentially a marginalization with respect to the variable C and represents the

sum of all pathways through which state A can be returned given B.

The Bayesian tracker [69, 70] is based upon the use of a possibly non-linear

state transition model subject to additive uncertainty νt´1, a Markov assumption,

in which a current state xt depends on the immediately preceding state xt´1,

xt “ fpxt´1,νt´1q, (3.5)

and the use of a measurement model,

zt “ hpxt,ηtq, (3.6)

in which a current measurement is taken to be a possibly non-linear function of the

current state with measurement uncertainty ηt.

The objective is to recursively estimate xt at a time t from the set of mea-

surements up to time t represented by z1:t. With uncertainty, or ‘noise’, in both

prediction and measurement, the tracking process is necessarily probabilistic. Given

a belief represented by the pdf ppxt´1|z1:t´1q at time t ´ 1, we want to recursively

update the degree of belief ppxt|z1:tq at time t.

Bayes’ rule says that for time t we can write:

ppxt|z1:tq “
ppz1:t|xtqppxtq

ppz1:tq
(3.7)

from which we can derive a t ´ 1 to t recursion relationship. With an extension of

Eq.(3.1) to three variables we can write:

ppzt, z1:t´1,xtq “ ppzt|xt,z1:t´1qppxt|z1:t´1qppz1:t´1q (3.8)

“ ppxt|zt,z1:t´1qppzt|z1:t´1qppz1:t´1q (3.9)

“ ppxt|z1:tqppzt|z1:t´1qppz1:t´1qq (3.10)
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It follows, using Eq.(3.8) and Eq.(3.10), that Eq.(3.7) can be written as:

ppxt|z1:tq “
ppzt|xt, z1:t´1qppxt|z1:t´1qppz1:t´1q

ppzt|z1:t´1qppz1:t´1q
(3.11)

If we take it that the state xt is complete, meaning that no past measurements such

as z1:t´1 can provide additional information for the prediction of the measurement

zt, then we can say:

ppzt|xt, z1:t´1q “ ppzt|xtq (3.12)

Eq.(3.11) can then be simplified to:

ppxt|z1:tq “
ppzt|xtqppxt|z1:t´1q

ppzt|z1:t´1q
(3.13)

The link to ppxt|z1:tq from ppxt´1|z1:t´1q can be introduced through the replacement

of the numerator term ppxt|z1:t´1q with the Chapman-Kolmorogov marginalization

over xt´1:

ppxt|z1:t´1q “

ż

ppxt|xt´1qppxt´1|z1:t´1qdxt´1 (3.14)

The denominator in Eq.(3.13) can be linked to the numerator through a similar

Chapman-Kolmogorov marginalization over xt:

ppzt|z1:t´1q “

ż

ppzt|xtqppxt|z1:t´1qdxt (3.15)

The full Bayesian recursion relationship can then be stated as:

ppxt|z1:tq “
ppzt|xtq

ş

ppxt|xt´1qppxt´1|z1:t´1qdxt´1
ş

ppzt|xtqppxt|z1:t´1qdxt

(3.16)

Eq.(3.14) defines a Bayesian prior, or a prediction of the state at time step t

based upon the knowledge of the state at t ´ 1. The numerator term ppzt|xtq in

Eq.(3.13) defines a likelihood based upon the measurement model being used, and

the denominator term, Eq.(3.15), is a normalizing constant linked to the likelihood

function. It is generally referred to as the evidence.

The Bayes relationship can be seen to have the general form:

posterior “
likelihood

evidence
¨ prior (3.17)

i.e. the posterior probability is the product of the likelihood given the evidence, and

the probability of the state based upon the prior knowledge.
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3.3 The Kalman filter

The optimal Bayesian recursion (3.16) can be implemented analytically using a

Kalman filter [71]. It can be shown that if the density ppxt´1|z1:t´1q is Gaussian, then

the KF recursion can return a Gaussian ppxt|z1:tq if the process and measurement

functions Eq.(3.5) and Eq.(3.6) are linear, and the noise terms are also Gaussian.

Thrun [72] provides an example of a full and analytical derivation of the KF update

equations. In that derivation equations Eq.(3.12) and Eq.(3.14) are rewritten with

the probability terms replaced by their Gaussian equivalents. Equations Eq.(3.5)

and Eq.(3.6) are realized in the forms:

xt “ Ftxt´1 ` νt´1 (3.18)

and

zt “ Htxt ` ηt (3.19)

where Ft is a matrix defining the linear transition function and Ht is a matrix

defining the linear relationship between the measurement and the proposed mean.

The covariances of the noise terms νt´1 and ηt, indicating the uncertainties in

prediction and measurement, are represented by Qt´1 and Rt respectively.

If the multidimensional state at time t ´ 1 is represented by a Gaussian having

mean µt´1 and covariance Pt´1 then the filter starts by making a proposal for the

mean at time t using:

µ̂t “ Fµt´1 (3.20)

The proposed state µ̂t has prediction uncertainty P̂t derived from a combination of

the state uncertainty Pt´1 at time t ´ 1 and the process noise covariance Qt´1:

P̂t “ Qt´1 ` FtPt´1F
T
t (3.21)

Given a measurement zt, with uncertainty Rt, the filter makes a correction to the

proposed mean state:

µt “ µ̂t ` Ktpzt ´ Htµ̂tq (3.22)

where Kt, called the Kalman gain, is a combination of the prediction uncertainty P̂t

and the measurement uncertainty Rt:

Kt “
P̂tH

T
t

HtP̂tHT
t ` Rt

(3.23)

The difference between the measurement and the predicted measurement, based

upon the proposal for the mean, i.e. pzt ´ Htµ̂tq, is referred to as the ‘innovation’.
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The state uncertainty at time t, Pt, is then returned as a correction to the estimated

uncertainty P̂t:

Pt “ P̂t ´ KtHtP̂t (3.24)

It is useful to illustrate the logic behind the filter, and the nature of the Kalman

gain, by considering a one-dimensional situation with F “ 1 and H “ 1. The

estimated uncertainty in prediction at time t, P̂t, is given by a linear combination

of the process noise uncertainty Qt´1 and the state uncertainty at time t ´ 1, Pt´1,

i.e

P̂t “ Qt´1 ` Pt´1 (3.25)

The filter takes the mean µt to be a weighted combination of the prediction µ̂ and

the measurement z:

µt “
Rt

pP̂t ` Rtq
µ̂t `

P̂t

pP̂t ` Rtq
zt (3.26)

It can be seen from Eq.(3.26) that if the prediction uncertainty P̂t is large in compar-

ison to the measurement uncertainty Rt then the resultant state is biased towards

the measurement. If the converse is true then the resultant state is biased towards

the prediction. The equation can be rearranged to give:

µt “ µ̂t `
P̂t

P̂t ` Rt

pzt ´ µ̂tq (3.27)

The Kalman gain can now be recognized as the fraction of the estimated uncertainty

to the combined estimated and measurement uncertainties:

K “
P̂t

P̂t ` Rt

(3.28)

The state uncertainty at time t is derived from a reciprocal combination of the

uncertainties P̂t and Rt, analogous to the combination of electrical resistances in

parallel:
1

Pt

“
1

P̂t

`
1

Rt

(3.29)

With this combination it can be seen that if the uncertainty P̂t is large in comparison

to Rt then the value of Pt approaches Rt. Conversely, if the value of Rt is large in

comparison to P̂t then the uncertainty approaches P̂t. Eq.(3.29) can be rearranged

to give:

Pt “ P̂t ´ KP̂t (3.30)

i.e. the-one dimensional form of Eq.(3.24).

An illustration of the Kalman filter in action is given in Figure 3.1. In this
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(a) Tracking through noisy measurements
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(b) Tracking through simulated occlusion

Figure 3.1: Illustrating Kalman filter behaviour

simulation the grey line indicates the ground truth, the gray squares indicate the

noisy measurements and the red line shows the KF response. The track starts at

the top left of the figure. The simulated track was constructed by sequentially

adding Gaussian random increments in the x and y directions. The simulated noisy

measurements were then produced by adding further x and y Gaussian increments

to the track points. Figure 3.1(a) shows the ability of the KF to produce a good

estimate of the track through the noisy data points. In Figure 3.1(b), data points

16 to 20 have been artificially removed to simulate an occlusion. In the absence of a

measurement the KF the system places track points at predictions based upon the

last known state and the state transition equation. When measurements return, the

filter picks up the track again.

But in general the tracking process will have non-linear measurement steps and

non-Gaussian noise factors hence the Kalman filter has limited applicability in those

circumstances. An alternative is to use the Extended Kalman filter (EKF). The

EKF works by linearizing equations Eq.(3.5) and Eq.(3.6) using a Taylor expansion.

But it still approximates the posterior to be Gaussian and this is a condition that

cannot always be satisfied when tracking in clutter. For non-linear, non-Gaussian

situations we turn to the particle filter

3.4 The particle filter

The particle filter is a sub-optimal technique for implementing the Bayesian recursion

using Monte Carlo approximations. The posterior pdf is represented by a set of

weighted, randomly placed, points in the state space. The points are referred to as

particles. The particle set txi
0:t, w

i
tu

ns
i“1, with the states up to time t represented by

40



3.4. THE PARTICLE FILTER

txi
0:tu

ns
i“1 and weights at time t represented by twi

tu
ns
i“1, characterizes the posterior

pdf ppx0:t|z1:tq where z1:t is the set of all measurements up to that time [69]. If the

weights are normalized such that
ř

iw
i
t “ 1 then a discrete weighted approximation

to the true posterior ppx0:t|z1:tq at time t can be formed as:

ppx0:t|z1:tq «

ns
ÿ

i“1

w̃i
tδpx0:t ´ xi

0:tq (3.31)

where δp¨q is the Dirac delta function and w̃ is the normalized weight. The weights

are chosen using importance sampling.

Importance sampling [73] is a method used to calculate the expectation of a

probability distribution in situations where it is difficult to directly generate sam-

ples from that distribution. The expectation of a function fpxq over a probability

distribution ppxq is given by:

Ep rfpxqs “

ż

ppxqfpxqdx (3.32)

If we could generate samples txiu
ns

i“1, independently drawn from ppxq, then the

sampled approximation to the expectation would be:

f̂ “
1

ns

ns
ÿ

i“1

fpxiq (3.33)

with

lim
nsÑ8

f̂ “ Ep rfpxqs (3.34)

If we are working with an un-normalized distribution p1pxq “ cpppxq, from which it

is difficult to draw samples, and for which the normalization constant cp is unknown,

then the importance sampling approach allows us to use samples from another un-

normalized distribution q1pxq “ cqqpxq, with unknown normalization constant cq,

but from which it is easy to draw samples, i.e.:

Ep rfpxqs “

ż

ppxqfpxqdx

“
1

cp

ż

p1pxqfpxqdx (3.35)

41



3.4. THE PARTICLE FILTER

Introducing the new sampling distribution we get:

Ep rfpxqs “
1

cp

ż

p1pxq

q1pxq
q1pxqfpxqdx (3.36)

“
cq
cp

ż

p1pxq

q1pxq
qpxqfpxqdx (3.37)

and for discrete samples we can write:

Ep rfpxqs «
cq
cpns

ns
ÿ

i“1

p1pxiq

q1pxiq
fpxiq (3.38)

“
cq
cpns

ns
ÿ

i“1

wifpxiq (3.39)

where wi “
p1pxiq

q1pxiq
is defined as an un-normalized importance weight.

If we consider now the normalization constant cp:

cp “

ż

p1pxqdx (3.40)

“

ż

p1pxq

q1pxq
q1pxqdx (3.41)

“ cq

ż

p1pxq

q1pxq
qpxqdx (3.42)

«
cq
ns

ns
ÿ

i“1

wi (3.43)

i.e.
cpns

cq
«

ns
ÿ

i“1

wi (3.44)

It follows that Eq.(3.39) can be re-written as:

Ep rfpxqs «
1

ns
ř

i“1

wi

ns
ÿ

i“1

wifpxq (3.45)

«

ns
ÿ

i“1

w̃ifpxq (3.46)

where w̃i
t is the normalized weight:

w̃i
t “

wi
t

ns
ř

i“1

wi
t

(3.47)
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The importance sampling principle is now extended to the particle filter repre-

sentation. If the required samples txi
0:tu

ns
i“1 are drawn from an importance density

qpx0:t|z1:tq then the normalized weights in Eq.(3.31) can be derived from the un-

normalized weights:

wi
t “

ppxi
0:t|z

i
1:tq

qpxi
0:t|z

i
1:tq

(3.48)

The recursive element of the particle filter then involves a Bayesian update of the

weights as each measurement is received at each time step, i.e., relating wi
t to w

i
t´1

as shown below.

Arulampalam et al. [69] argue that if the importance density is chosen to factorize

such that:

qpx0:t|z1:tq “ qpxt|x0:t´1, z1:tqqpx0:t´1|z1:t´1q (3.49)

then we can get the new state by taking samples from the state qpx0:t´1|z1:t´1q and

augmenting them with samples from the state qpxt|x0:t´1, z1:tq.

Following the approach used in equations Eq.(3.8), Eq.(3.9) and Eq.(3.10), Bayes’

theorem can be used to express the numerator in Eq.(3.48) as:

ppx0:t|z1:tq “
ppzt|x0:t, z1:t´1qppx0:t|z1:t´1q

ppzt|z1:t´1q

“
ppzt|x0:t, z1:t´1qppxt|x0:t´1, z1:t´1qppx0:t´1|z1:t´1q

ppzt|z1:t´1q

If the process is Markovian, i.e. the current state is dependent only on the immedi-

ately preceding state, then:

ppzt|x0:t, z1:t´1qppxt|x0:t´1, z1:t´1q Ñ ppzt|xtqppxt|xt´1q (3.50)

leading to:

ppx0:t|z1:tq “
ppzt|xtqppxt|xt´1qppx0:t´1|z1:t´1q

ppzt|z1:t´1q

9 ppzt|xtqppxt|xt´1qppx0:t´1|z1:t´1q (3.51)

By substituting Eq.(3.49) and Eq.(3.51) in Eq.(3.48), the weight update equation

becomes

wi
t9
ppzt|x

i
tqppxi

t|x
i
t´1qppxi

0:t´1|z1:t´1q

qpxi
t|x

i
0:t´1, z1:tqqpx

i
0:t´1|z1:t´1q

“ wi
t´1

ppzt|x
i
tqppxi

t|x
i
t´1q

qpxi
t|x

i
0:t´1, z1:tq

(3.52)
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in which:

wi
t´1 “

ppxi
0:t´1|z1:t´1q

qpxi
0:t´1|z1:t´1q

(3.53)

Applying a Markov restriction to the denominator of Eq.(3.52) we have:

qpxi
t|x

i
0:t´1, z1:tq Ñ qpxi

t|x
i
t´1, ztq (3.54)

and the weight update equation becomes:

wi
t9w

i
t´1

ppzt|x
i
tqppxi

t|x
i
t´1q

qpxi
t|x

i
t´1, ztq

(3.55)

If the importance density is taken to be the prior, i.e.

qpxi
t|x

i
t´1, ztq “ ppxi

t|x
i
t´1q (3.56)

then the weight equation Eq.(3.55) reduces to:

wi
t9w

i
t´1ppzt|x

i
tq (3.57)

The posterior density ppxt|z1:tq is then approximated as:

ppxt|z1:tq «

ns
ÿ

i“1

w̃i
tδpxt ´ xi

tq (3.58)

where w̃i
t is the normalized weight as described by Eq.(3.47).

The basic filter algorithm consists of a recursive update of the weights as each

measurement is received at each time step, resulting in a sequentially updated par-

ticle representation of the pdf. The object state is usually extracted as either a

weighted mean:

E rxt|z1:ts «

ns
ÿ

i“1

ω̃i
tx

i
t (3.59)

or as a maximum a posteriori (MAP) estimate:

xMAP
t “ argmax

xt

ppxt|z1:tq « argmax
xt

wt (3.60)

3.4.1 Filter degeneration

A difficulty with the recursive propagation of the weights is that it can quickly result

in a degeneration of the sample set. The weight becomes concentrated in a small

fraction of the particle population and the lower weight particles diffuse in the state

space. This weakens the Monte Carlo representation of the pdf. The estimation
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Figure 3.2: Illustrating multinomial re-sampling using 10 weights: (a) weight val-
ues, (b) weight re-selection using the cumulative weights, the yellow points indicate
sampling numbers upkq. The horizontal dotted lines from the yellow points indicate
weight index selection.

of the state suffers from the reduced particle density in the vicinity of the target

mode. In addition, computational resources are wasted dealing with particles that

have lost their link to the target.

The number of effective particles neff is linked to the total number ns and the

variance of the weights through [69]:

neff “
ns

1 ` Varpwi
tq

(3.61)

where wi
t “ ppxi

t|z1:tq{qpxi
t|x

i
t´1, ztq is the un-normalized weight, also referred to as

the ‘true weight’.

The degeneration could be countered by using a large number of particles ns,

but this increases the computational load. Alternative importance densities qp.q,

from which the samples are chosen, could be explored with a view to ensuring that

the variance of the weights is minimized. Doucet et al. [74] show that the optimal

importance density is qpxt|xt´1, ztq “ ppxt|xt´1, ztq, i.e. the pdf of the state given

both the prediction and the current measurement. The drawback to this density is

that it is not always easy to sample from it.

An alternative is to regenerate the particle set, through re-sampling, when neff

falls below a pre-set threshold. It is common for re-sampling to be applied at each

time step irrespective of the value of neff .
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3.5. PARTICLE FILTER VARIANTS

3.4.2 Re-sampling

Resampling is an evolutionary type process in which higher-weight particles are re-

produced at the expense of lower-weight ones with the aim of reducing the variance

of the set. Particles are sampled with replacement ns times from the original par-

ticle set txi, wiuns
i“1 to produce a new set txj, w̃juns

j“1 such that P pjq9wi, i.e. the

probability of selecting a particle is proportional to the weight associated with it.

A basic approach [75] is to form a cumulative sum of the normalized weights and a

set of ns fractional sampling numbers upkq P r0, 1s. The indices j of the re-sampled

particle set are generated using the inverse F´1 of the cumulative distribution of

the particle weights with:

ij “ F´1pupkqq (3.62)

“ i|upkq P

«

i´1
ÿ

s“1

w̃s,
i
ÿ

s“1

w̃s

¸

(3.63)

where ij is the index from the original particle set assigned to the jth re-sampled

particle. The re-sampling process is summarized in Algorithm 1.

The re-sampling step is illustrated, using an example with 10 particles, in Figure

3.2. The example is one of multinomial re-sampling in which the sampling numbers

upkq are drawn from a uniform random distribution across the range of the weights.

Of the original particle set, those labelled {1,3,4,10} are discarded and the more

strongly weighted {2,5,6,7,8,9} are reproduced with multiplicities {1,3,2,1,1,1} re-

spectively. This approach to re-sampling featured in early versions of particle filters

but was quickly recognized to be inefficient on both computational and statistical

grounds. A range of alternative re-sampling approaches have been proposed, they

will be discussed in Chapter 7.

3.5 Particle filter variants

The importance sampling particle filter with the addition of re-sampling is referred

to as the Sampling Importance Re-sampling (SIR) filter. It is summarized in Al-

gorithm 2. Research in the last decade has explored a range of variations on the

basic particle filter theme. It has looked at issues such as reducing the number of

particles required, enhancing the state estimation, and streamlining computational

throughput.

The Auxiliary Particle Filter (APF) [76] was proposed to produce an improved

importance density closer to the optimal ppxt|xt´1, ztq. It introduces an additional

re-sampling step. The particles are first re-sampled as in Algorithm 2 to produce
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3.5. PARTICLE FILTER VARIANTS

Algorithm 1 Multinomial resample

Function definition:
”

␣

xj
t , w̃

j
t

(ns

j“1

ı

“ resample
`

txi
t, w

i
tu

ns

i“1

˘

Stage 1: normalize the weights

- calculate the total weight: wΣ Ð
ns
ř

i“1

wi
t

for i “ 1 to ns do
- normalize w̃i

t Ð w´1
Σ wi

t

end for

Stage 2: construct cumulative density function (CDF) c

- initialize: c1 Ð 0

for i “ 1 to ns do
ci Ð ci´1 ` w̃i

t

end for

Stage 3: select samples

for j “ 1 to ns do

- draw a sampling number uj

- start at the bottom of the CDF: i Ð 0
while uj ą ci do
i Ð i ` 1

end while

- assign sample: xj
t Ð xi

t

- assign weight: w̃j
t Ð n´1

s

end for
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Algorithm 2 SIR particle filter - with multinomial re-sampling

Function definition:
”

␣

xj
t , w̃

j
t

(ns

j“1

ı

“ SIR
` ␣

xi
t´1, w

i
t´1

(ns

i“1

˘

Stage 1: apply process step and weight particles:

for i “ 1 to ns do
- draw xi

t „ ppxt|xt´1q

- calculate wi
t Ð ppzt|x

i
tq

end for

Stage 2: call resample function:

”

␣

xj
t , w̃

j
t

(ns

j“1

ı

“ resample
`

txi
t, w

i
tu

ns

i“1

˘

an improved representation tx1j
t uns

j“1 around the dominant modes in the pdf, with a

reduced representation in the tails and with a likelihood ppzt|x
1j
t q. Gaussian noise

is added to these auxiliary states to produce txj
tu

ns
j“1. A new likelihood ppzt|x

j
tq is

calculated and the particle is weighted according to:

wj
t “

ppzt|x
j
tq

ppzt|x
1j
t q

(3.64)

The particles are then re-sampled using this weight. The result is that preference

will be given to those states that improve the likelihood after the auxiliary step.

The approach increases the amount of computation per particle but it is argued

that it is offset by a better representation of the state resulting in the need for fewer

particles. A possible drawback to the approach is that it can unnecessarily enhance

modes associated with clutter if the target mode is small.

The Regularized Particle Filter (RPF) [77] was introduced to counteract re-

sampling problems that emerge from the discrete rather than continuous nature of

the probability distributions. The discontinuous representation can lead to some

particles being over-representative. The filter is identical to the one described in

Algorithm 2 except at the final sample assignment step. Instead of assigning the

re-sampled particle directly, the new particle is drawn randomly from a continuous

kernel centred on the re-sampled state. This ‘kernelized’ representation provides an

approximation to a continuous distribution.

The Gaussian Particle Filter (GPF) [78] aims to reduce computational complex-

ity by using a particle based Gaussian approximation to the probability densities.

Particles are generated from a Gaussian distribution with an initialized mean and

covariance. They undergo a process step to diffuse them from the last known state
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to the proposed one. The likelihood weights are calculated and normalized as in the

basic particle filter. There is no re-sampling step. The updated Gaussian parame-

ters, the mean and covariance, are then calculated using the weighted states.

The Annealed Particle Filter (AnPF) [79] has the same general structure as the

filter described in Algorithm 2 but aims to improve the final estimation of state by

repeating the re-sampling step a number of times using conditioned particle weights.

The conditioned weights are the original weights raised to a fractional power, i.e.

w̃m “ w̃βm
t (3.65)

where β0 “ 1 and β0 ą β1 ą β2... ą βm. As both the weights and the powers are

fractional the effect of large m (smaller values of β) is to smooth out the likelihood

distribution. Particles are re-sampled from the smoothed distribution to produce a

set that captures the broad structure of the search space. By gradually increasing

β the fine structure of the distribution becomes more pronounced but the particle

representation accumulates in the region of the dominant mode. This results in

a better estimate of the mean or MAP state and a better conditioned posterior

distribution for progression to the next state. It does so, however, at a cost of

increasing the computation per particle.

3.6 Discussion

Sequential Bayesian Estimation provides a basic framework for the development

of active tracking systems, and the particle filter offers an approach that is not

constrained by linearity and Gaussianity. But it does not provide a single universal

solution to the tracking problem; it simply provides a paradigm from which tracking

systems can be engineered. The existence of the variants illustrate the need to tailor

such a filter to specific applications. There is no theoretical framework that dictates

aspects like the optimum number of particles to use, the choice of proposal density,

which re-sampling method is appropriate etc. These are engineering aspects and

different solutions will emerge in different contexts. In the absence of compelling

evidence found to suggest otherwise, the SIR variant will form the basis of the work

in the tracking context of this thesis.
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Chapter 4

Multi-target tracking

4.1 Introduction

The Bayesian recursion of the last chapter was described in terms of predictions

and measurements involving a single target state. The arguments apply equally to

a multi-target state. The aim of this chapter is to give an indication of the variety

of approaches to the multi-target tracking problem. It focuses on frequently cited

work that can be taken to form, to some degree, a sampled approximation to the

academic background to the field. It is of interest to consider issues such as the

chosen target representation, the nature of the state vector, the construction of the

multi-target proposal and likelihood densities, approaches to dealing with target

occlusion, tracker birth and death etc.

As the selected cited work had to deal, to varying extents, with those issues, the

published accounts tended to range from those that included detailed theoretical

development to ones that relied upon highlighting the main points and referring

back to earlier sets of publications containing varying degrees of clarification. The

very brief summaries presented in this chapter necessarily exclude the detail but

attempt to draw out the essential elements of the work.

As with the work cited in earlier chapters, there is no accepted notational con-

vention in the field of multi-target tracking. The need to accommodate notation for

multiple targets, multiple particle representations of those targets, multiple mea-

surements etc. often leads to complex symbolic representations that can change

between publications from the same group, and can lead to situations in which cho-

sen symbols can mean different things between groups. An attempt has been made,

in this chapter, to describe the work of others using a single consistent notational

convention.

The main motivation for the development of multi-target trackers in recent

decades has been in the context of radar or sonar detections, where a stream of
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4.2. MULTI-TARGET BAYESIAN RECURSION

signals from one or more sensors have to be linked to a possibly varying number

of targets. A comprehensive taxonomy of the expanding range of multiple-target

tracking (MTT) approaches in that field has been compiled by Pulford [80]. Devel-

opments in the related field of tracking multiple extended objects in image sequences

have tended to draw on a few of the principles categorized by Pulford, but they have

generally had to go beyond them to accommodate differences in aspects such as ob-

ject detection methods and approaches to occlusion handling.

The chapter starts by considering the ‘classical’ Kalman filter type treatments

that underlie the methods considered by Pulford. The direct extension of those

treatments to the particle filter context is then considered. Non-classical approaches

based upon multi-target extensions to the basic SIR filter (Algorithm 2) are looked

at. The development goes on to consider treatments managing the multi-target state

using mixture particle filters in preference to having a single particle filter for the

joint state.

Work in the original field of radar and sonar multi-target tracking appears to

have developed along two fronts. One pathway argues that the theoretical founda-

tions for multi-target state vector treatments are weak and that the problem needs

to be tackled using random finite sets. This leads to the Probability Hypothesis

Density (PHD) filter. The other pathway disputes the challenges to the theoretical

foundations and considers a vectorial approach in which the trackers are seen as

independent partitions of a Joint Multi-target Probability Density (JMPD). Out

of the two pathways only the particle PHD filter has claimed success in real-time

tracking of multiple extended objects in the typical surveillance context. It is of

interest to consider its mode of operation in a bit of detail to see if there are strong

foundations in that claim to success.

4.2 Multi-target Bayesian recursion

The Bayesian recursion equations and the particle filter representations for multi-

target states are similar to those for the single target state as described in Chapter

3. The multi-target state Xt can be represented by the set of individual states:

Xt “ txτ
t u

nτ

τ“1 (4.1)

where nτ represents the number of targets τ visible at time t. The history of states

up to time t is represented as X0:t. Similarly the multi-target measurement Zt, with

a history Z1:t, can be represented as the set

Zt “ tzmt u
nm

m“1 (4.2)
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where nm represents the number of measurements z to be interpreted at time t.

Equation Eq.(3.13) then becomes:

ppXt|Z1:tq “
ppZt|XtqppXt|Z1:t´1q

ppZt|Z1:t´1q
(4.3)

For the multi-target particle filter each particle state can be represented by a

weighted particle set tXi
t, w

i
tu although other particle filter approaches to multi-

target tracking will be described.

With the weighted particle set, as described above, the Bayesian recursion of the

multi-target particle filter leads to a weight update equation of the form:

wi
t 9 wi

t´1

p pZt|X
i
tq p

`

Xi
t|X

i
t´1

˘

q
`

Xi
t|X

i
t´1,Zt

˘ (4.4)

In general the differences between single and multi-target target tracking are to

be found in the way the likelihood component ppZt|Xtq is constructed from indi-

vidual measurement likelihoods and target states, and the way the process is made

computationally efficient by using measurement directed proposals in the approxi-

mation of the optimal importance density p pXt|Xt´1,Ztq.

4.3 Classical approaches

The recognized ‘classical’ approaches to the MTT problem are the Multiple Hy-

pothesis Tracking (MHT) filter and the Joint Probabilistic Data Association Fil-

ter (JPDAF) [81]. In the radar and sonar fields, or similar, it is assumed that point

sources are being tracked. Difficulties to be accommodated are possible multiple

sensor signals from a single target, observations from multiple targets fusing to pro-

duce a single detection, noisy signals, signals from clutter etc. The track hypotheses

are generally maintained via Kalman filters.

The simplest MHT solution uses a nearest neighbour (NN) track update. This

updates a track using only the measurement closest to the predicted track position

and ignores other measurements in the data set. It can be adequate for widely

spaced targets but can run into difficulties with close or crossing ones. Techniques

designed to deal with such difficulties have been developed [81] but have limited

applicability. The more general MHT solution [82] is a batch process, combining

information from several frames to produce a track update with greater reliability.

It looks at all possible association hypotheses between measurements and tracks but

produces an exponentially growing tree structure that demands measurement gating

and hypothesis pruning in order to maintain manageability. The general MHT
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approach has been applied in the image processing context of corner tracking [83],

demonstrating the method’s capabilities of track initiation, termination, occlusion

handling etc. Its computational complexity was kept under control by dealing with

a subset of ‘best’ hypotheses rather than explicitly enumerating all possible ones.

The JPDAF was developed as a sub-optimal solution to the MTT problem. It

was designed to counter limitations associated with the need for heuristic pruning

strategies in the MHT approaches. It has its own limitation, though, in that it

assumes that the number of targets is known and constant. In its original imple-

mentation it used Kalman filters to track the targets. Instead of attempting to solve

the target to measurement data association problem directly it used the approach

of associating all measurements with every target to produce a combined innovation

term to be used by the KFs. The KF innovation term, n, is described in Section 3.3

as the difference between the target predicted state and the measurement. For mea-

surement zm and the predicted position x̂τ associated with track τ it can be written

as:

nm,τ “ zm ´Hx̂τ (4.5)

In Eq.(3.22) it was seen that the innovation had a role in the correction to the

estimated mean state for a single target; in the multi-target JPDAF context the KF

for track τ is updated with the combined innovation [4]:

nτ “

Z
ÿ

m“1

βm,τnm,τ (4.6)

where βm,τ is the probability that measurement zm originated from track τ .

In early considerations of the choice between the use of MHT and JPDAF ap-

proaches, Blackman [81] concluded that whilst the JPDAF offered computational

convenience, the main disadvantage of the JPDAF was the absence of explicit mech-

anisms for track initiation and deletion. Those mechanisms had to be provided by

external routines that could reduce the computational advantages. The MHT ap-

proaches had no difficulties associated with track initiation and deletion. However,

at least one recent work has demonstrated an efficient incorporation of target initia-

tion, continued existence and deletion in the KF based JPDAF [84]. In the context

of radar tracking the most important factor in the choice between the approaches

turned out to be the false alarm density. For high false alarm densities MHT became

computationally heavy and JPDAF was favoured, for low false alarm densities the

MHT approach was the one of choice.

The JPDAF approach has also been used with particle filters in place of Kalman

filters [85, 86, 87, 88]. In this setting the JPDAF combines tracks and measurements
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through a modification of the particle weights. It is useful to describe a typical

implementation [86] in order to illustrate its computational demands in comparison

to the single target particle filter described in earlier chapters.

Assuming nτ targets, the multi-target state at time t is represented as in Eq.(4.1).

The ns particles are then defined as:

␣

Xi
t

(ns

i“1
“
␣

xi,1
t , .....,x

i,nτ
t

(ns

i“1
(4.7)

where each initial target state is given by xτ
0 for targets τ “ 1, ...., nτ .

The nm position measurements at each time step t are denoted by tzmt u
nm

m“1. The

innovation between measurement m and the prediction associated with track τ is

given by Eq.(4.5). The normalized innovation, with innovation covariance matrix

Sm,τ
t , is given by:

dm,τ
t “ pnm,τ

t q
T

pSm,τ
t q

´1 nm,τ
t (4.8)

and the nm-dimensional association likelihood is:

ppnm,τ
t q “

1

p2πq
nm{2

|Sm,τ
t |

1{2
exp

#

´ pdm,τ
t q

2

2

+

(4.9)

The measurement-to-track association hypotheses are built by supplementing

the product of the association likelihoods with factor representing the probability

of detection PD, the probability of detection failure p1 ´ PDq and the probability of

a false alarm PFA in a given hypothesis. A general expression for the probability in

the nth association hypothesis hn is then:

P phnq “ δnP
nτ´ϕn

D p1 ´ PDqϕnP
nm´pnτ´ϕnq

FA

ź

m,τ

ppnm,τ
t q (4.10)

where ϕn is the number of false alarms in hypothesis hn and δn P t0, 1u is a switch

that can be used in a gating mechanism allowing only measurements close to the

predictions to be involved.

Each particle is then associated with a weight:

wi
t “

nλ
ÿ

n“1

P phinq (4.11)

where nλ is the number of possible association hypotheses.

The steps are the same as in the standard particle filter except in the weight

calculation. Each target has ns particles, each particle is then given a weight deter-

mined by all the measurement to track associations. The weight set for each state

54



4.4. EXTENSIONS TO CONDENSATION

is then normalized and re-sampled. Individual target state estimation is carried out

by calculating the weighted mean state of the target particle set.

4.4 Extensions to Condensation

4.4.1 Single multimodal pdf

The basic particle filter, as described in Section 3.4, was labeled as the Condensation

(Conditional Density propagation) algorithm by Isard and Blake [89] in 1998. In

that application it was used to track the motion of a contour of a single target in

visual clutter. Koller-Meier and Ade [90] used a single Condensation-type tracker to

track multiple objects with the process step, measurement step and estimation step

implemented similarly to those of the basic filter. In this approach, the particles did

not represent multi-target states as defined in Eq.(4.1); as in the basic Condensation

algorithm they represented hypotheses on individual target states with the state

vector carrying information about target position, velocity and shape. The complete

particle set, however, represented samples from the whole multi-target state pdf.

Individual targets were associated with modes in that pdf.

The measurements, carried out in the context of robot estimation of its surround-

ings, came from either a range sensor or an image-like matrix sensor. The robot

was not interested in extracting the full tracks of the various objects, it was only

interested in avoiding obstacles by keeping a frame-to-frame track of the modes. The

measurement set consisted of either local environment positions or blob centroids in

a simple image. Each particle likelihood was calculated using a truncated Gaussian

having an argument based upon the distance between the particle position and the

incoming measurement, i.e.

wi
t “

$

&

%

e´ u2

2σ2 u ă δ

ρ otherwise
(4.12)

where u is given by uit “ min
k
ρpzkt , Hx̂i

tq and ρ “

b

“

pp ´ p̂q
2

` pe1 ´ ê1q
2

` pe2 ´ ê2q
2
‰

.

The arguments of ρ represent measured ppq and predicted pp̂q positions together with

measurement and prediction for each of two dimensions e1 and e2. So it is a nearest

neighbour type likelihood.

The approach dealt with newly appearing objects by re-sampling only a subset

nt´1 ´ n1
t´1 of the particles at each step. The remaining n1

t´1 particles were placed

at the measurement positions Zt´1 to form an initialization density p pXt´1|Zt´1q

associated with that time step. The subset was then combined with the a posteriori
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density from the previous step:

p1 pXt´1|Z1:t´1q “ γp pXt´1|Zt´1q ` p1 ´ γqp pXt´1|Z1:t´1q (4.13)

The weighting factor for combining the densities was chosen to be γ “
n1
t´1

nt´1
.

For true newly appearing objects the initialization density particles would be

in the vicinity of the associated measurement at time step t and would multiply

through re-sampling. The pdf would then grow to accommodate newly appearing

objects; particles linked to clutter would be less likely to reproduce.

The Koller-Meier approach was developed further for person tracking by Marrón

et al. [91]. They increased the likelihood of true detections by incorporating mea-

surements from stereovision cameras [92]. Their treatment did involve mode finding:

they used a k-means clustering approach to link particle groups to tracked objects

and to create new tracked objects based upon incoming measurements. They en-

sured that the n1
t´1 new target samples were assembled by taking a proportion of

particles from each group to counter the possibility that any one became over or

under representative of a target.

4.4.2 Probabilistic exclusion principle

MacCormick and Blake [93] aimed to deal with problems that develop when several

independent Condensation-type trackers use the same target model to describe the

tracked objects. In their case the target representation was a head and shoulders

contour. With all tracked objects sharing the same representation, closely moving or

occluding objects can suffer either tracker ‘hijacking’ or tracker coalescence, where

tracks can become attached to the incorrect object or merge into one. The authors

sought to tackle the situation by developing a probabilistic exclusion principle. The

aim was to allow multiple targets to occupy the same image position yet retain their

independent tracks. Their Condensation modification involved extending the state

dimensionality to accommodate two targets and developing a filter likelihood func-

tion that compounded the measurement probabilities associated with the possible

observation states.

The exclusion principle was specific to the target representation used. Each head

and shoulders contour was described by lines perpendicular to it and measurements

consisted of the positions of points on the lines that intersected with target outlines

in the edge image. In order to describe adequately the outlines the representation

model had up to 50 dimensions.

In addition to the model components describing the shape configuration there

was a label indicating the depth priority in the scene. Shape representations were
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allowed to overlap so that a single measurement line might intersect with a number

of possible target outlines. The authors restricted the calculations to the assumption

of possibly 0, 1 or 2 objects. Each particle had the capacity to describe a potentially

occluding foreground object and a potentially occluded background object. Each

object was described by a shape space vector x. The state vector had the form

X “ px, yq, with x “ pxτ1 ,xτ2q and y being a label indicating depth priority. The

label values were y “ 1 if τ1 was nearer to the camera than τ2 and y “ 2 for the

alternative. The particle filter process step incorporated a transition matrix T based

upon a small fixed probability that y will change i.e

p pXt|Xt´1q “ Tτ1τ2 pxt,xt´1q p pxt|xt´1q (4.14)

The filter likelihood function involved the product of the probabilities of possible

configurations:

p pZ|xq “

m
ź

i“1

pcpi,yq

`

zpiq|vpi,yq
˘

(4.15)

where v is a vector of proposed coordinates of the visible boundary intersections

with the measurement lines, and z is a vector of the measured intersections. The

probability densities pc described the cases for c “ 0, 1, 2 edge-boundary interactions

at each of the m measurement lines in an outline. The target boundary positions v

depended on the discrete occlusion state y.

The basic elements of the SIR filter were retained i.e. a process step, a measure-

ment step, state estimation carried out by a weighted mean of the particles, and

a re-sampling step to avoid particle degeneration. The re-sampling step, however,

had the additional complication that the composite particles were decomposed into

foreground and background elements which were then re-sampled separately.

4.4.3 BraMBLe

In the same spirit as the probabilistic exclusion principle, Isard and MacCormick [31]

developed a Condensation extension, the Bayesian Multiple Blob tracker(BraMBLE),

in the context of background subtraction blob-based human tracking measurements.

The aim was to tackle the same problem of tracker confusion in occlusion situations.

Their generalized cylinder model for the human appearance has been described ear-

lier in Section 2.4.1.

The multi-target state was represented as X “ tnm,x
1, ...,xnmu for nm objects,

or blobs, and xτ is a vector representing the state of the τ th object. The state vector

for an individual object included a 2D floor position in world coordinates, velocity

components, and parameters associated with the object shape as a vertically aligned
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generalized cylinder. The particle component associated with an object carried a

label specifying to which object the component belonged. The particle set was the

standard representation of weighted states: tXi
t, w

i
tu.

Central to the approach was the multi-blob likelihood function ppZ|Xq derived

using a fixed grid of G points across the image. At each grid location a measure-

ment zg was derived by considering the responses returned after applying radially

symmetric Gaussian and Mexican hat filters to image patches centred on the grid

point in each of the colour channels. The response vector was used to assign a pre-

determined likelihood ppzg|lgq that the measurement corresponded to background,

with label lg “ 0, or to one of nl pre-defined foreground models, i.e. lg P t1...nlu.

The likelihood was then:

p pZ|Xq “

G
ź

g“1

p pzg|lgq (4.16)

The process step was applied individually to each target component ofX. It used

a first order velocity model, with Gaussian noise, for the spatial components, and

Gaussian random variations for the velocity and shape components. Target labels

were preserved in the step. Possible new targets were initialized using a Poisson

probability assigning a zero velocity and set of initialization shape components at a

randomly chosen floor position.

The multi-target particle likelihoods, p pZt|Xt “ Xi
tq, were calculated by accu-

mulating pre-calculated grid likelihoods in the image region proposed to be occupied

by the object states associated with the particle. The objects were sorted into depth

order of their real world position and their likelihoods were then calculated first for

the nearest and then in depth order. The algorithm enforced an exclusion principle

by assigning a zero likelihood to hypotheses in which distinct objects would occupy

the same physical space in the world coordinates.

Individual target estimation was carried out by extracting the particle states and

the weights for each labeled object, then calculating a weighted mean.

4.5 Mixture particle filters

4.5.1 The mixture tracker

Vermaak et al. [94] aimed to deal with the problem of tracker hijacking by using a

separate particle filter for each object being tracked but developing the multi-target

state as a weighted mixture of the filters, i.e.

p pXt|Z1:tq “

nτ
ÿ

τ“1

πτ
t p pxτ

t |zτ1:tq (4.17)
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where the number of components in the mixture is nτ and
řnτ

τ“1 π
τ
t “ 1. Each

individual component behaved as a standard SIR filter with a normalized set of

weights. In the particle representation Eq.(4.17) is written as:

p pXt|Z1:tq “

nτ
ÿ

τ“1

πτ
t

ÿ

iPIτ

wi
tδ
`

xt ´ xi
t

˘

(4.18)

The authors showed that the Bayesian recursion of the mixture pdfs led to a sequen-

tial update of the mixture weights π. The component particle un-normalized weights

wτ
t were extracted as the sum of the individual particle un-normalized weights asso-

ciated with that component:

wτ
t “

ÿ

iPIτ

wi
t (4.19)

where I was a component indicator variable. The filter mixture weight was then

updated as:

πτ
t “

πτ
t´1w

τ
t

řnτ

τ“1 π
τ
t´1w

τ
t

(4.20)

After the mixture weight had been calculated the individual particle weights were

normalized. A k -means style spatial re-clustering of the particles was applied and

new mixture weights were calculated as:

π1τ
t “

ÿ

iPI1τ

π
cit
t w̃

i
t (4.21)

where cit is the re-allocated cluster for the ith particle at time t. The individual

particle weights were re-calculated as:

w̃1i
t “

π
cit
t w̃

i
t

π
1cit
t

(4.22)

to produce the updated mixture:

p pXt|Z1:tq “

nτ
ÿ

τ“1

π1τ
t

ÿ

iPIτ

w1i
t δ

`

xt ´ xi
t

˘

(4.23)

The particles were then re-sampled.

The claim was that the re-clustering and re-weighting maintained the distinc-

tiveness of the target modes. The particle filters within the mixture interacted only

in the computation of the weights. Experiments were carried out on a synthetic ex-

ample consisting position measurements of two targets. It showed that a standard

pair of particle filters coalesced as the targets approached but the mixture particle

filter retained the independent tracks. Experiments were also carried out using a
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video sequence of a football scenario using target colour and shape as a representa-

tion. The mixture particle filter managed to track four targets successfully where

separate filters failed.

4.5.2 The boosted particle filter

Okuma et al. [66] worked in the context of tracking multiple interacting hockey

players. They used a Vermaak-style mixture particle filter approach with a measure-

ment directed proposal function. Targets were detected using a 23-layer cascaded

Adaboost classifier. The classifier was trained using 6000 player images automati-

cally extracted using software that looked for regions with low intensity surrounded

high intensities indicative of the skating rink surface. Gaussian distributed parti-

cles placed in the regions associated with the Adaboost detections constituted a

detected object proposal pdf qadapxt|xt´1, ztq. The detection pdfs were combined

with the transition density of existing tracks to produce the ‘boosted’ proposal:

qB pxt|x0:t´1, z1:tq “ αqada pxt|xt´1, ztq ` p1 ´ αq p pxt|xt´1q (4.24)

The parameter α was adjustable so that the relative importance between the detec-

tions and the transition density could vary depending upon tracking situations such

as cross-overs and occlusions. If the Adaboost detections were not close to existing

tracks then a setting of α “ 1 would suggest a new track, a setting of α “ 0 would

produce a proposal distribution associated only with a known track.

They worked with a predefined multi-part object model based upon 110 compo-

nent HSV colour histograms. The players were defined by bounding box rectangular

regions with separate histograms for the upper and lower halves of the rectangle.

The histogram extractions were weighted using an Epanechnikov kernel, as described

in Section 2.6.1. For each individual target the combined Adaboost and transition

particle sets were weighted using the Bhattacharyya distance and a Gaussian likeli-

hood. The position estimation for each component of the mixture was carried out

using the standard weighted mean.

The approach was developed further [95] by detecting linear and circular mark-

ings on the skating rink surface, constructing a homographic transformation from

image coordinates to a top-view system and then tracking the players from that

perspective

Cai et al. [96] built upon the development by adding a bipartite matching type

data association step to produce a better linking of the Adaboost detections with

existing tracks. They also applied a mean-shift procedure at the histogram mea-

surement step to move particles closer to the likelihood peaks. Lu et al. [62] went
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even further and combined a HOG descriptor likelihood with the colour based one,

although the focus of the increased sophistication was towards recognizing actions

of the detected players rather than simply tracking them.

4.5.3 MCMC particle filter

Khan et al. [97, 98] describe a multi-target tracker designed explicitly to track a

large number of interacting targets. The subjects were ants moving against a plain

featureless background. The target representations were ant-size rectangular regions

described by their length, width and rotation angle. The authors used a single

Gaussian image background, built by averaging the images over the image sequence,

and a single foreground indicator derived from the average appearance of the targets.

This meant that all the targets used the same appearance model.

The joint state of all the targets at time t was represented by Xt, as in Eq.(4.1).

The particle set consisted of ns samples tXi
t, w

i
tu

ns

i“1 with each joint state given a

weight wt.

The appearance log likelihood, associated with an individual target state, was

defined in terms of the summed pixel intensity deviations from the foreground and

background mean values:

log p pzt|xtq “ c `
1

2

ÿ

pPF

«

ˆ

Ip ´ µbp

σbp

˙2

´

ˆ

Ip ´ µfp

σfp

˙2
ff

(4.25)

where subscript p represents a pixel with intensity Ip taken from region F associ-

ated with the target, µ and σ represent the means and standard deviations of the

background and foreground models, c is a constant.

Interactions between targets were modeled by a pairwise Markov random field

(MRF) with interaction potential between individual target states τ1 and τ2 given by

ψ pxτ1
t ,x

τ2
t q 9 exp p´g pxτ1

t ,x
τ2
t qq, where g pxτ1

t ,x
τ2
t q was a penalty term derived from

the degree of pixel overlap between two states. The penalty reduced the weights of

particles that had overlapping areas. The authors showed that the interaction term

becomes a simple additional factor in the importance weight for the single target

state so that:

wτ1
t “ ppzt|x

τ1
t q

ź

τ2PEτ1

ψpxτ1
t , x̂

τ2
t q (4.26)

where x̂τ2
t is the estimated state for target τ2 at time t given its state at t ´ 1, and

Eτ1 is the MRF edge subset with connections to the target τ1.

The authors replaced the traditional particle filter importance sampling step with

a MCMC Metropolis-Hastings procedure. Instead of applying the state transition
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step to the whole particle set and then calculating the likelihood, they made a change

to the state of one target at a time, and accepted the change using a Metropolis-

Hastings based decision. At time t´ 1 the state of all targets would be represented

by a set of samples
␣

Xi
t´1

(ns

i“1
each containing the joint state for the nτ targets:

Xi
t´1 “

␣

xi,1
t´1, ...,x

i,nτ

t´1

(

(4.27)

The update procedure was then to randomly select a joint sample Xr
t´1 from the set

of unweighted samples from the previous time step, and randomly select a target τ1

from the nτ targets. Using the previous state of this target, xr,τ1
t´1, the motion model

ppxr,τ1
t |xr,τ1

t´1q would be applied to obtain a proposed individual target state xr,τ1
t ,

and a stochastic element added to produce a state xr˚,τ1
t . The Metropolis-Hastings

acceptance ratio was then calculated as:

as “ min

˜

1,
ppzτ1t |xr˚,τ1

t q
ś

τ2PEτ1
ψpxr˚,τ1

t , x̂r,τ2
t q

ppzτ1t |xr,τ1
t q

ś

τ2PEτ1
ψpxr,τ1

t , x̂r,τ2
t q

¸

(4.28)

If it turned out that the ratio in Eq.(4.28) was ě 1 then the proposal would

be accepted and the state of the target corresponding to τ1 in Xr
t would be set

to xr˚,τ1
t . Otherwise it would be accepted with a probability as. If the proposal

was rejected the selected target in Xr
t would be left unchanged and a copy of Xr

t

would be added to the sample set. The sample set tXi
tu

ns

i“1 would then represent

the new multi-target state. The effect was to progressively increase the likelihood

of each multi-target state through the incremental adjustments to the individual

components. The estimated state for each individual target was then calculated

using the weighted mean of the particle partitions associated with that target.

The approach was developed further by Smith et al. [99] who applied it to

track varying number of human targets using colour histogram models with a Bhat-

tacharyya based likelihood.

4.6 Joint Multi-target Probability Density

Kreucher, Kastella, Morelande et al. [100, 101, 102] chose to work with a Bayesian

recursion of the full JMPD using the Bayesian recursion outlined in Section 4.2. The

approach treats the density as a single probabilistic entity capable of tracking both

the multiplicity and individual states of the targets.

The authors worked in the context of military vehicle tracking, using measure-

ments of target position based upon devices such as ground movement sensors, radar

or GPS. They emphasized that their treatment could be used with either thresh-
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olded or unthresholded measurements and that the use of unthresholded data would

lead to greater accuracy in tracking.

It is generally recognized that dealing directly with the JMPD leads to compu-

tational intractibility due to the increased and varying dimensionality of the state

space associated with multiple targets. Particle filter approximations to the JMPD

demand large numbers of particles in order to sample the state space efficiently.

Mahler [103] argued that beyond the computational difficulties were fundamental

problems with the generalization of single target Bayesian filtering to multi-target

situations, arguing that the classical techniques for optimally determining parame-

ters of interest, such as the MAP and the expectation were not definable in multi-

target situations. Kreucher, Kastella, Morelande et al. [100, 101, 102] aimed to

address the problems by careful construction of the particle filter used to approxi-

mate the multi-target state. They allowed for factorization of the multi-target state

when the targets were well separated. In effect this meant that the multi-target

filter behaved as multiple independent ones. The SIR particle filter uses the sub-

optimal kinematic prior ppxt|xt´1q as the sampling importance density in place of

the optimal density ppxt|xt´1, ztq; this allows the particle weights to be represented

by the measurement likelihood as described in Section 3.4. Kreucher et al. aimed to

construct a sampling density closer to the optimal by using measurement directed

particle proposals. They also reduced the particle dimensionality by applying Rao-

Blackwellization, i.e. using Kalman filter recursion on variables that had linear and

Gaussian behaviour, to the target velocities.

Their measurement model divided the observation region into cells so that clus-

ters of measurements within cells were returned as a single cell measurement. This

reduced the dimensionality of the measurement vector. The particle filter proba-

bilities were based upon the position vectors of the targets only, so the filter dealt

with targets moving from cell to cell. The actual positions of the targets within

the cell could be inferred at the state estimation step. The process step for each

target, necessarily involving both position and velocity, were the same as described

in Section 5.3.2.

An important element of their approach was target clustering within the multi-

target particle representation. Targets with position Euclidean separations less than

a given threshold were grouped into a cluster, and the process and measurement

steps were then applied to clusters as though they were a single targets. Well

separated targets were treated as single element clusters. A particle consisted not

as a collection of independent target states, but as a collection of independent states

and clusters. The particle components were referred to as either independent or

coupled (clustered) partitions. At the re-sampling stage the independent partitions
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of the particle set were separated out and re-sampled according to their weights in

the standard way. The coupled partitions went through an Auxiliary Particle Filter

type stage with alternative realizations of the coupling being generated, re-weighted

and re-sampled. The resulting particles, with new component proposals, were then

re-sampled according to the particle weights. Individual target states were estimated

using the weighted mean of the relevant partition. Components were re-grouped in

a k -means clustering step.

Target birth and death were dealt with by the construction of an ‘existence’ grid

which linked a measurement within a cell to a prior probability of a false alarm or

target arrival. Similarly the absence of a measurement could be linked with a target

death. The existence variable then enabled a measurement directed proposal for

arriving or departing particle components.

This particle filter representation of the JMPD was applied to simulated mea-

surement sets having a maximum of 10 targets. The authors worked with samples

sizes ranging from 25 to 500 particles, but with each particle carrying position and

velocity information for a number of targets. The observation region covered an

area of 25km2 with each observation cell having dimensions 100mˆ 100m. Starting

the simulation with 0 targets they reported successful acquisition and tracking of 10

targets across a range of signal-to-noise ratios using 200 particles.

4.7 The Probability Hypothesis Density filter

Mahler’s criticisms [104, 103] of the JMPD approach included the recognition of

difficulties associated with a representation of the multi-target state in which the

individual states are concatenated into a single vector. If the multi-target posterior

probability density accommodates the probability of varying numbers of targets it

becomes difficult to define expectation values with particles of differing dimension-

ality. This was the basis of his proposal that multi-target vector based recursions

were without adequate theoretical foundations. Mahler recognized that random fi-

nite sets (RFSs) offered a more appropriate representation and developed the field of

Finite Set Statistics (FISST). A FISST Bayesian multi-object recursion was found

to be computationally intractable, but it was shown that recursive propagation of

the first-order moment of the multiple target state, the Probability Hypothesis Den-

sity (PHD), was possible. The PHD is a function defined in the single target state

space. The integral of the PHD over a region of the state space gives the expected

number of targets in the region. The modes of the PHD indicate the highest local

concentration of contributions to the expected number of targets. The positions of

the modes in the state space can be used to generate estimations of the target states.
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SMC implementations of the PHD filter were developed [105, 106] and showed

successful multi-target tracking in a diverse range of scenarios; for example: sim-

ulated tracks in heavy clutter [105], simulated vehicle movements in terrain [106],

feature points in image sequences [107], radar [108], sonar [109], human groups [110],

metallic objects in security screening image sequences [111], faces [112], vehicles on

roads [113] etc.

The probability hypothesis density associated with the multi-target posterior

ppXt´1|Z1:t´1q, at time t´ 1, is denoted as D pxt´1|Z1:t´1q. In this case the variable

x is interpreted not as a single target, but simply as a state in the single target state

space. The PHD filter is a standard two-stage procedure: prediction and update.

The PHD prediction is:

Dpxt|Z1:t´1q “ bpxtq `

ż

φpxt,xt´1qD pxt´1|Z1:t´1qdxt´1 (4.29)

with

φ pxt,xt´1q “ ps pxt´1q p pxt|xt´1q ` b pxt|xt´1q (4.30)

where bpxtq represents the intensity function of contributions to the PHD associated

with targets newly appearing at time t, b pxt|xt´1q is the intensity function of the

RFS of new targets emerging from the previous state xt´1, ps pxt´1q is the probability

that the PHD contribution still exists at time t given that it had a previous state

xt´1, and p pxt|xt´1q is the single target transition probability density. The PHD

update equation is:

D pxt|Z1:tq » p pZt|xtqD pxt|Z1:t´1q (4.31)

with

p pZt|xtq “ 1 ´ pDpxtq `
ÿ

zPZt

pDpxtqp pz|xtq

λc pzq `
ş

pD pxtq p pz|xtq dxt

(4.32)

where pDpxtq is the probability of detection, p pz|xtq is the likelihood of an individual

contribution, λ is the average number of contributions due to clutter points per scan,

and c pzq is the probability distribution of the clutter points.

The SMC implementation of the filter approximates the PHD with a large set

of weighted particles. The filter works with an input of the measurement set Zt

consisting of possible target positions and clutter. The particle set is split into two

groups nL and nJ . The group nL,t´1 represents the number of particles linked to

the states xt´1 at time t´ 1, and nJ,t represent particles linked to newly appearing

targets at time t. At the prediction step the nL,t´1 particles are proposed to new

states using the standard process equation i.e. xt “ Fxt´1 ` Gνt´1. The nJ,t

particles are placed within the state space according to a target arrival probability
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model. The nL,t´1 state transition particles are given proposal weights:

ŵi
t “

φ
`

xi
t,x

i
t´1

˘

qt
`

xi
t|x

i
t´1,Zt

˘wi
t´1 (4.33)

where qt
`

xi
t|x

i
t´1,Zt

˘

is the importance sampling function. The nJ,t particles asso-

ciated with target arrival are given weights:

ŵj
t “

bt
`

xj
t

˘

nJ,tp
`

xj
t |Zt

˘ (4.34)

where p
`

xj
t |Zt

˘

is the importance sampling function for new targets. At the up-

date step the particle weights, representing the amplitude of the PHD, are then re-

calculated using the measurement likelihood and equations Eq.(4.31) and Eq.(4.32).

An example of a typical particle PHD recursion is shown in Algorithm 3. As it

is a particle based Bayesian recursion it has some recognizable general features such

as: generate particle proposals, assign weights to the particles, make state estimates,

re-sample etc. But as the PHD filter is doing a job different to that of the SIR filter

it is of interest to examine the differences and similarities in a bit more detail.

The input to the filter consists of: the particle states and weights from the

previous iteration, the complete measurement set including false alarms and clutter,

and a variable indicating the number of particles to be allocated to newly born

targets. At Stage 1 the particles
␣

xi
t´1, w

i
t´1

(nL,t´1

i“1
from the preceding time step

undergo a standard process diffusion. The weights for each particle at this stage

represent the particle’s fractional contribution to the previous estimate of the target

number. In Algorithm 3 the sampling density is taken to be the proposal density,

as in the simple SIR particle filter, so the weights are simply carried forward.

At Stage 2, in order to accommodate the possible appearance of ∆τ new targets,

a set of nJ additional particles are created with states drawn from a birth proposal

distribution. For this distribution Wang et al. [110] used a uniform distribution

across the image region, reflecting the possibility that a new target could appear

anywhere within the field of view. In contrast, Maggio et al. [112] used a mixture of

Gaussians centred on the observations Zt. Their choice was based on the recognition

that drawing samples from a uniform distribution could require too many particles in

their higher dimensional state space (involving target shape as well as position and

velocity). Stage 3 is the weight update step. In this example the particle likelihood

p pz|xi
tq is taken to be Gaussian centred on the measurement z. The coefficient C

sums the likelihoods of all particles for each measurement. If many particles are

close to a measurement then the corresponding value of C will be high. The value
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Algorithm 3 Particle PHD filter

Function def:
”

␣

xj
t , w

j
t

(nL,t

j“1
, τt

ı

“ PHDfilter
`␣

xi
t´1, w

i
t´1

(nL,t´1

i“1
,Zt, nJ,t, nL,t´1, F,G, pt, pD,∆τ

˘

Stage 1
for i “ 1 to nL,t´1 do
- generate proposed states:
xi
t Ð Fxi

t´1 ` Gνt´1

- calculate the proposal weights using Eq.(4.33):
ŵi

t Ð wi
t´1

end for

Stage 2
for j “ nL,t´1 ` 1 to nL,t´1 ` nJ,t do
- generate new samples from a measurement based birth proposal function:
xj
t „ pt p¨|Ztq

- allocate weights to the new samples using Eq.(4.34):
ŵj

t Ð ∆τ{nJ,t

end for

Stage 3
- compute the weight sum coefficient
for m “ 1 to size(Zt) do

Ct pzmq Ð
nL,t´1`nJ,t

ř

i“1

pD pxi
tq p pzm|xi

tq ŵ
i
t

end for

- update the weights
for i “ 1 to nL,t´1 ` nJ,t do

wi
t Ð

„

1 ´ pD pxi
tq `

ř

zPZt

pDpxi
tqppz|xi

tq
λcpzq`Ctpzq

ȷ

ŵi
t

end for

Stage 4
- estimate the number of targets

τ̂t Ð
nL,t´1`nJ,t

ř

i“1

wi
t

- call re-sample function to get nL,t new particles

”

␣

xj
t

(nL,t

j“1

ı

“ resample
´

txi
t, w

i
tu

nL,t´1`nJ,t

i“1

¯

- re-scale the weights so that they sum to the target number
for i “ 1 to nL,t do
wi

t Ð τ̂t
nL,t

end for
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Figure 4.1: PHD particle weights using simulated measurements, Overhead sequence

of C has implications in the following weight update. The weight update makes

a likelihood style correction to the carried forward and new birth weights. If we

consider an ideal case with pD « 1 and λ « 0 then the weight update reduces

to wi
t «

ř

zPZt

ppz|xi
tq

Ctpzq
ŵi

t. The update factor is then a sum of likelihoods of all the

measurements for a given particle, and we see Ct pzq as a normalizing factor. If the

particle is far from the measurements then the update factor is small. Similarly,

if clutter is then included and the detection probability is reduced then the overall

weight update factor is reduced. If, on the other hand, the particle density is low near

a measurement, but there are a few new particles near that measurement, then the

weight update factor can be relatively high. The effects are seen in Figure 4.1. The

frame is from the Overhead sequence with simulated measurements added at each

frame. In Figure 4.1(a) seven real targets can be seen together with 5 added clutter

points. The corresponding updated particle weights are shown in Figure 4.1(b).

The red colored particles have weights below an arbitrarily chosen threshold, and

the blue particles have weights above. Successive weight updates have led to stable

groupings of particles centred on the real targets. Low weight groupings of particles

can be seen centred on clutter positions from the preceding frame. Low density,

but high weight, particles can be seen centred on the current frame clutter points.

The high weights in those regions mean that the weight based re-sampling step at

Stage 4 will lead to reproduction of particles in those regions. If it had been that

the measurements at those points had been associated with real targets then the

new local high density of re-sampled particles would be placed close to the target in

the next frame and the related particle weights would grow to form a ‘blue’ cluster

at the update step. If, on the other hand, the measurements were randomly placed

clutter then the new group of particles would not have favorable weight update at
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the next step and would die away through the re-sampling process.

The overall process is a feedback system in which particles close to consistent

tracks reproduce positively and ones not associated with consistency die away. A

significant drawback to the PHD filter is speed of collapse of a particle group if a

detection is missed. In such cases the particles will have low weights and would not

survive resampling.

Given consistent detections and consistent particle groupings it remains to have

a cluster finding procedure in order to extract the target states. Maggio et al. [113]

used a k -means approach coupled with a graph-based track update for data associ-

ation. The graph analysis dealt with tracker issues such as misdetections, absence

of detections, occlusions, target addition and removal.

4.8 Discussion

The chapter has presented an overview of frequently cited approaches to multi-

target tracking. The aims were twofold: one aim was to give some indication of the

academic background to the field, the other was to consider if any of the approaches

offered tools or solutions that might be useful in the context of the situations being

addressed by this thesis.

The content of the chapter suggests that there is no clear convergence of opinion

as to the best way to deal with the general task of tracking a number of targets. The

absence of convergence may be due, in part, to the differing degree of importance

attached to the different challenges presented to the tracker in the given tracking

contexts.

In the multi-modal pdf example [90], the problem, whilst presenting itself as

multi-target tracking, was one of keeping track of multiple obstacles whilst the de-

tector moved. There was no real interest in maintaining the specific identities of

the obstacles or tracking through occlusion. It extended the formalism of the sin-

gle target tracker, produced a measurement set at each time step, used a nearest

neighbour likelihood to weight the particles and required a particle clustering step

to update the obstacle position. It did not maintain an independent tracker for each

target. It had a built in mechanism to deal with newly appearing obstacles.

It had features in common with the mathematically more sophisticated PHD

filter. It distributed particles across the entire surveillance region, or in places

where new targets were more likely to appear, and then gave each particle a weight

reflecting its closeness to a measurement position. Both approaches then needed a

clustering procedure to find the resulting modes in the distribution. The procedures

were not designed to deal with occlusion or tracker hijack, those aspects needed a
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further data association step. The PHD filter could be seen simply as a clutter filter,

the Koller-Meier tracker would behave as a clutter filter but with less sophistication

than the PHD filter.

The question of whether to track the likelihood associated with the full multi-

target state, or whether to manage a mixture of individual trackers has not been

resolved. Those that tracked the multi-target state had to incorporate algorithmic

steps to deal with the changing dimensionality of the multi-target state vector,

incorporation of new targets, and then marginalization of the representation in order

to estimate the individual target states. It was necessary to restrict the total number

of targets that could be tracked at any one time.

Procedures for dealing with target occlusion, overlap and track crossing were not

entirely satisfactory. Targets will overlap in the image plane. Whilst Khan’s target

proximity penalty might be useful in the special context of tracking in an overhead

view, it is likely to be less useful in an oblique view where we would want trackers

to appear to pass through each other in the image.

Those opting for the mixture particle filter approach introduced computations

that involved particle weights associated with a specific target having a calculation

link with all the other targets. But there was no compelling evidence to suggest

that this linkage improved the overall performance of the tracking. Widely separated

targets should be treated as independent and some of the approaches accommodated

this. This was coupled with a recognition that special attention is needed when

similar targets move closely together. Closely moving targets will present problems

in radar and sonar type applications, but such problems might be less evident when

targets have their own identifiable representation.

The approaches have been underpinned by a faith that Bayesian procedures

applied to various degrees of a multi-target state might lead to computational sim-

plicity, mathematical coherence, and the resolution of tracking problems in their

implementation. It is suggested that the illustrative sample of work in this chapter

does not strengthen that faith.

The next step in the work is to return to a more in-depth analysis of the actual

behaviour of a single target particle filter tracker. It will look at the factors that de-

termine the choice of parameters, approaches to various implementation techniques

and state estimation etc. The proposal is that for a single target tracker, tracking

an object with a clear representation, others in the vicinity should be classified as

clutter. The work becomes a re-examination of the approach, implicitly rejected by

standard multi-target tracking approaches, of the application of multiple instances

of tracking a single target through clutter.
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Chapter 5

Particle filter implementation

5.1 Introduction

This chapter deals with the basic implementation of the SIR particle filter as applied

in the context of histogram-based object tracking in typical surveillance video. It

considers the practical operation of the filter in some detail, rather than the the-

oretical aspects, in order to clarify the way that it works. It lays the foundations

upon which refinements will be built in the later chapters. The behaviour of the

filter is governed by the interplay of a number of parameters and it is only through

the understanding and control of those parameters that generalizable aspects can

be teased out. The parameters are introduced in the following sections, they are

analyzed in more depth in Chapter 6.

The treatment starts with a discussion of the basic tools used with the pro-

posed particle filter. The approach is illustrated using a simple 8-bin histogram

as the trackable representation. The standard feature distance measure, the Bhat-

tacharyya distance, is described. The efficient extraction of multiple histograms is

achieved through the use of the integral histogram, so the method used to imple-

ment it is described. The filter process step is considered in relation to the basic

dynamics of the expected targets, the choice of process noise and the need for feed-

back. The appropriateness of the common approach to state estimation, using the

weighted mean of the states, is considered. The operation and effectiveness of this

implementation of the filter is illustrated using manual initialization of trackers in a

range of settings. The drawbacks of the approach are considered in order to produce

pointers to improvement.
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Figure 5.1: Variation of histogram similarity in the vicinity of the target

5.2 Basic tools for tracking

5.2.1 Simple histogram based representation

It was concluded, in Chapter 2, that a colour intensity histogram representation

would be appropriate for general purpose tracking of deforming and rotating objects.

The approaches discussed in that chapter considered polychromatic representations

with some indication of the spatial layout of the colour components. But the kind

of feature vector dimensionality associated with the histogram representations de-

scribed in that chapter can present a severe computational bottleneck in particle

filter tracking where each object can demand a large number of particles. In an

embedded system where the tracker algorithms are competing with other routines

for shares of processor time it is necessary to consider lower dimensionality and

reconsider the appropriateness of the chosen colour space. It was stated, in Sec-

tion 1.2, that it would be prudent to assume that the chromatic content of CCTV

footage would be weak. Initial experimentation in this work showed that grey scale

histograms with u “ 8 bins could be used to track objects and so this was taken as

a starting point. Where the video was available as a standard YCrCb signal the Y

72



5.2. BASIC TOOLS FOR TRACKING

channel was used as the monochromatic source. In cases where the video was RGB

it was converted to monochrome (V of HSV) using the standard conversion [114]:

V “ 0.299R ` 0.587G ` 0.114B (5.1)

Figure 5.1 introduces the particle representation. Figure 5.1(a) shows an exam-

ple tracker initialization. The reference eight-bin grey scale histogram to be tracked

is constructed from the pixel values within the small rectangle shown in that figure.

The dimensions of the rectangle are taken to be half those of the typical average

object bounding box i.e. the average area of image that would just cover a target

object. The expected bounding box size for pedestrians in this overhead view was

taken to be about 40 ˆ 40 pixels so the tracking rectangle is 20 ˆ 20 pixels. This

is, in effect, a use of a uniform kernel that gives equal weight to pixels within the

tracking rectangle and zero weight to ones beyond the edges. The centre of the

tracking box was placed approximately close to the centre of the object region to be

tracked. Figure 5.1(b) shows the state of the tracker after 10 frames. The tracker

rectangle has managed to maintain its position close to the central region of the

object being tracked even though the object has changed shape and appearance.

Figure 5.1(c) shows a similarity surface produced using a comparison between the

reference histogram, initialized in the first frame, and ones extracted at pixel posi-

tions in a uniform grid placed over the target in frame 10. The similarity surface

illustrates the trackable mode. The borders of the similarity grid are shown as a

blue rectangle. Figure 5.1(d) shows a typical particle approximation to the distri-

bution, the task of the particle filter is to extract the most appropriate mode from

the particle representation.

5.2.2 Bhattacharyya distance and the likelihood function

Central to the operation of the particle filter is the likelihood ppzt|xtq. This is used to

update a weight given to a proposed state, and from those weights we can estimate

the most likely state of a tracked object. We focus on the weight update equation

as described in equation Eq.(3.57), i.e.

wi
t9w

i
t´1ppzt|x

i
tq

The likelihood is commonly realized through a Gaussian function of the form:

ppzt|xtq9 exp

ˆ

´
ρ2

2σ2

˙

(5.2)
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where ρ is a comparison distance between a reference representation and one ex-

tracted at a position px, yq in the image. The parameter σ is the standard deviation

of the distribution of the distances. The function characterizes the distribution of

the measurement noise ηt in Eq.(3.6).

In histogram-based tracking, the Bhattacharyya distance measure ρB [115], de-

rived from the Bhattacharyya coefficient, is a popular choice for the distance mea-

sure ρ in Eq.(5.2). If two n-bin histograms are represented as p “ tpuuu“1...n and

q “ tquuu“1...n, and normalized such that
n
ř

u“1

pu “ 1 and
n
ř

u“1

qu “ 1 , then the Bhat-

tacharyya coefficient is defined as:

ρrp,qs “

n
ÿ

u“1

?
pu

?
qu (5.3)

It has a geometrical interpretation [34] as the cosine of the angle between the n-

dimensional unit vectors
“?
p1, .....,

?
pn
‰T

and
“?
q1, .....,

?
qn
‰T
.

The Bhattacharyya distance is a dissimilarity measure. It is defined [115] to be:

ρB “
a

1 ´ ρrp,qs (5.4)

This formulation ensures that the distance between two identical histograms has

ρB “ 0 and dissimilar histograms have values 0 ă ρB ď 1. The upper limit of 1

(rather than
?
2) occurs because the histogram bin values cannot be negative. This

means that the unit vectors will have no negative components, the maximum angle

between the two unit vectors will be 90˝ and hence ρB,max “
?
1 ´ 0.

Figure 5.2 shows the effect of a Bhattacharyya distance measure as a monochrome

8-bin histogram, extracted at the centre of the target, is compared with ones ex-

tracted at points along the scan line indicated. The vertical dotted lines to each side

of the central ones shown in Figures 5.2(c) and 5.2(d) indicate the scan positions

corresponding to the sides of the rectangular region. In the same frame comparison,

Figure 5.2(c), the distance goes to zero at the extraction point. Figure 5.2(d) shows

the scan response, taken two frames later, in which the extracted histograms are

compared with the reference histogram taken from the earlier frame. It is seen that

the overall shape of the response is similar with a well defined object localization.

The distance does not go to zero in the second case because the histogram extracted

at the centre of the target differs slightly from the reference histogram due to target

change of shape and illumination variation. The characteristic of the response is

important for particle filter tracking. If the response is too sharply peaked then

it can be difficult to locate the target if it moves into a region where the particle

density is low, as might be the case when the target undergoes sudden acceleration.
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Figure 5.2: Histogram Bhattacharyya distance scan across target: (a) frame 6, (b)
frame 8, (c) distance scan across target, same frame, (d) original histogram scan
across target 2 frames later.

In practice, during tracking, the reference histogram is not allowed to ‘age’ with

frame count. At each target detection in subsequent frames the reference histogram

is updated using a fraction of the histogram p̄t extracted at the determined target

location:

qt “ p1 ´ αqqt´1 ` αp̄t (5.5)

The fraction α typically has the value 0.2 but it can be greater or smaller depending

upon the confidence in the update histogram. An alternative is to use values that

are multiples of 1{8, more suitable for fixed-point processing.

5.2.3 Integral histogram

Even with low-dimensional monochromatic histograms, the particle filter need for

multiple histogram calculations from image regions with varying areas can have an

undesirable computational cost. The ‘integral histogram’ [116] provides a tool to

offset this cost. The integral histogram associated with a grey scale image I is

constructed by producing a binary image slice Su associated with each histogram
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Figure 5.3: Illustrating the tracking rectangle with dimensions height h “ |C ´ A|,
width w “ |D ´ A| ; and the integral histogram bin extraction for u “ 2

bin u and a bin width of b:

Supx, yq “

$

&

%

1 if bpu ´ 1q ď Ipx, yq ă bu

0 otherwise
(5.6)

Each binary image slice is then summed into an integral image representing bin u

of the integral histogram P , i.e.

P px, y, uq “
ÿ

iăx,jăy

Supi, jq (5.7)

An n-bin histogram, represented as p “ tpuuu“1...n, can then be extracted in a

constant number of operations independent of the target region size. As the value

in each pixel in the image slice corresponding to a bin u is the sum of the binary

values from the origin to that pixel, the bin value pupx, yq for a region with upper

left hand corner px, yq and width and height pw, hq is obtained by:

pupx, yq “ P px, y, uq ` P px ` w, y ` h, uq ´ P px, y ` h, uq ´ P px ` w, y, uq (5.8)

A typical tracking region and an example integral histogram bin extraction area for

one bin is shown in Figure 5.3. The histogram bin extraction described by Eq.(5.8)

translates to pupx, yq “ A ` B ´ C ´ D in Figure 5.3(b). Porikli [116] showed

that for an area search in a grey level image, using 8 bin histograms, the integral

histogram method can run significantly faster than a conventional search. Whilst

the integral histogram reduces the cost of multiple histogram extractions, it incurs

an overhead cost in terms of the time required for its initial construction, and of

memory allocation consumed by the need for an image for each bin. This restricts
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Figure 5.4: Matlab comparison of multiple histogram extractions: direct calcula-
tion(red points), integral histogram calculation(blue points)

the design dimensionality of the representation: using more grey scale levels would

be more descriptive, but the marginal increase in quality of the description might

not justify the increased cost in terms of resource consumption.

It has been stated that adequate tracking could be achieved using 8-bin grey

scale histograms. Experimentation using an un-optimized Chipwrights hardware

simulator showed that an 8-bin grey scale integral histogram could be constructed

in less than 5ms for an image size of 320 ˆ 256 pixels, an acceptable time for the

targeted frame rate of 5fps (Source: Wang, W. AD-Group, personal communica-

tion). For small particle sets the integral histogram, with its initial overhead, does

not give a time advantage; but if tracking multiple objects, with multi-part his-

tograms, and each object demanding a few hundred particles, the advantages of the

integral histogram approach become evident. Figure 5.4 illustrates the point. A

simple Matlab routine was written to measure the processor time taken to extract

groups of simple structured histograms, as described later in Section 5.5.1, for grey

scale image regions having dimensions 10 ˆ 25 pixels. It can be seen that the time

for direct calculation of the histograms rises linearly as the number of histograms

extracted increases. The integral histogram based extraction shows a much smaller

increase in time with the number of histograms, and an intercept indicating the

initial overhead. For numbers of histograms greater than 200 the integral histogram

extraction shows a clear advantage. The advantage would be greater for histogram

calculation involving larger image regions as the integral histogram based extraction

time is independent of region size.
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5.3 Particle filter stages

This section describes the implementation of the basic particle filter for single target

tracking in the monochrome sequences described in Section 1.2. It outlines the steps

of target initialization, motion prediction based upon basic dynamics, likelihood

calculation via the measurement step, state estimation, and particle re-sampling.

The purpose is not to focus, at this stage, on analysis to determine the optimal

choice of parameters, it is to illustrate the operation of the filter and show that

single target tracking can be achieved with parameter values manually chosen both

for computational convenience and to reflect the expected dynamics of the objects

in the given scenarios. For example, the number of particles was chosen to be a

power of 2 because the number of data-paths in a SIMD processor is likely to be

such a value. The number of particles had to be large enough to give a minimum

density of one per target bounding box area in the event of particle set spread due

to target occlusion etc., but not too large such that the computation load was too

great. The process noise components were chosen such that the particle diffusion

accommodated the anticipated velocities of the targets in the sequences etc.

It is recognized [4] that tracker initialization is a difficult and critical step. In

order to illustrate the operation of the particle filter the initial tracking point was

selected manually. This is an approach that is common in published work. Methods

of automated tracker initialization will be discussed later in Chapter 8.

5.3.1 Initialization

The implementation is described with reference to the Overhead sequence, although

the behaviour of the tracker is illustrated using the other sequences as shown later

in Figure 5.8.

A tracker initialization point is shown in Figure 5.5(a). The approximate centre

of the object anticipated bounding box was chosen as the point to track and an

8-bin histogram representation q “ tquuu“1...8 was extracted from a rectangular

area with dimensions half those of the bounding box, as described in Section 5.2.1.

The object state was described by the vector xt “ rxt, vx,t, yt, vy,ts
T incorporating

Cartesian position and velocity components.

An initial set of ns “ 512 particles was produced using a four-dimensional Gaus-

sian distribution centred on the manually chosen starting coordinates rx0, y0s
T and

initial velocities rvx,0 “ 0, vy,0 “ 0sT, i.e.

xi
0 “ x0 ` N p0,Σq (5.9)
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The particles represent hypothetical states.

Within the diagonal noise covariance matrix Σ the standard deviations of the

spatial components pσx, σyq were set to be one quarter of the tracking box width in

pixels, and those of the velocity components pσvx , σvyq were set to be half of those

of the spatial components. The values were chosen to give a distribution of the

spatial components roughly within the bounding box of the object to be tracked.

The spread of the particles represents measurement uncertainty in both the initial

position and velocity of the object. A typical initial spread of particles is shown in

Figure 5.5(b).

5.3.2 Process step

The motion of the target is described by the kinematic equations:

xt “ xt´δt ` vx,t´δtδt ` 1
2
ax,t´δtδt

2

vx,t “ vx,t´δt ` ax,t´δtδt

yt “ yt´δt ` vy,t´δtδt ` 1
2
ay,t´δtδt

2

vy,t “ vy,t´δt ` ay,t´δtδt

The equations can be written in the form:

xt “ Fxt´δt ` Gat´δt (5.10)

with state vector xt “ rxt, vx,t, yt, vy,ts
T, time-step matrices F and G,

F “

»

—

—

—

—

–

1 δt 0 0

0 1 0 0

0 0 1 δt

0 0 0 1

fi

ffi

ffi

ffi

ffi

fl

G “

»

—

—

—

—

–

1
2
δt2 0 0 0

0 δt 0 0

0 0 1
2
δt2 0

0 0 0 δt

fi

ffi

ffi

ffi

ffi

fl

(5.11)

and acceleration

at´δt “ rax,t´δt ax,t´δt ay,t´δt ay,t´δts
T . (5.12)

For computational convenience we set δt “ 1 to represent a frame step. The

distances are measured in pixels rather than metres. With these settings the velocity

units end up being pixels per frame rather than metres per second.

With the particle representation, the motion model xt “ fpxt´1,νt´1q is realized

by splitting Eq.(5.10) into a deterministic component and a stochastic one, and

using δt “ 1. The stochastic component is introduced by replacing the acceleration
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Figure 5.5: Illustrating the particle sequence
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Figure 5.6: Gaussian weightings for the particle set

terms with Gaussian random values to get, for the ith particle,

xi
t “ Fxi

t´1 ` Gνi
t´1 (5.13)

with the process noise νt´1 „ N p0,Σq, having zero mean and covariance diagonal

pσ2
x, σ

2
vx , σ

2
y, σ

2
vyq. The transition probability density ppxi

t|x
i
t´1q is characterized by

Eq.(5.13).

The particle aspect of the process step can be thought of as a search for the

next position through the diffusion of the particles under the motion model. Each

particle represents a hypothetical object path. The process noise variances have to

be chosen such that the particle placement is neither too wide or too narrow. If the

placement is too wide then there is a chance that the overall density of particles is

too small and few end up in the region of the target mode at time t. If it is too

narrow then a rapidly accelerating target can be lost as the particles fail to keep

up. Figure 5.5(c) shows the frame following that of Figure 5.5(b) with the particles

diffused symmetrically around the last position. The symmetrical diffusion arises

because the target velocity is unknown at that step and so is assumed to be zero.

5.3.3 Measurement

The measurement step involves using the integral histogram to extract an 8-bin

histogram at each new particle position. The Bhattacharyya distance between the

reference histogram and the particle histogram is calculated, and a weighting ob-

tained using Eq.(5.2) with a measurement noise standard deviation σ “ 0.2. The

weightings for the particle set in Figure 5.5(d) are shown in Figure 5.6.

The high-weight particles correspond to the ones in the upper region of the

particle set as seen in Figure 5.5(d). Those are the ones with random velocities
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Figure 5.7: Temporal difference motion feature

similar to the true velocity of the target. Particles with Gaussian weights less than

0.01 were reset to w “ 0.01. This introduces a ‘tail’ to the distribution. It ensures

that the particle population survives re-sampling in the event of object occlusion.

It also ensures a surviving contribution of alternative hypotheses in the particle

population.

Whilst the histogram is the dominant trackable feature in this version of the

particle filter it is not sufficient for effective tracking. Early experimentation showed

that as the histogram aged static elements in the scene could present distracting

histograms. It is necessary to supplement the main feature. A simple feature to add

is object motion, i.e. the object has a trackable histogram feature and it also has

motion. The feature was generated by simple temporal frame differencing with a

low threshold to produce a binary motion image. The motion image, superimposed

on the grey scale image is shown in Figure 5.7. At a frame rate of 5 fps the textured

objects presented sufficient difference to survive the threshold; static background

elements were below threshold. At each particle position a tracking box area was

extracted from the binary temporal difference image and the motion pixel fraction of

the area, corresponding to the fraction of white pixels within the area in the binary

mask, was calculated. The fraction formed a motion weight wm. The particle weight

was then calculated by multiplying the Gaussian weighting wG by the motion weight

if it was determined that the object velocity was above a minimum value, chosen to

be a fraction of the smallest dimension of the tracking box:

wi
t “

$

&

%

wi
Gw

i
m if }v} ą }v}min

wi
G otherwise

(5.14)

82



5.3. PARTICLE FILTER STAGES

5.3.4 State estimation

In this simple version of the particle filter the target state is extracted using the

weighted mean of the states as described by Eq.(3.59) in Section 3.4, i.e:

E rxt|z1:ts «

ns
ÿ

i“1

ω̃i
tx

i
t

where Er¨s is the expectation, and w̃i
t is the normalized weight.

This approach is adequate if the process noise is small such that the particles do

not spread much beyond the bounding box of the target. However, it turns out to

be not adequate in general; alternative methods, discussed in Chapter 7, have to be

used.

Once the object state has been determined it remains to update the histogram

representation. A new histogram is extracted at the object position and is used

to incrementally update the target representation as described by Eq.(5.5) in Sec-

tion 5.2.2, i.e:

qt “ p1 ´ αqqt´1 ` αp̄t

with α “ 2{8. This slow update ensures that the tracker retains a ‘memory’ of the

feature being tracked and does not easily switch to track a distraction. The update

can be suppressed when the overall weights are low, indicating that the track has

been temporarily lost.

5.3.5 Re-sampling

Once the object state has been extracted the particle set needs to be regener-

ated through re-sampling. The method used in this illustration is multinomial

re-sampling as described in Section 3.4.2. In the tracking example shown in Fig-

ure 5.5(d) the original prior particle set is shown in blue and the re-sampled particles

are indicated as green. The r-sampled set represents an estimate of the uncertainty

of the measurement at that step. The surviving particles turn out to be those that

had the randomized velocity at the last step appropriate to enable them to end up

at the positions shown. Through the re-sampling process the tracker quickly learns

the velocity of the target.
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Figure 5.8: Examples of simple 8 bin histogram tracking with manual initialization

5.4 General behaviour of the simple implementa-

tion

Figure 5.8 shows typical examples of simple 8-bin grey scale tracking using the

particle filter described above. The conditions are relatively controlled and have

manual initialization. Under the controlled conditions the trackers respond well to

brief and partial occlusion and deal with the apparent change of size as they move

through the oblique views. In Figures 5.8(a) and 5.8(b) the tracked targets pass

behind other objects having similar shape and histogram signatures. The tracking

survives mainly because of the choice of the process noise values and a degree of

feedback aimed at adjusting appropriately the size of the tracking box.
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5.4.1 Dealing with depth views

Most typical surveillance applications of object detect and track systems are likely

to have views similar to those in Figure 5.8. Objects will change size, shape and

appearance as they move through the scene. Venegas et al. [117] sought to deal

with such difficulties by transforming the oblique view image into a plan view and

carrying out particle filter tracking in that plane. A common alternative approach

is to carry out a perspective camera calibration [118, 119, 120] and apply motion

models in the world coordinates. In the interest of keeping computation to the

minimum the approach adopted in this work was to apply a simple linear scaling.

The view was calibrated by extracting object width and height, in pixels, at a row

position corresponding to a far view, then repeating the procedure at a near view

row position. A linear relationship between object size and row position was derived

and used to determine the expected bounding box dimensions given a row coordi-

nate. The process noise parameter was taken to be proportional to the bounding

box smaller dimension. This approach ignored true perspective but gave sufficient

information to allow the tracker to adjust its search area appropriately as the object

moved through the scene. The acceptable response to this first order approach can

be seen in the examples shown in Figure 5.8.

5.4.2 Occlusion behaviour

A valuable aspect of the particle filter is its ability to deal with a degree of occlusion.

The sequence of images in Figure 5.9 illustrate the behaviour of the particle filter

in such circumstances. An artificial occlusion has been added to the view in the

Overhead sequence. Figure 5.9(a) shows the object approaching the occlusion. In

Figure 5.9(b) the object has been partially covered by the occlusion, the re-sampled

particles cluster on the fraction of the object still uncovered but some of the low

weight particles in the occlusion region survive the re-sampling process. As those

particles are at the front of particle cloud they are likely to be carrying velocities

sufficient to see them through the occlusion. In Figure 5.9(c) the object has emerged

from the occlusion, the forward moving particles land in the region of the object

and are strongly re-sampled. The particle cloud has found the object and by Fig-

ure 5.9(d) the particle set is beginning to group more closely on the target. The

track through the occlusion is uninterrupted as though the obstacle was not there.

With a broader occlusion there is always the chance that the track might not recover

if the dispersion of the cloud is such that no particle lands on the object. But it

only takes a few particles landing on the object for re-sampling to regenerate the

tracker.
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Figure 5.9: Occlusion behaviour with simple 8 bin histogram tracking

5.4.3 Inadequacy of weighted mean estimate

The minimum variance, weighted mean, estimate of target state delivers satisfactory

tracking in the examples given above. If the process noise is chosen such that

the particle cloud concentrates well on the object, suggesting low uncertainty in

position, then the mean gives a good estimate. However, if we return to the view

that the particle set is an approximation to a broad area representation of the pdf

then we would expect to use a larger process noise and have a broader particle

spread. Figure 5.10 illustrates the effect of using the weighted mean estimate with

a tracker having large process noise. The example shows two objects with similar

grey scale signature. The object being tracked passes behind the second object. In

Figure 5.10(a) the process noise is small enough to keep the particle cloud compactly

with the target being tracked. At the point of occlusion the momentum of the cloud

is sufficient to carry most of the particles with the tracked object, the weighted mean

remains within the bounding box of the object. In Figure 5.10(b) a larger process
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Figure 5.10: Failure of weighted mean state estimate with large process noise

noise has been used. At the point of crossing the larger spread of the particles means

that a larger proportion migrate to the second object and re-sampling ensures the

growth of the bimodal distribution. The weighted mean now falls between the

two objects. The histogram update means that it loses the identity of the object

being tracked and after a few frames the histogram converges to that of the local

background with a consequent loss of object track. The example illustrates the need

for control of the parameters.

5.4.4 Process noise feedback

A number of researchers have tried to incorporate process noise feedback into their

systems in order to alleviate difficulties of the type illustrated in the last section.

Bagdanov et al. [121] incorporated feedback moderated process noise in which the

relative contributions of the static rx, ysT and dynamic rvx, vysT parts of the process

equation varied depending upon the likelihood of the proposal particle. Arguing

that it was detrimental to introduce uncertainty into both position and velocity

they introduced a sigmoid ‘blindness’ function which returned a small static process

noise but large dynamic one if the measurement likelihood was high and the reverse

if the likelihood was low. But it is difficult to see how this additional calculation

has any overall effect. For example, considering a single dimension xt, delivery of

a particular uncertainty in state δxt, which is the principal function of the process

noise, can be achieved equally by a preceding uncertainty in position, i.e.

xt ` δxt “ pxt´δt ` δxt´δtq ` vt´δtδt (5.15)
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or a preceding uncertainty in velocity i.e

xt ` δxt “ xt´δt ` pvt´δt ` δvt´δtqδt (5.16)

It is irrelevant whether the required δxt comes from the added δxt´δt or the alter-

native δvt´δtδt.

Maggio and Cavallaro [122] described a simple adaptive transition model based

upon the average changes of state in the previous κ frames:

Etr∆xs “
1

κ

t
ÿ

n“t´κ

|xn ´ xn´1| (5.17)

Their state transition model was:

xt “ xt´1 ` Ctνt (5.18)

where x “ rx, ysT, ν „ N p0, Iq and Ct9Eκ r∆xs

As it is a zero-th order motion model, equation Eq.(5.18) represents a search

around the particle state at time t ´ 1. In contrast, a first-order motion model,

incorporating velocity as in Eq.(5.13), more usefully represents a search around the

predicted state. A first-order model automatically takes account of recent velocities

through the particle filter re-sampling step: those particles with velocities signif-

icantly different to that of the target will end up in low likelihood positions and

reduce their chances of reselection. The particle filter quickly learns the current

velocity of the object. The process noise added to this velocity has to be such that

particles have a spread about the expected target position in the next frame suffi-

cient to deal with large accelerations. In the approach described in this chapter the

process noise is related to the size of the target bounding box which changes with

depth in the field of view. It recognizes that, with typical frame rates, objects of

interest rarely move beyond a bounding box dimension from frame to frame.

5.5 Improving the representation

Given that 8-bin grey scale histogram tracking works at a basic level for single object,

it is of value to consider the limitations of that representation and look at strategies

for alleviating them. The strategies involve a compromise between developing a

detailed representation that would clearly label and identify the individual targets

to be tracked, but would make the similarity response around the target too narrow

to be useful for particle filter analysis, and having a computationally economic but
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Figure 5.11: Improved target representation using a 32-bin four-quadrant histogram.
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Figure 5.12: Improved representation response using the four-quadrant (4q) his-
togram.

simple representation with a broad similarity response that is particle filter friendly

but might have an unacceptable chance of track loss.

Increasing the number of histogram bins would allow a clearer representation

of the object to be tracked, but each histogram bin demands memory space equal

to that required of a single image. On the other hand, representing a target with

the broad grey scale quantization associated with 8-bins can lead to track loss if

the grey scale range of pixels within the target is small and most of the grey scale

values fall into a small number of the bins. In such cases, there is a chance that

illumination changes or object deformation can transfer pixels from one histogram

bin to a neighbouring one and the distance between the template histogram and

that of the object can become artificially large. An alternative to the histogram

representation is a Kernel Density Estimate (KDE), or Parzen Window [123], in

which a kernel K is centred on each grey scale abscissa value, and the ordinate of

the representation f̃pxq at any abscissa value x is the sum of the contributions from

the rest, i.e.

f̃pxq “
1

n

n
ÿ

i“1

K

ˆ

x ´ xpiq

h

˙

(5.19)

where h is the bandwidth of the kernel. But experimentation showed that the KDE

did not, in general, deliver improvement in tracking sufficient to justify the extra

computational cost.

In order to work with an 8-bin representation but increase reliability of target

identity, a multi-part structured representation similar to, but simpler than, those

described in Section 2.6.4 is considered.
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5.5.1 Using a simple structured histogram

Subdivision of the tracking rectangle into regions provides a more detailed signature

to track. Using an elliptical multi-part representation of the type described by

Maggio et al. [61] would increase the demand for floating point calculation and

possibly produce a representation too precise for effective particle filter tracking.

The vertically stacked representations of Iwahori et al. [67] and Okuma et al. [66]

restrict the signatures to vertical objects. Splitting the tracking rectangle into four

quadrants, as shown in Figure 5.11(a), and concatenating 8-bin histograms from the

quadrants in a clockwise fashion produced a 32-bin representation that was found

to work equally well with all object types and views. Figure 5.11(d) shows the

result of a Bhattacharyya similarity scan for the 8-bin histogram representation,

with the scan over points within the outer rectangle shown in Figure 5.11(a). The

reference histogram was taken at the centre of the outer rectangle in the frame

shown. Figure 5.11(e) shows the equivalent scan using the four quadrant histogram.

It can be seen that the response at the centre of the outer rectangle is more strongly

pronounced yet still broad enough to produce a useful response surface in the particle

filter representation. The strong central response survived in comparison to that for

the 8-bin histogram in subsequent frames.

Figure 5.12 shows the improved response with the four quadrant(4q) histogram

using the Overhead sequence frames as shown in Figure 5.2. Figure 5.12(a) shows

that the 32-bin histogram produces a sharper response than the 8-bin one but retains

a spread within the bounding box region of the object. In Figure 5.12(b) it can be

seen that the 32 bin histogram response is retained and has a peak closer to the

centre of the tracked object than does the 8 bin response. In general the 32-bin

representation offers improved and more robust tracking than the simpler 8-bin

representation.

5.6 Discussion

This chapter has described the basic tools used for particle filter histogram based

tracking and has given an outline of a simple implementation of the SIR filter. It

has illustrated that with the choice of a few constraints e.g. manual initialization,

preset process noise etc. adequate tracking can be achieved with relatively simple

representations. The filter described here is not robust enough for commercial ap-

plications, it is too dependent on those constraints. It needs to be developed beyond

this first step. The treatment has hinted that, for robust tracking, issues like the

use of the weighted mean estimate need to be re-examined and alternatives sought.

Other aspects of the filter also need to be examined in the context of their intrinsic
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validity and their computational implications, for example: the appropriateness of

the re-sampling method used, the choice of the Gaussian likelihood function, the

choice of distance measure etc. These aspects will be the focus of the next two

chapters.
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Chapter 6

Distance measures and particle

likelihood

6.1 Introduction

This chapter looks critically, and in detail, at implementation practicalities. It con-

siders what simplifications can be made to produce a system that still has particle

filter characteristics and is capable of acceptable tracking behaviour, but has more

favorable computational characteristics. It questions the common choices of like-

lihood functions and representation distance measures. It looks to see if simpler

likelihood functions can be used in order to reduce the number of floating point

calculations required. It asks if the number of interacting adjustable parameters

can be limited, or limits can be placed on the ranges of parameter values.

It starts by working with the common approach of a Gaussian likelihood and

derives a rationale for the choice of its associated standard deviation. Popular

choices of likelihood distance measures are reviewed. It is shown that they are inter-

related, and that the simplest and most computationally attractive of them can be

just as effective as the others. It then questions the choice of the Gaussian likelihood

itself, and argues that a simple linear approximation is adequate.

6.2 Choice of Gaussian likelihood standard devi-

ation in published work

There has been a good range of high-quality work relating to colour and grey-scale

intensity or intensity gradient histogram based particle filter tracking during the

last decade. The use of a Gaussian likelihood measure, as described in Section

5.2.2, has become standard and use of the Bhattacharyya distance [115] as the
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dissimilarity, or distance, measure ρ is common, although other measures are used.

The Bhattacharyya distance returns a value in the range [0,1].

As the numerical value of the distribution standard deviation σ is generally taken

to be a tuneable design parameter we can expect to see a range of reported values

dependent on the choice and range of the distance measure. Out of a large body of

work in the field some representative examples have been selected in order to make

the point. A recent approach by Czyz et al. [60], using the Bhattacharyya distance

measure reports using σ “ 0.8 in one example and σ “ 0.6 in others. Another,

by Maggio et al. [124], using a multiple feature approach and the Bhattacharyya

distance, reports using σ “ 0.09 for the colour component. Early examples of

Bhattacharyya distance colour based particle filter tracking [63, 95, 66] expressed

the likelihood in the form expp´λρ2q with λ “ 20. This corresponds to a value of

σ “ 0.16. A more recent example, by Snoek et al. [125], uses λ “ 50 to give σ “ 0.1.

Lu et al. [62] use a HOG distance measure in a Gaussian likelihood with λ “ 10 to

give σ “ 0.22. In a slightly different approach, Song et al. [126] uses expp´p1´αqρ2q,

with α “ 0.6 giving σ “ 1.12. It is common, however, to see reported work in which

numerical values for the likelihood parameters are not given [59, 96, 127, 128, 129].

Considering the reported variation of Gaussian likelihood parameters in the con-

text of colour/grey-scale histogram based tracking involving the Bhattacharyya dis-

tance, and the apparently crucial choice of the parameters as design components,

the role of the likelihood standard deviation and its relationship to the distance

measure is examined in order to get better guidance on the choice of design values.

6.3 Choice of the likelihood standard deviation

for particle weighting and re-sampling

The particle filter state transition equation, Eq.(5.13), and its associated noise νt´1

propagates the particle representation of the probability density function from the

last frame into the current one. In normal operation a proportion of the particles

will end up in the region of the target position with the remainder spread into places

that the target might reach with changes of speed and direction. In the ideal case

this would return a set of particle distance measures spread across the full range

[0,1]. In practice, with occlusion or changes in scene illumination, the distribution

of particle distances can cover less than the full range and show either a positive

or negative skew. A typical particle distance frequency distribution from real data

is shown in Figure 6.1. The Gaussian weighting for that set, using a likelihood

standard deviation of σ “ 0.2, together with curves for σ “ 0.1 and 0.3, is also

shown.
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Figure 6.1: Gaussian weighting of the Bhattacharyya distance measure for a typical
set of 512 particles from a tracking sequence. The standard deviation of the distri-
bution is set to σ “ 0.2. The curves to the left and right of the central one have
standard deviations of σ “ 0.1 and σ “ 0.3 respectively. The lower figure shows the
frequency distribution of the distances.

The particle weighting has two functions: it provides values for the estimate

of the object state through the weighted mean, and it provides feedback for the

evolution of the particle set. The process of re-sampling with replacement from

the weighted particle set removes particles that are not very representative of the

target state and produces multiple copies of those that are more representative. The

weighting of the particle set changes the effective size of the set as unrepresentative

particles end up making diminished contributions to the calculations at each stage.

The effective particle number can be estimated [69, 74] using:

neff “
1

ns
ř

i“1

pw̃i
tq

2

(6.1)

where w̃i
t is the normalized weight of the ith particle at the tth step, as defined in

Eq.(3.47), and ns is the number of particles.

In some particle filters the effective particle number is used to trigger re-sampling

if neff falls below a given threshold. For example Doucet et al. [74] used a threshold

of ns{3 in their early simulations. It is common, however, for re-sampling to be

implemented at each iteration irrespective of the value of neff . Even if it is not
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used to trigger re-sampling, neff can be used to give an indication of the degree of

degeneracy of the filter.

It is possible to relate the effective particle number to the standard deviation of

the Gaussian likelihood weighting function for the ideal case in which the dissimi-

larity measures are uniformly spread across the full [0,1] range. The particle weights

are taken as wi “ exp
´

´ li
2

2σ2

¯

where li has ns uniformly incremented discrete values

from 0 to 1. We consider σ ď 0.3 so that we can assume that the area under the

Gaussian in the range [0,1] is approximately equal to the area in the range [0,8].

The area under a Gaussian curve is given by:

ż `8

´8

exp

ˆ

´l2

2σ2

˙

dl “ σ
?
2π (6.2)

which is recognizable as the standard normalizing coefficient for a Gaussian distri-

bution.

For the likelihood weighting we are only interested in the positive half of a

Gaussian curve with area given by:

ż `8

0

exp

ˆ

´l2

2σ2

˙

dl “
σ

?
2π

2
(6.3)

In the case of the discrete distribution of Gaussian weights wi
t, with δl “ 1

ns
, an

element of area dA is given by:

dAi “ wi
t ¨

1

ns

(6.4)

In the limit of large ns, the area under the weight curve is given by:

ns
ÿ

i“1

dAi “

ns
ÿ

i“1

wi
t ¨

1

ns

“
σ

?
2π

2
(6.5)

so that:
ns
ÿ

i“1

wi
t “

nsσ
?
2π

2
(6.6)

The normalized weights are then given by:

w̃i
t “

2

nsσ
?
2π

exp

ˆ

´
li
2

2σ2

˙

(6.7)
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The effective particle number is given by:

neff “
1

ns
ř

i“1

pw̃i
tq

2
(6.8)

We can write the denominator of Eq.(6.8) as:

ns
ÿ

i“1

`

w̃i
t

˘2
“

4

ns
2σ22π

ns
ÿ

i“1

`

wi
t

˘2

If wi
t “ exp

´

´ li
2

2σ2

¯

then pwi
tq

2
“ exp

´

´ li
2

σ2

¯

. Equating the area under the squared

weight curve with that under the half Gaussian we get:

ż `8

0

exp

ˆ

´l2

σ2

˙

dl “
σ

?
π

2
“

ns
ÿ

i“1

`

wi
t

˘2
¨
1

ns

so that:
nsσ

?
π

2
“

ns
ÿ

i“1

`

wi
t

˘2
(6.9)

and the denominator of Eq.(6.8) becomes:

ns
ÿ

i“1

`

w̃i
t

˘2
“

4

ns
2σ22π

¨
nsσ

?
π

2

leading to:

neff “
?
πσns (6.10)

For σ “ t0.1, 0.2, 0.3u, we get
?
πσ “ t0.18, 0.35, 0.53u, producing neff of ap-

proximately one fifth, one third and one half respectively of the particle set.

It is also useful to refer to the Bhattacharyya coefficient and consider the angle

between the target vector and vectors from the particle set. For σ “ t0.1, 0.2, 0.3u

the 3σ Bhattacharyya distances correspond approximately to angles between feature

vectors of θ “ t25, 50, 79u˝ respectively. For a uniform distribution of distances,

using a Gaussian with σ “ 0.1 will result in an effective particle set of size neff „

ns{5 focusing on feature vectors within 25˝ of the target vector. This looks attractive

at first sight but, in practice, distribution skew will mean that there will be many

fewer than ns{5 contributing. Re-sampling of such a diminished set is likely to result

in loss of diversity amongst the particle population. It is suggested that such a value

of σ is likely to make the filter have difficulty tracking the target.

If we look at the other extreme with σ “ 0.3 we are likely to have an effective

sample size greater than ns{2 but with significant contribution from feature vectors
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that are at angles up to 80˝ from the target vector. If ns is small then the large

angle feature vectors could have too great an undesirable influence on the weighted

mean and there is a significant chance of the particle cloud diverging.

The argument points to the suggestion that σ “ 0.2 is a compromise value. This

will maintain a particle set consisting of feature vectors within 50˝ of the target

vector, it will produce an effective sample size of ns{3, and drawing from 60% of

the distance axis it will be reasonably tolerant to skew of the weight frequency

distribution in the particle set. It is interesting to note that Doucet et al. [74] opted

for an neff threshold of ns{3 to trigger re-sampling in their particle filter simulations.

6.4 Distance measures other than Bhattacharyya

A general class of measures for distances between n-dimensional real valued vectors

a,b, referred to as the Lr norm, has the form [130]:

Lrpa,bq “

˜

n
ÿ

i“1

|ai ´ bi|
r

¸1{r

(6.11)

As we are using the normalized histograms p,q as the feature vectors the vector

components have to be the square roots of the bin values for the vectors to have

unit length, hence we expect to see the equivalent Lr norm in the form:

Lrpp,qq “

˜

n
ÿ

i“1

|
?
pi ´

?
qi|

r

¸1{r

(6.12)

The Matusita distance between two probability distributions p “ rp1, .., pnsT and

q “ rq1, .., qnsT is defined as [131]

ρMpp,qq “

˜

n
ÿ

i“1

p
?
pi ´

?
qiq

2

¸1{2

(6.13)

and hence can be seen as an L2 norm.

The Matusita distance is directly related to the Bhattacharyya distance. The

relationship is discussed in [34], although the authors state the Matusita distance as

the square of the original definition in [131]. The original definition is used in this

work. By expanding the square under the summation in Eq.(6.13) and gathering

the terms it can be shown that ρB “ ρM{
?
2. The link between the Bhattacharyya

coefficient and the Matusita distance can be seen in terms of the triangle cosine

rule: the Bhattacharyya coefficient is the cosine of the angle between the vectors,
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the Matusita distance is the magnitude of the difference between the vectors, the

Bhattacharyya distance is then a simple fraction of that distance.

6.4.1 Histogram Intersection distance

The Matusita distance can be used to bring out a relationship between the Bhat-

tacharyya distance, the L1 norm, and the less often used Histogram Intersection

distance. Histogram Intersection is defined as [132]:

X pp,qq “

n
ř

u“1

minppu, quq

n
ř

u“1

qu

(6.14)

The measure calculates the commonality (the intersection) between the two his-

tograms p,q. The measure is normalized by the number of pixels in the target

histogram in order to obtain a fractional match value between 0 and 1. In the case

of normalized histograms the denominator in Eq.(6.14) is unity. For a perfect match

between normalized histograms X pp,qq “ 1. To get a dissimilarity measure we take

the complement of the intersection to get the Histogram Intersection distance ρH :

ρH “ 1 ´ X pp,qq (6.15)

It can be shown [132] that for normalized histograms the Intersection distance ρH

is linked to an L1 type distance formed using the simple sum of absolute differences

of the bin values:

1 ´ Xpp,qq “ 1
2

n
ÿ

u“1

|pu ´ qu| “ 1
2
L1 (6.16)

Intersection has been used, for example, in the context of logo identification

in video sequences [133], spatial histograms for region based tracking [64], via the

L1 form in ‘Bag-of-Features’ face matching [134] and in multi-segment histogram

matching for particle filter tracking of crossing targets [67].

The Bhattacharyya and Histogram Intersection distances are linked by compar-

ing the square of the Matusita distance and this binwise absolute difference form of
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Figure 6.2: Illustrating the relationship between Histogram Intersection and Bhat-
tacharyya distances

the Intersection:

M2 “

n
ÿ

u“1

p
?
pu ´

?
quq

2

“

n
ÿ

u“1

p
?
pu ´

?
quq p

?
pu ´

?
quq (6.17)

L1 “

n
ÿ

u“1

|pu ´ qu| “

n
ÿ

u“1

|
?
pu

2
´

?
qu

2
|

“

n
ÿ

u“1

| p
?
pu ´

?
quq | p

?
pu `

?
quq (6.18)

We compare equations Eq.(6.17) and Eq.(6.18). For a given set of histogram

bin differences as indicated by a single Bhattacharyya distance associated with
`?

p ´
?
q
˘

, there will be a range of L1 values determined by alternative combi-

nations of component bin values (0 ď p ď 1, 0 ď q ď 1), that give rise to a set

of given differences. The alternative combinations supply the factor
`?

p `
?
q
˘

in

Eq.(6.18).

Figure 6.2(a) shows a comparison of the calculated Histogram Intersection dis-

tance measure (ρH) against the Bhattacharyya distance (ρB) for a set of 512 particles

from a typical particle filter step. It can be seen that the scatter of the ρH measures

about the line ρH “ ρB is reasonably compact.

It is not difficult to understand the nature of the scatter. Figure 6.3 shows the

relationship between the Histogram Intersection type component plotted against
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Figure 6.3: Plot of Histogram Intersection distance components against the corre-
sponding Bhattacharyya distance components for 512 x 8 tp, qu bin pairs.

the corresponding Bhattacharyya type component as described by equations (6.19)

and (6.20) for the 512 x 8 tp, qu pairs, where p represents normalized candidate

8-bin histograms and q represents the single normalized target 8-bin histogram, i.e.

2ρ2B “ ρ2M “

8
ÿ

u“1

p
?
pu ´

?
quq p

?
pu ´

?
quq (6.19)

1 ´ p X q “
1

2

8
ÿ

u“1

|pu ´ qu|

“
1

2

8
ÿ

u“1

| p
?
pu ´

?
quq | p

?
pu `

?
quq (6.20)

The 45˝ straight line in Figure 6.3 corresponds to points in the plot where either

p “ 0 or q “ 0. The upper bounding curve corresponds to points where either

p “ 1 or q “ 1. In the case where either of the bin values is unity the functional

relationship for the curve is given by y “ 2
?
x ´ x. Points between the upper and

lower boundaries correspond to 0 ă p ă 1, 0 ă q ă 1. The lower left hand corner of

the graph corresponds to points where the bin values tp, qu are similar. The upper

right hand corner of the graph corresponds to points where the bin values tp, qu are

very different. There are eight curves in Figure 6.3 corresponding to the eight bin

values q associated with the target histogram. The points along each curve represent

the 512 p values linked to each q.

The Bhattacharyya distance calculation involves summing eight abscissa values

from Figure 6.3. The Histogram Intersection distance involves summing from the

figure eight ordinate values corresponding to those abscissa values. However, for each
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abscissa there can be a number of ordinate values where the vertical line associated

with that abscissa intersects with the curves. This means that each Bhattacharyya

distance can be associated with a number of Histogram Intersection distances hence

we can expect to see a scatter if one distance is plotted against the other.

The relatively compact form of the scatter in Figure 6.2(a) can be understood

by recognizing that its extent is limited by bounding 45˝ line and the upper curve

in Figure 6.3. Also, each set of p and q values must sum to unity so most of the

values tend to be concentrated in the lower left hand corner of that figure. These

limitations mean that the resulting scatter of the points in Figure 6.2(a) is not

large. If the sums of eight ordinate values and eight abscissa values taken from

Figure 6.3 are plotted against each other in Figure 6.2(a) then the point will be

placed above the 45˝ line. The multiplication by 1{2 in the Histogram Intersection

distance displaces the sum of points vertically downwards in that figure, and the

square root in the Bhattacharyya distance calculation shifts the sums parallel to the

x-axis towards the right. The overall result, as seen in Figure 6.2(a), is the observed

scattered distribution of the points around the 45˝ diagonal.

Figure 6.2(b) shows the effect of using the ρH measure with a Gaussian likelihood

function with σ “ 0.2. The Bhattacharyya distance is plotted on the horizontal axis

and the weight associated with the corresponding ρH distance is plotted on the

vertical axis.

It can be seen that the degree of scatter shown in Figure 6.2(a) translates to a

scatter about the chosen Gaussian and is within the limits associated with σ “ 0.1

and σ “ 0.3.

This analysis suggests that if we take into account statistical averaging associated

with using a weighted mean, or pdf mode finding based upon weighted particle

densities, the use of the computationally simpler Histogram Intersection distance

might produce outcomes that are not much different from those obtained using the

Bhattacharyya distance.

6.4.2 The χ2 distance

The χ2 measure has also been used as a distance measure to compare histograms [135,

136]. The χ2 probability density function describes the probability of occurrence of

a given value of the sum:

Q “

n
ÿ

u“1

xu
2 (6.21)

for n independent values of x „ N p0, 1q. It is used in testing the goodness-of-fit of

experimental data to expectation. That kind of testing is based upon the recognition
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that for frequency binned data the distribution of

n
ÿ

u“1

pOu ´ Euq2

Eu

(6.22)

where Ou and Eu represent observed and expected frequencies respectively is ap-

proximated by a χ2 distribution.

For matched pairs of observed and expected histogram bin values pu, qu it can

be shown [137] that the distribution of

X2 “

n
ÿ

u“1

ppu ´ quq2

pu ` qu
(6.23)

is also approximated by a χ2 distribution. This quantity X2 is generally labelled as

χ2, and for consistency with the literature it will be useful to adopt that labeling.

Whilst the χ2 statistic is used for significance/goodness-of-fit testing, its ap-

propriateness as a distance measure is debatable. Aherne et al. [34] point out the

non-linear nature of χ2 type distances. They replace p and q in Eq.(6.23) by
?
p and

?
q respectively and apply a first-order Taylor approximation to the denominator to

show that for small distances the χ2 distance is twice their version of the Matusita

distance, which is the actually the square of Matusita’s original distance.

We can analyze the relationship between the χ2 measure and the Bhattacharyya

distance using an approach similar to that for the Histogram Intersection distance.

The numerator in Eq.(6.23) expands in a way similar to that in Eq.(6.18) except

that the factors are squared:

χ2pp,qq “

n
ÿ

i“1

`?
pi ´

?
qi
˘2 `?

pi `
?
qi
˘2

pi ` qi
(6.24)

The first factor in the numerator is similar to the Matusita component of the sum.

By combining values of 0 ď p ď 1 and 0 ď q ď 1 it can be shown that the remaining

factor
`?

p `
?
q
˘2

{ pp ` qq varies between 1 and 2 with most of the values at the

upper end of that range. Expansion of the numerator of the remaining factor gives:

`?
p `

?
q
˘2

p ` q
“
p ` q ` 2

?
p
?
q

p ` q

“ 1 `
2
?
p
?
q

p ` q

In a normalized histogram the values of p or q are limited to the range [0,1]. If
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p “ q “ 1 or if p « q « 0 then the component
2

?
p

?
q

p`q
“ 1 so that

`?
p `

?
q
˘2

p ` q
“ 2

If one of p or q “ 0 then
2

?
p

?
q

p`q
“ 0 so that

`?
p `

?
q
˘2

p ` q
“ 1

Other combinations of p and q return values of the factor between 1 and 2. A

typical frequency distribution of the factor for 512 ˆ 8 tp, qu pairs from a typical

step of a particle filter track is shown in Figure 6.4(a). It can be seen that the

factor varies between 1 and 2 with a tendency for most of the values to be at the

upper end of the range. The relatively large number of entries in the lowest bin

reflects the frequency of occurrence of one of p or q “ 0. For a given set of tp, qu

pairs in a histogram Matusita/Bhattacharyya distance calculation a corresponding

χ2 distance is going to have different value due to the bin by bin contributions

of the multiplicative factors. A given p, q difference can correspond to a range

of p, q sums. We can expect to see a scatter of χ2 distances for a given set of

Matusita/Bhattacharyya distances. A typical scatter between the χ2 distance and

the square of the Bhattacharyya distance, using real particle filter data, is shown

in Figure 6.4(b). The graph suggests that the relationship between between the χ2

and the ρ2B values can be approximated by χ2 “ 3ρ2B. This relationship is seen in

the experimental data in Figure 6.4(b).

If χ2 is substituted for ρ2B in the Gaussian likelihood then a standard devia-

tion of σ “ 0.35 «
?
3 ˆ 0.2 should produce a distribution similar to one with a

Bhattacharyya distance and standard deviation of σ “ 0.2. A plot of such a χ2

likelihood weighting is shown in Figure 6.5. The Bhattacharyya distances are plot-

ted as abscissae and the weights produced using χ2 with σ “ 0.35 are plotted as

ordinates. The scatter is less than in the Histogram Intersection distance case but

the computational demand is a little greater.

6.4.3 Choosing an appropriate histogram distance

We can conclude from this analysis that for the purposes of estimation there is

little to gain in choosing between the Bhattacharyya, Matusita and χ2 distances.

The first two differ only by a simple numerical factor, the first and the third differ

approximately by such a factor. Their differences in the context of particle filter

calculations can be compensated for by adjusting the value of the standard deviation

104



6.5. LIKELIHOOD FUNCTIONS OTHER THAN GAUSSIAN

1 1.2 1.4 1.6 1.8 2
0

200

400

600

800

1000

1200

1400

1600

1800

2000

fr
eq

ue
nc

y

1 + 2
√

p
√

q/ (p + q)

512 x 8 {p,q} pairs

(a) Frequency distribution of the factor
1 ` 2

?
p

?
q{ pp ` qq for 512 ˆ 8tp, qu

pairs from a step in a typical particle
filter track

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

Bhattacharyya distance2

χ
2

d
is

ta
n
c
e

(b) Plot of χ2 vs the square of the Bhat-
tacharyya distance for 512 typical par-
ticles, indicating the scatter associ-
ated with the multiplicative factor.
Note: the Bhattacharyya distances
range from 0 to „ 0.8 hence the maxi-
mum of the squared distances is „ 0.6.

Figure 6.4: Looking at the relationship between the χ2 and the Bhattacharyya
distances

in the likelihood function. The Histogram Intersection distance, however, offers

potential computational economy through avoidance of the need to extract square

roots. It does produce a scatter of likelihood weight values but they are generally

within a range corresponding to the use of Bhattacharyya distances and a Gaussian

likelihood with standard deviations between the useful limits of σ “ 0.1 to σ “

0.3. As this standard deviation range would produce an acceptable re-weighting,

dependent upon the prior spread of the distance values, it is reasonable to expect

that given sufficient particles distributed reasonably symmetrically around the target

location a position estimate would be returned not far from one calculated using the

Bhattacharyya distance with a standard deviation of σ “ 0.2. The behaviour of

the Histogram Intersection distance suggests that it might produce particle filter

tracking that is not much different from that produced with the Bhattacharyya

distance.

6.5 Likelihood functions other than Gaussian

The basic role of the likelihood function is to give preferential weight to proposed

states that are close to the target state and to suppress proposals that are far from

the target state. The choice of a Gaussian likelihood function is due to the common

assumption of normally distributed measurement error. It is of interest to note that
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Figure 6.5: Scattered distribution of χ2 distance weightings with a Gaussian likeli-
hood, using σ “ 0.35

the appropriateness of the underlying Gaussian error model has been questioned by

some authors [138, 139, 140] who point out that a heavier tailed Cauchy distribution

might be more appropriate in some situations. An example of the use of a Cauchy

distribution in the context of particle filter tracking is given in [141].

Some particle filter applications approximate the behaviour of such a distribution

by adding a constant tail to the likelihood function [90]. The role of the ‘tail’ is to

maintain the distribution through re-sampling in the event that the target object is

not observed in an image. In such cases the distance measure would be large and

the corresponding weights would be near zero. Allowing a small but non-zero weight

for large distances ensures survival of the particle set at the re-sampling stage.

Whilst it might indeed be the case that measurement error is best described

by either a Gaussian or a Cauchy distribution, it is proposed that there is nothing

particularly special about the form of the particle filter likelihood function other

than it must maintain the positive evolution of the particle set by preferentially

selecting low distance vectors and suppressing vectors with a large distance.

In practice a Gaussian weighting is likely to be implemented via a look-up table.

In order to illustrate the non-critical form of the likelihood function it is proposed

that a simple triangular function of the form w “ ´2ρB ` 1 might be used as a

selection device. An example of such a triangular likelihood with a constant tail is

shown in Figure 6.6(a). In this case the function drops to zero at ρB “ 0.5 and the

tail returns the weight w “ 0.01 for ρB ě 0.5.

When the Histogram Intersection distance is used in place of the Bhattacharyya

distance the associated scatter re-distributes the weights in a similar way to that

seen in Figure 6.2(b). The effect is shown in Figure 6.6(b). The combination of His-

togram Intersection distance and the simple triangular likelihood function produces
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Figure 6.6: Using a simple triangular likelihood function

a scatter of weightings that is not much different to that of the Gaussian/intersection

combination.

6.6 Investigating the effects of using the simpli-

fied distance/likelihood combination

The proposal that the analytical form of the likelihood function is not critical in

the context of grey scale histogram based particle filter tracking was explored by

comparing tracks produced using the standard Bhattacharyya distance/Gaussian

likelihood combination against ones produced using the simple Histogram Intersec-

tion distance/triangular likelihood combination. The Histogram Intersection dis-

tance was chosen rather than χ2 because, whilst the scatter of distance measures

appeared to have similar consequences for each of the approaches, the Intersection

distance was computationally more attractive.

Targets were tracked using an elementary SIR particle filter [69], as described in

Chapter 5. Static background elements were suppressed by the use of a temporal

frame difference mask. Four image sequences were used, each of which presented its

own challenges to the tracker.

The first image sequence consisted of an overhead view of shoppers walking

through a mall. The appearance of the shoppers changes significantly as they move
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from the bottom of the scene to the top due to a mixture of object deformability,

viewing angle and varying lighting conditions.

The second sequence is a daytime outdoor oblique view of pedestrians. The

pedestrians often occlude each other. In the example shown the tracked pedes-

trian passes partly behind two foreground pedestrians having a different grey scale

signature and then completely behind one with a similar signature.

The third was an outdoor view of traffic taken from the AVSS 2007 i-LIDS Vehicle

Challenge data set [10]. In this sequence there is some slight camera movement and

illumination changes.

The fourth sequence is taken from the PETS 2006 data set [12]. It is an indoor

scene and the experiment tracks a pedestrian passing close to others of similar

appearance.

In each of the sequences a selected object was tracked 100 times using the Gaus-

sian likelihood/Bhattacharyya distance combination and then 100 times using the

alternative combination. The frame rates were set to 5fps. The mean and variance

of the 100 measurements of each track point position was determined for each com-

bination. The mean track from the first likelihood/distance combination was then

compared with the second. Investigations were carried out using smaller and larger

statistical sample sizes (between 5 and 1000 track sequences) but the outcomes were

only significantly different, as expected, for small sample sizes (e.g. ă 10 measured

tracks). The behaviour of most of the targets in each sequence was investigated and

the outcomes for the ones reported here were typical of all.

The target starting position was manually initialized in order to ensure compa-

rability of the resulting tracks. A single rectangular region with dimensions half

those of the bounding box of the target object was tracked using a normalized 8-

bin grey-scale histogram. For example, the tracking rectangle seen in Figure 6.7(a)

had dimensions 17 ˆ 17 pixels. The histograms were extracted using the integral

histogram method [116]. A first order state transition step was used with the state

vector x “ rx, vx, y, vysT. The number of particles used was ns “ 512.

In the cases where the view was at an oblique angle, the size of the rectangle

was adjusted using a linear function of the target position in the image in order to

retain its relative size in proportion to the size of the target.

The standard deviation of the additive Gaussian process noise ( νt in Eq.(3.5))

was set to be 0.2 ˆ the length of the side of the tracking rectangle for both the

spatial and velocity components of the state vector. This choice produced a prior

particle spread appropriate to the typical velocities of the targets in the sequence.

The template histogram q was updated at each frame using qt “ p1´αqqt´1`αp̄

where p̄ was the histogram extracted at the current target position. The value of α
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was set at 0.2 for all sequences.

The measurement noise, i.e. the standard deviation of the likelihood Gaussian

function, was kept constant at σ “ 0.2. The likelihood distributions were given a 3σ

‘tail’ value of 0.01 for all likelihood values that were initially below that value. The

posterior particle set was updated at each step using standard stratified re-sampling.

Track smoothing was carried out by adjusting the position components of xt´1

and xt´2 at each time step t by a recursive procedure that consisted of deriving

and averaging velocities from measured positions at t-3 to t to produce an adjusted

x̂t´2 and x̂t´1. The resulting comparison of the tracking approaches can be seen in

Figure 6.7. Both the Bhattacharyya/Gaussian and Intersection distance/triangular

tracks are shown for each sequence. Snapshots of the targets together with occluding

objects at periodic track points have been overlaid so that the tracks can be seen in

context.

The correspondence of the tracks with the geometrical ground truth of the

tracked objects was investigated. For each sequence the ground truth was deter-

mined manually in each frame as the centroid of the bounding box of the objects.

The tracks for each of the two approaches were compared to the ground truth using

the bounding box spatial overlap [142], defined as the overlapping area ApGTt, STtq

between the ground truth bounding box GT and the tracking system bounding box

ST in frame t :

ApGTt, STtq “
AreapGTt X STtq

AreapGTt Y STtq
(6.25)

This measure returns a value of 1 when the track corresponds exactly with the

ground truth and 0 when bounding boxes do not overlap at all. The overlaps for each

approach are plotted beneath the relevant track images in Figure 6.7. It can be seen

that in general the overlap is between 0.6 and 1.0 giving sufficient correspondence for

tracking in surveillance contexts. It can also be seen that the track points associated

with each of the two approaches are closer to each other than to the geometrical

ground truth. It is to be expected that the mean position of the tracked grey scale

feature would not necessarily correspond to the geometrical centroid of the tracked

object due to a combination of object deformation, perspective and shading effects.

The closeness of the overlap for the two tracking approaches indicates that there is

no significant difference between them in terms of the tracks returned.

An investigation into the processor timings associated with the use of the His-

togram Intersection distance/triangular likelihood, compared to the Bhattacharyya

distance/Gaussian likelihood, was carried out using a Chipwrights CW5631 [8] simu-

lator running at 300MHz (Source: Wang, W. AD-Group, personal communication).

The results are shown in Table 6.1. It can be seen that for the floating-point calcu-

lations, the Intersection-based calculation ran twice as fast as the Bhattacharyya-
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(c) i-LIDS
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Figure 6.7: Composite images and ground truth to tracker bounding box overlap
data for the sequences. Blue p¨q points - Gaussian likelihood\Bhattacharyya dis-
tance, red (+) points - triangular likelihood\Histogram Intersection distance

110



6.7. DISCUSSION

Histogram size
16 bins 128 bins 256 bins

Bhattacharyya/Gaussian(float) 0.0747 0.3447 0.6531

Intersection/triangular(float) 0.0197 0.1531 0.3049
Intersection/triangular(fixed) 0.0075 0.0575 0.1147

Table 6.1: Timings, in ms, for Bhattacharyya/Gaussian and Intersection/triangular
likelihood calculations, using a Chipwrights CW5631 simulator running at 300MHz
(Source: Wang, W., AD-Group, personal communication).

based calculation for the larger (128, 256 bin) histograms, and three times faster for

the smaller (16 bin) histograms. But the attractiveness of the Intersection/triangular

likelihood combination lies in its greater suitability for fixed-point implementation.

The table shows that the use of fixed-point calculations for the Intersection-based

combination produced a further factor of three speed increase. In addition to the

basic calculation speed gain, fixed-point implementation opens up the advantages

of the vector processing capabilities of the chip, producing further computational

convenience and economy, especially in the case of large histograms.

6.7 Discussion

The review of distance measures and their inter-relationships led to the conclusion

that the Bhattacharyya distance and the related Matusita distance had a clear in-

terpretation in terms of the magnitude of the difference between histogram based

vectors in a Euclidean feature space. In comparison to these measures others, like

the Histogram Intersection distance and χ2, had a less clear fundamental interpre-

tation in this context and produced a scattering of distances in comparison to the

Bhattacharyya distances. But it was suggested that the absence of the fundamen-

tal interpretation did not exclude the measures from consideration and that any

scatter in comparison to the Bhattacharyya distance could simply contribute to the

stochastic element of the filter.

The understanding of the effects of choosing a particular Gaussian standard de-

viation when using a normalized distance measure led to the proposal that the use

of the potentially computationally advantageous Histogram Intersection distance,

combined with a triangular likelihood function, might produce results comparable

to those obtained using a Bhattacharyya measure/Gaussian likelihood combination.

The application of the proposal was supported by the experimental findings. In

general the mean track points for the two approaches stayed well within the bound-
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Figure 6.8: Illustrating the track differences for Gaussian/Bhattacharyya (left) and
triangular/Histogram Intersection (right)

aries of the objects being tracked. It is true that they deviated from the geometrical

centroids of the objects but the results were still within acceptable limits for the pur-

pose. A comparison of the worst case differences, in the Overhead sequence tracks,

is shown in Figure 6.8.

The broad range of likelihood standard deviations, discussed in Section 6.2, can

be interpreted as indicating choices of process noise parameters that delivered ranges

of similarity distance appropriate for particle re-weighting and re-sampling in those

cases. It is suggested, however, that a Gaussian likelihood particle filter being

operated with normalized distance measures and values of σ ă 0.1 is likely to have

a process stage consistently returning a high proportion of distances in the lower

end of the [0,1] range in order to maintain a reasonable experimental value of neff .

It is likely that this will not spread the prior particles sufficiently to accommodate

extreme behaviour of the target. A particle filter being operated with normalized

distances and values of σ ą 0.3 might return distance measures across the full range,

with ą 50% of the particles contributing to neff , but will allow undue influence from

histogram feature vectors that are very different from the target vector. It is likely

that it would end up spreading the particles too widely.

The limitation of the range for the choice of the Gaussian standard deviation, and

its link to the effective particle number, led to the recognition that the forms of the

likelihood function and distance measure are not critical in the tracking situations

examined. This opened the door to the use of the simpler forms capable of giving

potential computational economy in systems where resources might be constrained.
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Chapter 7

State estimation and particle

re-sampling

7.1 Introduction

The particle filter provides a recursive update of a discrete weighted approximation

to the true posterior state probability density. It was shown, in Section 3.4, that

the weights could be derived using the principles of Importance Sampling. In the

Importance Sampling treatment the relationship between the weights, the posterior

density, and a sampling distribution, was derived in terms of the expectations of

the distributions. But it does not necessarily mean that parameters of interest to

be extracted from the approximation to the state have to be expectations. For

tracking purposes, the parameter of interest is more likely to be one of the modes

of the distribution. Even though that is the case it is still common to see, in the

literature, the tracker state derived using the expectation. This implicitly assumes

the existence of a strong Gaussian-like mode in the distribution. In other cases

the state might be extracted by taking the sample with the maximum weight, or

using some other mechanism to determine the MAP state. Those who opt for

the maximum weight do so with the assumption that the particle density will be

sufficient to guarantee that a particle will be positioned close to the true peak of

underlying likelihood distribution. They also assume that the mode of interest is the

dominant one, which is not always the case. There appears to be no clear consensus

on the best way, if there is one, to extract the state estimate from the particle

representation.

Similarly, there are conflicting views about the most appropriate re-sampling

procedure to adopt. Some, e.g. [59, 113] follow Gordon et al. [75] and use the multi-

nomial method. Many adopt the systematic approach described by Arulampalam et

al. [69], whilst some early Sequential Monte-Carlo studies advocated procedures like
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deterministic [143], stratified [143], or residual [144] re-sampling. The re-sampling

approaches are generally justified on grounds of statistical validity, leaving com-

putational convenience do be dealt with as a later refinement. However, one ap-

proach [145] focuses closely on the computational aspects and is the one adopted in

this work. The approach is analyzed in detail in order to justify the adoption.

This chapter looks critically at the state estimation and particle re-sampling

steps. It does so in the same spirit as the last chapter: it questions the assumptions

underlying the steps and looks to see what simplifications can be incorporated.

It starts by considering some approaches to state estimation. It considers a recent

claim to a provably correct approach to MAP estimation for particle filters, suggests

that it might not be adequate in the context of multi-target tracking, and offers an

alternative practical solution.

7.2 State estimation

7.2.1 Using post-measurement processing

Single target track determination calls for the extraction of a single point estimate

from the particle approximation to the pdf. In Section 3.4 it was stated that the

required state is commonly estimated as the expectation of the posterior density,

i.e. Eq.(3.59)

E rxt|z1:ts «

ns
ÿ

i“1

ω̃i
tx

i
t

or as the MAP approximated by the maximum weighted state:

xMAP
t “ argmax

xt

ppxt|z1:tq « argmax
xt

wi
t

The use of the weighted mean as a state point estimator is inappropriate when the

posterior distribution is multi-modal. The aim is to seek out the correct mode of

the distribution.

One approach is to use the standard expectation, as in Eq.(3.59), but aim to

ensure that the dominant mode is better represented by particles and reduce the

contributions of the sub-dominant modes. In order to reduce the requirement of a

large number of particles, some have adopted post-measurement processing strate-

gies to redistribute the particles with a bias towards the suspected mode. The

Auxiliary Particle Filter [76] did this by the addition of a second re-sampling step.

Maggio and Cavallaro [122] introduced an intermediate mean-shift step in which the

particles are moved closer to their local mode. Using a target histogram represen-

tation to determine the particle likelihood they mean-shifted the particles along the
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gradient of the histogram similarity surface to concentrate them at the mode. They

claimed that they could track with as few as 30 particles using this approach. But

it cannot guarantee that the local mode is the correct one, and the reduction in par-

ticle representation is offset by the requirement of a number of mean-shift iterations

per particle. Naeem et al. [146] took the approach a step further by mean-shifting

the particles on an annealed likelihood distribution. This reduced the local mode

problem but introduced further processing per particle. It assumes that the domi-

nant mode is the correct one. But it can suffer from the drawback that, in practice,

there are occasions when the target mode is a sub-dominant one.

7.2.2 Approximate particle based MAP estimator

Driessen and Boers [16] argue that not only is the expectation based estimator

inadequate but that the traditional MAP maximum weight estimator also gives

an incorrect result. This is because in the particle representation it cannot be

guaranteed that a particle ends up at the dominant mode of the underlying pdf.

The authors point out that the traditional particle filter MAP estimation maximizes

the likelihood ppzt|xtq rather than the posterior ppxt|z1:tq. They suggest that their

approach maximizes the posterior and gives the first provably correct algorithm for

marginal MAP estimation that is applicable to particle filters.

Starting from the basic Bayesian recursion equation:

ppxt|z1:tq9ppzt|xtqppxt|z1:t´1q (7.1)

they use the Monte Carlo equivalent of the Chapman-Kolmogorov equation:

ppxt|z1:t´1q “

ż

ppxt|xt´1qppxt´1|z1:t´1qdxt´1

«
ÿ

j

ppxt|x
j
t´1qw

j
t´1 (7.2)

so that the proposed MAP estimator becomes:

xMAP
t “ argmax

xi
t

ppzt|x
i
tq
ÿ

j

ppxi
t|x

j
t´1qw

j
t´1 (7.3)

They suggest [147] that this estimate converges to the true MAP in the limit for

infinitely many particles. They illustrate the effectiveness of their theoretical ap-

proach using a basic particle filter with simulation examples. In one case [16] the

point measurement based example involved two targets starting well separated, with

one catching up and passing the other. The results of the simulation suggested that

115



7.2. STATE ESTIMATION

their MAP approach returned better estimations than the alternative weighted mean

approach.

7.2.3 Testing the Driessen and Boers MAP estimator

The proposed MAP estimator was put to the test, in the context of this work, using

a difficult sequence in which two targets with similar grey scale histogram signatures

move parallel and close to each other. This sequence proved challenging using both

the weighted mean and maximum weight estimators. In those cases the trackers

would repeatedly jump from one target to another.

The initialization frame is shown in Figure 7.1(a). The two central targets were

tracked. Figure 7.1(b) shows the result of an area similarity scan using the reference

four quadrant histogram from the target on the right of the two in the figure. The

main peak in the scan is that associated with the reference target. It can be seen

that there is a strong subsidiary peak associated with the adjacent target on the

left of the two. There is also evidence of similarity with the outer two targets.

Figure 7.1(c) shows the distribution of weights associated with an initial set of

particles distributed about the selected target. The grey footprints of the particle

sets associated with the two trackers are also shown. It can be seen that set of

weights shown in the figure is relatively compactly distributed on the footprint of

the selected target.

The transition density associated with the sum in Eq.(7.3) was realized using

the process noise parameters as indicated in [16, 147], i.e.

ppxt|xt´1q “
1

?
2πQt´1

exp

ˆ

´
1

2
pxt ´ Fxt´1qTQ´1

t´1pxt ´ Fxt´1q

˙

(7.4)

where Qt´1 is the covariance of the process noise associated with the step.

Figure 7.1(d) shows the particle weight distribution for ppxt|z1:t´1q at the frame

immediately after the initialization frame. Figure 7.1(e) shows the distribution for

ppxt|z1:t´1q at frame 18. It can be seen that at that stage the particle set has

migrated into the region occupied by the left target and that the maximum value

of ppxt|z1:t´1q is in that left region. Figure 7.1(f) shows the consequence with the

track settling not on the correct target but on the neighbouring one. In some cases

the correct track was restored in subsequent frames, in others the tracker settled on

the new target.

The rate of track loss was investigated by cycling the same sequence for a number

of times (100 cycles, each having 40 track points) and signalling an error when the

track point for either of the two targets being tracked ended up closer to the ground

truth of the other than to its own. The ground truth for the sequence was extracted
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Figure 7.1: Tracking similar targets using the Driessen and Boers MAP
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by manually determining the bounding box of each target, and hence its centre, in

each frame. Repeated runs of the sequence showed that this track loss occurred for

about 12% of the track points in this case.

It was possible to inhibit the tracker exchange by limiting the process noise such

that the particles tended to pack closely to the target but that is contrary to the

aim of the particle approach: the particles need to have a reasonable spread in order

to carry out a realistic search of the area.

Whilst the Driessen and Boers MAP might return the true estimate from the

particle distribution in the limit ns Ñ 8 it is not adequate in the example shown.

Similar misbehaviour was demonstrated in sequences of similar targets with crossing

tracks. The approach requires significant extra computation per particle which does

not appear to be justified in terms of more reliable tracking. It fails because it

has no information about the existence of other trackers in the vicinity and hence

cannot take into account the possibility that a strong adjacent mode might belong

to another target.

7.2.4 Mode selection in the presence of other trackers

A practical solution to single-target tracker state estimation with a multi-modal

likelihood distribution was to recognize the multi-modality, locate the strongest

modes and then choose between them. It was assumed, for computational economy,

that there would be a dominant mode and only one significant subsidiary mode. It

was recognized that in the case of interacting targets with similar representations

it was not necessarily the case that the strongest mode was the appropriate one to

choose.

The extraction of the dominant mode and the assumed single subsidiary one was

carried out by first calculating the weights for all the particles associated with a

given tracker. The weights were then sorted in descending order of their strength

and a subset of the m top weights was formed. The position with maximum weight

was taken to represent the dominant mode. The positions of particles associated

with the rest of the weights were compared, one at a time, with that of the maximum

weight. If the distance between a following weight particle and that of the maximum

was less than a given multiple of the target half width then the particle was added

to the set containing the maximum weight particle. If a weight was reached for

which the distance to the maximum weight particle was greater than the allowed

distance then it was assumed that the weight belonged to the subsidiary mode and

a new set was started. The positions associated with the following weights were

then compared to those of both of the modes and assigned to their sets accordingly.

Once m comparisons had been made the mean positions associated with each set
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were determined to represent the dominant and the subsidiary mode. The procedure

is summarized in Algorithm 4.

The value of m was chosen using the simple rationale that we want to keep

computation as small as possible and that we might expect fewer than half of ns to

have high weights. A value of m “ ns{4 was tried for ns “ 256, but it was found

thatm “ ns{8 produced similar behaviour but with half the computational demand.

In a true bimodal situation a value of ns{8 “ 32 would deliver 16 particles to each

mode. The allowed multiple of the target half-width was chosen to be 3. It was

reasoned that two targets placed side-by-side and touching, i.e. with a separation

of 2 target half-widths, would not present two distinct modes; target centres with a

separation of 3 half widths were more likely to return some kind of bi-modality, so

the allowed separation was chosen to be that. It was recognized that k-means style

clustering might have been a more sophisticated solution, but it would still be likely

that it would have to go through similar algorithmic steps, i.e. choose the proposed

centres, carry out distance comparisons etc. The pedestrian method described above

yielded acceptable results without iterations.

Typical results of the process, using m “ 32, can be seen in Figure 7.2. This case

had been used to illustrate the inadequacy of the weighted mean in Section 5.4.3.

The particle set shown in Figure 7.2(a) is the one associated with the target moving

towards the lower right of the figure, with weights shown in Figure 7.2(c). The

process noise variance was the same as that in Figure 5.10(b). It can be seen in

Figure 7.2(a) that some of the particles have been associated with the other crossing

target. In this case the likelihood distributions for each of the crossing targets splits

into two clear modes. The dominant mode is indicated in green, the subsidiary one

is indicated in red.

Given that we have assumed that the likelihood distribution splits into a dom-

inant and subsidiary mode it remains to choose which of the two to assign to the

tracker. If there are no particles associated with a subsidiary mode then there is the

simple solution: the track position is the dominant mode. If there are two modes

then it is necessary to make a decision about which mode to assign to the track.

At the end of the preceding tracking step, each track was extrapolated to make

a prediction of the next position. The decision process consisted of calculating, for

each mode, the probability that it belonged to the predicted position of the tracker,

and the probability that it did NOT belong to the predicted positions of the other

trackers.

If at time t the position vector of the main mode is represented by x̄A, and

that of the subsidiary mode is represented by x̄B, then for a track position xt´1, a
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Algorithm 4 Extract dominant and subsidiary mode

Function def: rx̄A, x̄Bs “ getmodes
`

txi, wiu
ns

i“1 ,m, alloweddistance
˘

Stage 1: call sort function to sort the particles according to the weights

”

txj, wju
ns

j“1

ı

“ quicksort descend
`

txi, wiu
ns

i“1

˘

Stage 2: allocate particles to modes

select first representative of first mode:
tx, wuA Ð tx1, w1u

allocate the rest of the top m weights:
for j “ 1 to m do

calculate the distance to the first mode
dA Ð }xj ´ xA}

if dA ă alloweddistance then
add the particle to the set of Mode A particles
tx, wuA Ð tx, wuA ` pxj, wjq

else if EmodeB then
assign the first representative of the second mode
tx, wuB Ð txj, wju

else if DmodeB then
calculate the distance to the second mode
dB Ð }xj ´ xB}

if dB ă alloweddistance then
add the particle to the set of Mode B particles
tx, wuB Ð tx, wuB ` pxj, wjq

end if
end if

end for

Stage 3: calculate the weighted mean for each mode

x̄A Ð E rtwxuAs

x̄B Ð E rtwxuBs
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Figure 7.2: Sort and count tracking for crossing similar targets

predicted position x̂t, and j other trackers:

P pxt “ x̄A|xt´1q “ P px̄A|x̂tq
ź

j

“

1 ´ P px̄A|x̂j
tq
‰

(7.5)

and

P pxt “ x̄B|xt´1q “ P px̄B|x̂tq
ź

j

“

1 ´ P px̄B|x̂j
tq
‰

(7.6)

where

P p¨|x̂q “
1

σ
?
2π

exp

ˆ

´
ρ2E
2σ2

˙

(7.7)

with ρE being the Euclidean separation i.e.

ρE “ ||x̂ ´ p¨q|| (7.8)

The value of the standard deviation σ was taken to be that of the process noise for
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Figure 7.3: Tracker mode identification by sort and count
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the respective tracker, i.e. one quarter of the target bounding box in pixels.

The position vector of the mode with the largest probability was then assigned

to the tracker, i.e.

xt “ max pppxt “ x̄A|xt´1q, ppxt “ x̄B|xt´1qq (7.9)

In the case shown in Figure 7.2 the dominant modes were chosen for each tracker

and the integrity of their crossing tracks was maintained.

The approach was also applied to the challenging sequence described in Sec-

tion 7.2.3. The results are shown in Figure 7.3. The rate of track loss was investi-

gated as reported in Section 7.2.3. The behaviour of the Mode Selection approach

was significantly better than that of the Driessen approach, returning a ground truth

point loss rate of less than 1% under the same conditions. This compares with the

ground truth point loss rate of 12% for the Driessen MAP in this selected difficult

sequence.

7.3 Re-sampling

Particle set re-sampling was described in Section 3.4.2 as a method of maintaining

the number of effective particles by reducing the statistical variance of the weights.

The process presents, however, a computational bottleneck because it cannot be

started until all the weights have been calculated. It is necessary to compensate

for the bottleneck by making sure that the re-sampling method chosen is computa-

tionally efficient. Equation (3.61) indicates that if the weight variance is carefully

controlled it might be possible to reduce the size of the particle set ns. But if the

number of particles is reduced then the process becomes sensitive to statistical sam-

pling variance with the consequence that it cannot be guaranteed that the reselected

particle set fairly represents the underlying pdf. Figure 7.4(a) shows an extreme case

with a small sample of ten particles in which the multinomial re-sampling step has

missed the dominant weight.

Recent studies have looked at both the statistical and computational aspects

of particle filter re-sampling [148, 149]. The common approaches considered were:

multinomial, stratified, systematic and residual re-sampling. The first three use the

cumulative sum of the weights as in Algorithm 1 in Section 3.4.2 but differ in the

way the sampling numbers u are generated. The fourth case, residual re-sampling,

has two parts. In the first part a proportion of samples are deterministically selected

and the second part uses one of the first three types to complete the process.

In multinomial re-sampling a set of ns ordered uniformly distributed random
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Algorithm 5 Produce ordered random numbers
“␣

upkq
(ns

k“1

‰

“ orderedrandom pnsq

Purpose:
Generation of ns ordered uniformly distributed random numbers
in the open interval p0, 1q

Generate a random number:
ũ „ Up0, 1q

Produce the upper value of the set:
upnsq Ð ũ1{ns

Generate the rest of the ordered set:

for k “ ns ´ 1 to 1 in steps of ´1 do

ũ „ Up0, 1q

upkq “ upk`1qũ1{k

end for

numbers upkq is produced as described in Algorithm 5. The ordering simplifies com-

putation during the search of the cumulative weight distribution. The re-sampled

weights are determined as in Algorithm 1 in Section 3.4.2.

Stratified re-sampling subdivides the range for upkq into ns intervals and dithers

the values within the intervals.

upkq “
pk ´ 1q ` ũpkq

ns

, with ũpkq „ Ur0, 1q

In systematic re-sampling the range is subdivided as in the stratified case but only

the first value is dithered, the rest of the values are distributed uniformly beyond

this first value:

upkq “
pk ´ 1q ` ũ

ns

, with ũ „ Ur0, 1q

In residual re-sampling the particle multiplicity mi, i.e. the number of copies of

the original state xi, is calculated such that for a total particle set ns, m
i “ tw̃insu

where t¨u denotes rounding down of the product. The truncation results in a reduced

particle set. Experiments carried out by Hol et al. [148] show that this method

returns approximately ns{2 deterministically, the remainder has to be made up by

implementing one of the other schemes. Once the overall multiplicity is determined
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(a) an illustrative example of multinomial re-
sampling, in which the dominant weight
has been missed
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Figure 7.4: Comparison of re-sampling processes: examples using 10 weights

there is an additional computation step of assigning particle states to their new

labels. An illustration of the use of stratified and systematic re-sampling, using a

limited set of 10 weights is given in Figure 7.4(b). It can be seen that the multiplicity

of the re-sampled weight indices is similar in both cases. Figure 7.5 illustrates that

for a large number of particles the heavily skewed original set of weights shown in

Figure 7.5(a) produces similar re-distributions, as shown in Figure 7.5(b), with a

selection of re-sampling methods.

Re-sampling quality is defined by Hol et al. [148] in terms of the distance between

the expectation of the state calculated using the originally weighted set,

Eprgs “

ns
ÿ

i“1

gpxiqw̃i, (7.10)

and that calculated using the re-sampled states, i.e.:

Ep̂rgs “
1

ns

ns
ÿ

i“1

gpxi˚q (7.11)

where p represents the distribution of the original sampled states, p̂ represents the

distribution of the re-sampled states xi˚, and gp¨q is an arbitrary function.

In general the studies suggest that systematic re-sampling is the preferred op-

tion. Hol et al. [148] report that in their implementation systematic returned the

lowest computational effort for particle sets with ns ranging from 1 to 4000. In terms

of resampling quality and computational complexity, systematic and residual meth-

ods were favourable in comparison to multinomial re-sampling. Douc et al. [149]
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Algorithm 6 RSR re-sampling

Function definition:
“

tmiu
ns

i“1

‰

“ RSR
`

ns, tw̃
i
tu

ns

i“1

˘

Purpose: Generation of an vector of multiplicities tmiuns
i“1 at time instant t, t ą 0

Generate a random number u0 „ Ur0, 1
ns

s

for i “ 1 to ns do

mi Ð tpw̃i
t ´ ui´1q ¨ nsu ` 1

ui Ð ui´1 ` mi

ns
´ w̃i

t

end for

concluded that for practical applications of Sequential Monte Carlo methods resid-

ual, stratified and systematic methods were generally found to provide comparable

results but systematic was often preferred because it is the simplest method to im-

plement. Arulampalam et al. [69] also took the view that systematic is preferred

on the grounds of implementation simplicity and minimization of the Monte Carlo

variation. But from a computational perspective, all the above methods incorporate

a while loop. This type of structure can be inconvenient to implement at machine

level because of the need to accommodate an unspecified number of iterations, and

the overall processing time will vary with the weight statistics; this can present

difficulties for real-time applications with a frame rate constraint.

Bolić et al. [145] re-examined re-sampling processes from an implementation com-

plexity perspective. They developed an algorithm, referred to as residual systematic

re-sampling (RSR), based upon residual re-sampling but avoiding the second iter-

ation to make up the set residue. Their approach is shown in Algorithm 6 (note:

the authors make the unfortunate choice of using the symbol ‘i ’ to signify particle

multiplicity rather than particle index, and ‘m’ was used for the particle index; in

the algorithm description given here the notation is reversed to aid readability).

This residual method produces a re-sampling that lies somewhere between the

systematic and stratified methods illustrated in Figure 7.4(b). The target for re-

sampling is to produce a sample multiplicity with the probability of reselected index

proportional to the particle weight i.e. P pijq9w̃i. With a total number of samples

ns this makes the target multiplicity mi9w̃ins. The following argument illustrates

the rationale of the RSR approach. The first line within the ‘for’ loop is considered,

and rewritten, to give:

mi Ð
X

w̃i
tns ´ ui´1ns

\

` 1 (7.12)
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Figure 7.5: Comparison of weight distribution before (a) and after re-sampling (b)

The process starts with a random number, u0, lying between 0 and 1{ns. If the initial

weight is zero then the maximum value within the brackets is zero and the minimum

is ´1. This means that the multiplicity for w̃i
t “ 0 will be either 0 or 1. If w̃i

t ą 0

then the multiplicity becomes the value expected from deterministic re-sampling

i.e. w̃i
tns, but with a random decrement, and the `1 produces a rounding up. The

second line in the loop is a negative feedback step, correcting an overestimate. If it

is rewritten as:

ui Ð ui´1 `
mi ´ w̃i

tns

ns

(7.13)

then it can be seen an nth of the difference between the calculated multiplicity

and the target multiplicity is added to the random number for the next step. The

overall effect is a residual re-sampling with a fractional residue correction at each

step. This avoids the need for a second iteration with its troublesome while loop.

There is, however, still the need for the residual re-sampling step of allocating the

states to their multiplicities, and a requirement of a division at each step. If the

number of samples ns is chosen to be an integer power of 2 then the division can be

implemented through simple register shifts. An example of the outcome of an RSR

re-sampling is shown in the lower histogram of Figure 7.5(b).

All of the methods have similar outcomes, timings and computational complexity,

but the RSR method is distinctive in that it delivers computational convenience for

real-time applications.
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7.4 Discussion

The first part of the chapter considered the recent claim to a provably correct MAP

estimator for particle filters. The approach was tested against challenging sequences

in which targets with very similar representations either moved closely in parallel

paths or had crossing paths. It was found, using repeated runs of the sequences,

that the method did not prevent track loss in general. A practical alternative was

presented. This alternative simply pulled out highest weight subsets and assumed

that they represented either one or two modes. The mode centres were found using

the weighted means of the subsets. The mode nearest to the predicted track point

was then considered, taking account of the predicted track points of nearby compet-

ing trackers, and the most probable one was chosen. Experiment showed that this

was more reliable than the ‘provably correct’ one.

The final step of the particle filter, re-sampling, was also looked at in depth.

Commonly accepted methods were rejected and the recently proposed residual sys-

tematic approach was favoured due to its computational convenience.
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Chapter 8

Tracker initialization

8.1 Introduction

The work up to this point has shown that arbitrary objects can be tracked suc-

cessfully using independent particle filters and a structured histogram object rep-

resentation. In the examples presented the trackers were initialized manually. The

operation of the trackers was not sensitive to the position of the initial tracking

point, the particle filters would follow the objects successfully if the initial tracking

box was placed reasonably centrally on the target of interest.

It has been noted [4] that automatic tracker initialization is not a simple task and

many significant tracking studies assume that the targets of interest can be identified

by some other process or detection module. The detection process is, of course,

integral in radar style detect-before-track (DBT) systems. In those approaches the

processes start with a measurement set and focus on assigning the measurements

to targets. Target ‘birth’ is accommodated by looking for consistent measurements

that can not be accounted for by the current tracks.

DBT is also the basis of some approaches to non-radar multi-object tracking.

The Koller-Meier Condensation extension and the PHD filter involved ‘mode growth’

around new measurements, BraMBLe dynamically extended the multi-target state

using a predetermined set of object labels and looking in the image for the newly

appearing evidence of known representations, Okuma’s boosted particle filter incor-

porated a trained classifier to find new targets, etc. Those systems work well in

the DBT context, but can be computationally costly to implement. For example,

Maggio et al. [113] report that around 67% of the computational resources in their

change detection based PHD filter tracker were used in the detection step.

The histogram based tracking approach developed in this work is track-before-

detect (TBD). The tracking process is, itself, the measurement step. In the context

of this work the particle filter is essentially a search of sub-regions of the image
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into which the target motion model suggests that the object might move. The

measurement consists of finding the strongest evidence for the targets within those

regions. In the DBT approaches newly appearing targets were identified where

they conformed to some predefined all-target representation; in this TBD approach

targets are not sought in terms of some all-target representation, they are initially

identified in terms of being other than background, having a general shape close to

that of the objects of interest, and having movement. Once detected each target

being tracked has its own separate identity and representation. In fact it is the

individualized representation that helps the trackers to deal with occlusion and

recovery after temporary loss of track. The tracking part is not the difficult one,

the main problem is that of initially locating the trackable object and then finding

a suitable central point from which a good representation can be drawn.

The workload associated with the initialization search can be eased to some

extent by limiting the regions within the image that targets can be expected to

appear. In a security or CCTV surveillance context there are generally perimeters,

tripwires or other boundaries defining regions of interest. Disturbances at those

boundaries would trigger tracker initialization. The aim would be to track anything

that violates the boundaries and only subsequently classify it as being of interest

dependent upon the way the path develops.

The computational constraints associated with this work rule out some possible

initialization approaches. The target frame rate of 5fps is too low for optical flow

type approaches. Detection of specific shapes using identification tools based on

SIFT [150], HOG [58], or classifiers in general, calls for pre-training and can be

computationally demanding. Methods that rely on the extraction of large numbers

of histograms of background regions are rejected because of the time and memory

demands of constructing an integral histogram additional to that used for foreground

object tracking.

Instead the work focuses on those broad characteristics of motion, general shape,

and being other than background. Two experimental methods are described. The

first has characteristics similar to those of the Beleznai et al. [47] detection but is

simpler in its implementation, the second is a novel method that draws on aspects

of the particle filter itself when a motion trigger is activated in predefined regions

in the camera view. The first method calls for the use of a background image so

the chapter builds upon Chapter 2 and starts with a description of the background

modeling approach developed in this work.

130



8.2. BACKGROUND IMAGE FOR INITIAL DETECTION

8.2 Background image for initial detection

Chapter 2 presented a brief survey of commonly cited background modeling tech-

niques. The focus of the survey was to consider the methodology and look for

aspects of the approaches that might transfer well to the constrained conditions of

the fixed point processing with camera embedded software. Out of the techniques

presented the Approximating Median had some attractions: it would be simple to

implement, requiring only background pixel value increment or decrement to follow

differences between foreground and background. The median based approaches are

based upon the assumption that the background values are seen more often than

foreground ones. The assumption does not hold well if there is heavy traffic in the

field of view: in such cases the background image becomes polluted with residues of

the passing objects. The approach also responds slowly, taking a long time to find

background at startup. Figure 8.1 shows the performance of the Approximating

Median over 260 frames of the Overhead sequence. Figure 8.1(c) shows that there is

still evidence of initial objects after the first 100 frames of processing. By the 260th

frame the initial objects have disappeared but evidence of traffic trails has begun to

emerge.

It was concluded in Chapter 2 that the counting based Multi-Modal Mean had

useful characteristics. It was, in effect, an efficient approximation to the MOG. The

approach developed for this work has characteristics similar to that of the Multi-

Modal Mean but is implemented in a different way. It works with the assumption

of a single mean pixel value rather than a set of means, it works with monochrome

images rather than colour components, and instead of counting the number of occur-

rences of matches to the mean values out of a given number of frames it simply looks

for pixel value consistency over a consecutive small sequences of frames. It is a dual

background approach: pixels that remain stable for a short run of frames become

part of a short-term background, the short-term background is then used in a recur-

sive update of longer-term background. The method is described in Algorithm 7.

The long-term background image IBLT
is initialized with the first frame I0. Each

pixel is then subsequently examined for temporal consistency. If the absolute differ-

ence between the pixel intensities in successive frames is less than a pre-set threshold

θ∆t then a counter, C, associated with the pixel is incremented. A pixel intensity

temporal mean is developed, starting from µ “ 0, through the accumulation of

fractions of the pixel intensity values at each step. If the accumulation is set for a

continuous sequence of Cmax frames then the fraction to be added at each step is

I{Cmax. If the intensity varies beyond the threshold then both the counter and the

pixel mean are re-set to zero. If a continuity pixel count reaches Cmax, indicating
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Algorithm 7 Mosaic of short term means

Function definition:
rIBLT

, IBST
, Ct, Gt, µts “ mmean pIt, It´1, IBLT

, IBST
, Ct´1, Gt´1, µt´1, θ∆t, Cmaxq

for x “ 1 to cols do
for y “ 1 to rows do

I∆tpx, yq Ð |Itpx, yq ´ It´1px, yq| ă θ∆t

if I∆tpx, yq “ 1 then

Ctpx, yq Ð Ct´1px, yq ` 1
µt px, yq Ð µt´1 px, yq ` It px, yq {Cmax

else

Ctpx, yq Ð 0
µt px, yq Ð 0

end if

if Ctpx, yq “ Cmax then

Gtpx, yq Ð Gt´1px, yq ` 1
Ctpx, yq Ð 0
IBST

px, yq Ð µt px, yq

µt px, yq Ð 0

if Gpx, yq ă“ 8 then

IBLT
px, yq Ð

Gpx,yq

Gpx,yq`1
IBLT

px, yq ` 1
Gpx,yq`1

IBST
px, yq

else

IBLT
px, yq Ð 7

8
IBLT

px, yq ` 1
8
IBST

px, yq

end if

end if

end for
end for
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(f) Mosaic of Means, 260th frame

Figure 8.1: Comparison of Approximating Median and Mosaic of Means background
development. It can be seen that by the 100th frame the Mosaic of Means has cleared
the foreground content of frame 1. By the 260th frame the Mosaic of Means remains
clear, whereas the Approximating Median shows signs of traffic contamination.
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8.3. MEAN-SHIFT BASED OBJECT DETECTION

that the pixel intensity variation has been less than θ∆t for a continuous run of

Cmax frames, then the mean value is assigned to the short term background IBST
,

the counter and the mean are then reset. In the initial ‘burn-in’ period a ‘group’

count G is maintained for each pixel. This counts the number of continuous short

term background runs that have occurred since the start. The group count is used

to fractionally develop the long term background IBLT
. Once the group count has

reached G “ 8 it defines the end of the burn-in sequence for that pixel and G re-

mains constant. This means that the long-term background is updated with the

constant fractional contributions of 7{8ths the previous long-term background and

1{8th of the latest short term background. The process seeks out temporally stable

pixels, background update is suspended during heavy traffic.

If the pixels show stability for a reasonable period of time their contribution grows

in the long term background. The example shown in in Figure 8.1(e) indicates that,

with this approach, evidence of objects in the initial frame has been removed, and in

Figure 8.1(f) that there is much less traffic contamination than in the Approximating

Median.

8.3 Mean-shift based object detection

The mean-shift based object detection approach of Beleznai et al. [47] was outlined

in Section 2.4.4. It was suggested in the conclusion to Chapter 2 that a similar

approach might be useful for identifying objects entering the field of view.

The mean-shift process involves an iterative ascent towards the local mode of a

density distribution [43]. The density distribution in the Beleznai approach is rep-

resented by the pixel values in the image I∆B formed by unthresholded subtraction

of the background image and the current frame.

I∆B “ |It ´ IB,t| (8.1)

Given a region of image of width ∆x and height ∆y centred at a location px, yq, the

centre of mass coordinates px̂, ŷq are determined by:

x̂ “

ř

xP∆x xI∆Bpx, yq
ř

xP∆x I∆Bpx, yq
(8.2)

ŷ “

ř

yP∆y yI∆Bpx, yq
ř

yP∆y I∆Bpx, yq
(8.3)

Each mean-shift step in the iterative ascent involves moving the centre of the

region from its current position px, yq to the centre of mass px̂, ŷq of the region.
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Figure 8.2: Illustrative Beleznai mean-shift start points and convergence

Figure 8.2(a) shows a typical set of mean-shift start points around the edges of a

pedestrian image, together with the expected bounding box rectangular regions used

for the process. Figure 8.2(b) shows the tracks taken on the mean-shift steps as the

rectangles moved to convergence. It was stated by Beleznai et al. that only 3 or 4

steps were generally necessary for convergence. The start points were determined by

a cycle of finding the maximum in the difference image I∆B, setting it to 1 and re-

scaling the rest of the image proportionately. A region having half the dimensions

of the expected object bounding box was reset to 0 at the found point and the

difference image was then re-scanned to find the next maximum value. The search

was repeated and eventually stopped when the magnitude of the found maximum

dropped below a threshold. The expected object bounding box size at a given row in

the image was determined using the simple calibration of determining the expected

sizes at low and high row values and then linearly scaling between those extremes.

Fast extraction of the centres of gravity was facilitated by calculating three inte-

gral images, one for each of I∆B, xI∆B and yI∆B, so that each component in Eqs.(8.2)

and (8.3) could be determined by simple integral image look-up operations.

The approach developed in this thesis was similar in the use of the three integral

images, the bounding box scaling and aspects of the iterative processes but had

different elements aimed at computational economy. The mean-shift start points

were not determined by the exhaustive process of searching out and accumulating

maxima in the difference image, start points were preset along lines, perimeters or

grids in the image. Mean-shift ‘triggers’ were activated through the placement of

square detector ‘pads’ centred on each point. The pads had both width and height

equal to the expected width of the target object bounding box at the pad position.

The pad size, however, was not critical: in some cases pads could be smaller than
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(f) feature image and detections

Figure 8.3: Pad based mean-shift detection
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the expected target width and still trigger successfully.

The image used for the mean-shift steps also differed. A binary image was made

by thresholding the background subtracted image:

I∆Bθ “ |It ´ IB,t| ą θ (8.4)

The background differences image was then pixel-wise multiplied by the thresholded

image to produce the feature image I∆f to be used for the mean-shift process:

I∆f “ I∆B ¨ ˚I∆Bθ (8.5)

The result was that small differences were set to zero and those above the threshold

were retained.

A range of options were available for triggering the pad, the essence being to

detect change. The trigger could occur as a result of threshold crossing by the

sum across the pad of background subtraction differences, the sum of temporal

differences, the mean of the differences, the sum of binary indicators of differences

etc. Experimentation suggested that temporal differences were more useful than the

others. The subtraction of successive frames provided some immunity to general

illumination changes and the differences in the pad regions tended to be small in

the event of lateral camera movement. The low frame rates meant that the number

of differences across the pad could be large when an object moved through it. In the

examples shown here, the triggers were based upon the mean temporal difference d̂t

across the pads, and a requirement that the mean was rising, i.e.

d̂t “
1

nP

ÿ

x,yPP

|IP,tpx, yq ´ IP,t´1px, yq| (8.6)

where P represents a pad, IP,t is the pad image at time t, and nP is the number of

pixels in the pad. The trigger condition was then:

d̂t ą θd ^ pd̂t ´ d̂t´1q ą 0 (8.7)

where θd is a difference threshold.

When a pad was triggered an expected object bounding box sized rectangle was

initialized at the triggered pad centre and mean-shifted to the object from that point.

In perspective views the size of the mean-shifting rectangle changed to match the

expected target size at the current row position. The mean-shift iterations were

preset to a fixed number of steps rather than progressing to convergence. It was

found that presets of 4 or 5 steps were adequate. It was also found that the shifts
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Figure 8.4: Mean-shift detection with target shadow

converged to the object irrespective of whether they were triggered by the arriving

object itself or the trailing temporal difference ‘ghost’.

Examples of the detection process can be seen in Figure 8.3. Figure 8.3(a)

shows a typical industrial scene with a single tripwire of pads. Figure 8.3(b) shows

the corresponding thresholded feature image and pad triggered mean-shifts. The

detections continue for a sequence of frames as the targets move through the tripwire

pads. There is a range of options for tracker initialization: the first detection could

initialize a tracker with subsequent detections judged to be from the same object

being suppressed, multiple trackers could be initialized and merged, initialization

could occur after a series of consistent detections has occurred etc.

It can be seen that the detection bounding boxes do not necessarily fit the targets

entirely. This turned out to be not a problem: the initial tracking histogram was

based upon a region within the objects with dimensions half that of the bounding

box, it was generally extracted from representative pixels within the perimeters of

the objects.

Figures 8.3(c) and 8.3(d) illustrate the detection process in the Overhead se-

quence. In this example a grid of detect regions is used but a single rectangular

arrangement of centres could be used as a sensitive perimeter. Figures 8.3(e) and

8.3(f) show detections in a perspective view. In this case a simple mini-array of cen-

tres is adequate: foreground targets trigger the pads with their heads, those further

back in the scene trigger them with their feet.

Figure 8.4 shows a simple tripwire arrangement and a target with a significant

shadow. The tripwire is set up to detect pedestrians and hence aims to fit a vertical

target shaped rectangle in the mean-shift process. The search for the maximum

in the difference image moves the rectangle onto the target and is not significantly

affected by the shadow. In contrast, a blob based detection system would return a

bounding box encompassing both object and shadow.

Figure 8.5 shows the mean-shift end points being used as input to a PHD filter.
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Figure 8.5: Mean-shift detection as a source for a PHD filter

As discussed in Section 4.7, there is little advantage in the use of the PHD filter

because of the need for further processing to extract the states, and the collapse of

the modes in the absence of detections. It is suggested in this thesis that it would be

better to initialize conventional single particle filter trackers at the detection points.

8.4 Histogram based detection

A simpler but surprisingly effective alternative to the mean-shift detection is to use

histogram information. This has the computational attraction of removing the re-

quirement of a full-frame background image and drawing on the resources already

available for the histogram based tracking. The triggers use the same pad approach

as described in the previous section, using a rising mean of pad temporal differences.

The pads can be placed singly at known entry points, in tripwire style arrays, perime-

ters or grids. Simple tripwires or single placements tended to be appropriate. Figure

8.6 shows an example of a pair of pads being used with the AVSS 2007 i-LIDS Chal-

lenge data-set [10]. The original sequence ran at 25fps but every fifth frame was

extracted to produce the target 5fps. Figures 8.6(a) and 8.6(b) represent successive

frames at the reduced rate.

The general approach is to:

(i) look for temporal change in the pad region;

(ii) in the absence of change make a ‘probably background’ histogram of the pad

region;

(iii) if change then find the change pixels and construct a ‘probably foreground’

histogram;
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Figure 8.6: Trigger frames for pad histogram based detection

(iv) look around the pad for further evidence of ‘probably foreground’;

(v) find the most likely centre of the ‘probably foreground’.

8.4.1 Constructing an object indicator histogram

In the absence of a trigger a normalized 8-bin ‘probably background’ grey scale

histogram qB,t is extracted from the pad pixels. An integral histogram of the whole

image is made at each frame, to be used for the particle filter tracking, so this ‘pad

only’ background histogram can be extracted without much extra computation.

The histogram is used to recursively update a ‘time averaged probably background’

histogram q̂B,t:

q̂B,t “ p1 ´ αqq̂B,t´1 ` αqB,t (8.8)

with the update fraction α having a value typically of the order 0.2.

When a trigger condition occurs an 8-bin histogram pt is made of the pad image.

This contains information about both background and object. The pad image his-

togram pt is used together with the time averaged probably background histogram,

q̂B,t, to make an ‘indicative object’ proposal histogram q̃o,t. The first step is to
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Figure 8.7: Histograms used in pad proposal histogram construction
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construct a difference histogram q∆,t by subtracting the time averaged probably

background histogram from the current pad histogram:

q∆,t “ pt ´ q̂B,t (8.9)

Negative bin values in the difference histogram indicate pixel value ranges that are

more representative of the background rather than the foreground. Figures 8.7(a)

to 8.7(c) show a set of typical histograms associated with this stage of the process.

Next, a difference masked pad image IMpx, yq, shown in Figure 8.6(d), is made by

pixel-wise multiplication of the pad thresholded temporal difference image IP∆tθpx, yq

with the pad image IP,tpx, yq i.e.

IMpx, yq “ IP∆tθpx, yq ¨ ˚IP,tpx, yq (8.10)

The masked image contains pixels associated with the object, shadows, ghosts, and

zero values associated with the static region. The masked image is grey level sliced

using the bin boundaries of the n = 8 bin histogram to produce a binary pad image

IPbpx, yq for each slice u:

IPbpx, yq “ δ pb pIMpx, yqq ´ uq @px, yq P P (8.11)

where b pIMpx, yqq is a function that compares the grey scale value IMpx, yq against

the bin boundaries and returns the bin number associated with it; δp¨q is the Dirac

delta function. The lower boundary of the first bin is set to 1 rather than 0 out of

the range r0, 255s; this removes the mask static pixel contribution.

The bins of the proposal histogram qo,t are set to be the sums of the correspond-

ing binary slice IPbpuq if the associated difference histogram bin q∆,tpuq is positive,

otherwise they are set to zero:

qo,t “

$

’

&

’

%

ř

x,yPP

IPbpuqpx, yq if q∆,tpuq ą 0

0 otherwise

(8.12)

The ‘indicative object’ histogram is then normalized:

q̃o,t : q̃o,tpuq “
qo,tpuq
n
ř

v“1

qo,tpvq

u “ 1, ..., n (8.13)

The proposal histogram, shown in Figure 8.7(d), indicates the grey scale values

that are more characteristic of the part of the object entering the pad region than the
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Figure 8.8: Particle filter type search around the pad and initial four quadrant
tracking region

background. This proposal histogram and the centre of gravity of the pad pixel-wise

difference image are used as the starting points of a search for a more representative

histogram of the incoming object. Even though the proposal histogram is not a

true representation of the object histogram, it is likely to be closer to it, in terms of

standard feature distance measures, than to histograms calculated from background

in the region of the pad after the triggering event. The proposal histogram does not

include bins that are dominant in the probably background histogram.

8.4.2 Finding a histogram to track

A particle filter type search is used on the region around the pad in order to get

a better representation of the object. A prior is constructed by adding Gaussian

random values to the centre of gravity x0 “ px0, y0q of the thresholded pad difference

image IP∆tθpx, yq i.e.
␣

xi “ x0 ` νi
(ns

i“1
(8.14)
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Figure 8.9: Initialized trackers in the i-LIDs sequence

where νi „ N p0,Σq. The standard deviations σ of the components of the distribu-

tion are taken to be half of the largest dimension of the detection pad. A typical

particle prior centred on the pad difference image centre of gravity is shown in Figure

8.8(a).

Histograms pi are extracted, using the integral histogram, at each of the ns par-

ticle prior locations. They are given a weight in terms of the histogram intersection

distance and linear likelihood as described in Chapter 6. The alternative, if the

computational constraints are not stringent, is to use the Bhattacharyya distance

and Gaussian weighting. Particles with weights above a chosen threshold are ex-

tracted and their weighted mean position is taken to be the detect point for tracker

initialization. A weight threshold of θw “ 0.2 was used. An example of high weight

particles and their weighted mean is shown in Figure 8.8(b).

8.4.3 Tracker initialization and subsequent management

The final step of the detection process is to extract a tracking histogram at the

weighted mean position of the high-weight particles. An 8-bin tracking histogram,

qt, extracted at the object location indicated in Figure 8.8(b), is shown in Fig-

ure 8.7(e). The histogram is extracted from a rectangular region, centred on the

weighted mean position, with dimensions half those of the expected object bounding

box at that point. For more effective tracking, a four-quadrant grey scale histogram

as described in Section 5.5.1, would be extracted. The four-quadrant tracking his-

togram for this sequence, extracted from the region shown in Figure 8.8(c), is shown

in Figure 8.7(f).

The particle filter initial velocities are taken to be zero at the initialization step,

they pick up the speed of the object after a couple of iterations. Tracker progress for

the object initialization described above can be seen in Figure 8.9(a). Subsequent
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Figure 8.10: Tracker initialization with multiple triggers
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Figure 8.11: Tracker initialization, Overhead sequence
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trackers initialized by a sequence of detections can be seen in Figure 8.9(b).

In the event of multiple detections of a single object as it passes through a pad

the trackers are allowed to follow the object for a couple of frames. If trackers are

close to each other, have similar velocities and similar histograms, then they are

merged by taking the mean positions of the tracker end points, the mean velocities

at those end points, and the average of the two histograms.

Figures 8.10 and 8.11 show further examples of pad histogram based tracker

initialization. Figure 8.10 shows a pedestrian triggering an initialization in successive

frames with the trackers merging into a single one. Figure 8.11 shows a set of

initializations in the Overhead sequence. In Figure 8.11(d) it can be seen that a

tracker is initialized on the foot of one of the shoppers; the foot is successfully

tracked in subsequent frames. Additional unwanted trackers of this kind are less

likely to occur with a mean-shift style initialization, the simple model shape would

shift to cover the expected shape.

The number of allowed initializations at any time is determined by the com-

putational capacity available. In typical applications it is expected that up to five

trackers might be active at any time and that up to three might appear at the initial-

ization step. Trackers would be ‘signed off’ when they progress beyond a perimeter

and hence would free up resources for new trackers. In the case of detector grids,

newly established trackers are assigned an initialization ‘veto’ region having half the

dimensions of the object bounding around the proposed next position. Any new

detections within a veto region are ignored.

8.5 Discussion

Two simple approaches to object detection and tracker initialization have been de-

scribed. One was an extension of a previously published method, the other was

novel and was tailored to make use of resources already available as part of the

tracking process. It was found that a simple counting based background construc-

tion method was adequate for the mean-shift style approach and could cope with

small variations in background illumination. The pad histogram based approach

did not even require the development of a full frame background image, focusing

only on identification of ‘probably background’ pixels within the pad regions. With

appropriate choice of trigger thresholds both approaches were found to be effective

in tracker initialization.

Consideration was given to combining the two approaches. In this case the

triggered mean-shift rectangles would move from the trigger points to the local

mode of the background subtraction differences. At the end point a histogram style
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search would then be carried out in an attempt to identify foreground pixels in the

event of the end point not being reasonably central to the object. But in practice

it turned out that the extra searches were not really necessary, the centres of the

mean-shifted rectangle generally gave good tracker initialization points. Both the

methods were effective in their own right, but a combination of them suggested no

advantage.

The mean-shift style detection system was also considered as a source of mea-

surements for a PHD style tracker, or as points for measurement based proposal

densities along the lines of the boosted particle filter work of Okuma et al., as de-

scribed in Section 4.5.2. But the adequacy of the independent particle filter tracker

initializations, and the subsequent tracking behaviour, suggested that there was

little to be gained from the additional computational burden.
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Chapter 9

Conclusions and further work

9.1 Review of aims and findings

The aim of the work was to look closely at practical techniques associated with de-

tection and tracking of moving objects in surveillance video with a view to eventual

real-time implementation through camera embedded software. The field of computer

vision linked to surveillance type applications is relatively young, growing alongside

impressive hardware developments over the last two decades. It is characteristic of

newly developing academic areas, with technical and possibly significant commercial

potential, that they are idealistic and optimistic. It is also characteristic that theo-

retical explorations linked to a new and promising paradigm develop along diverse

evolutionary pathways, many of which turn out to be limited, leaving only a subset

capable of thriving in the environment of the time. Applications such as face de-

tection and ANPR have developed well, are now established, and show commercial

success. Areas such as pedestrian tracking and security related behaviour analysis

are still in the development stages. The boundaries, limitations and constraints

become clearer as the field matures. The outcomes of explorations in this thesis

suggest that there are practical and implementable possibilities for object detection

and tracking in CCTV video.

The work started out with a number of self-imposed constraints linked to the

search for systems capable of being developed as camera embedded software sharing

processing time on a fixed point visual signal processor. It aimed to deal with monoc-

ular imaging with a frame rate no greater than 5fps. It aimed to avoid approaches

dependent upon mathematical operations like floating point division, extraction of

square roots, calculation of Gaussian quantities, open-ended iterations etc. It rec-

ognized the need to be not dependent on good quality chromatic information, i.e.

to work with what is essentially low resolution monochromatic video.

The study contributed the following findings with regard to particle filter track-
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ing [15]:

• commonly used histogram similarity measures are related, and that satisfac-

tory tracking can be achieved using the most computationally economic mea-

sure;

• there is no advantage in seeing the Gaussian likelihood standard deviation as a

tuneable design parameter, if the distance measure is normalized to the range

[0, 1] then the standard deviation should be set at σ “ 0.2;

• a computationally economic linear likelihood can be used in place of the tra-

ditional Gaussian.

The traditional approaches to state estimation were rejected. It was shown that

the weighted mean state estimation was inadequate if large particle filter process

noise was used. The use of the MAP, or maximum weight, estimates could also

lead to track loss in situations where similar targets moved closely or their tracks

crossed. It was shown that:

• a novel sorting and counting approach, to indicate the dominant modes in the

multi-modal pdf, coupled with a probabilistic link to predicted states, was able

to maintain track in the case of closely moving similar objects.

The problem of tracker initialization was considered. It was concluded that

existing object detection approaches would not offer the required computational

efficiency for use in the given processing context. Two approaches were developed

for initial target detection:

• a simplification of Beleznai [47] mean-shift object detection, to use pre-defined

grids or lines of points as mean-shift start points;

• a novel histogram-based ‘pad’ trigger, that draws upon on the same resources

as the trackers [17].

A summary overview of the complete work is given in the following sub-sections.

9.1.1 Approaches to object detection

An exploration of approaches to object detection and representation was carried out.

They were grouped into those dependent upon background modeling and subtrac-

tion, those that were based upon temporal frame differencing, those that sought to

make sense of blob patterns by fitting target models, and those that did not depend
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upon background subtraction but instead focused on the detection of salient charac-

teristics of the objects of interest. It was recognized that an identifying characteristic

of objects deemed trackable in surveillance video is that they are not background,

so some attention was given to the methodology of background image development.

Most of the object detection approaches, whilst theoretically sound, were based upon

PC style processing with a dependence on floating point calculations and hence were

seen to be not good candidates for the intended development.

9.1.2 Consideration of theoretical foundations

Much of the published work in the field of object tracking is described and justified in

terms of Bayesian probability. The fundamentals of Sequential Bayesian Estimation

were explored. The Kalman filter is recognized as the optimal device for tracking

objects that can be represented in terms of linear process and measurement with

Gaussian uncertainty. An interpretation of the filter equations was given to illustrate

how they combine measurement and prediction uncertainties so that a measurement

directed correction to the predicted state can be made. An examination of the

theoretical foundations of the sub-optimal, but more applicable, particle filter was

carried out. The particle filter provides a method that can be used in the more

realistic non-linear process and measurement steps likely to be encountered in video

based object tracking.

9.1.3 Multi-target tracking

The extension of Bayesian methods to multi-target tracking was explored. The

methods had strong and well developed foundations in the field of radar and sonar

type object tracking. It was of interest to see if the methodologies developed in that

area would be productively transferable to multi-object tracking in video. It was

recognized that because of their provenance, the methods were focused more towards

resolving the data association problem, given similar detection signals, than to the

management of multiple tracks in which each object might have its own distinct

identity.

Other multiple object methods that were more closely linked to object tracking

in video concerned themselves with issues like the resolution of occlusions, analysis

in terms of world view representations of detected objects, or manipulations to

penalize likelihoods where object tracks might cross. Some looked to see if there

was any advantage in the Bayesian recursion of a complete multi-target state, but

there was no clear evidence that such approaches were superior to the use of multiple

independent trackers.
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The Probability Hypothesis Density filter had been suggested as a possible foun-

dation for multi-target tracking in surveillance type applications. Its mode of opera-

tion was looked at in a little detail. It was recognized as basically a computationally

intensive clutter filter that was still dependent on having a separate object detec-

tion stage and a multi-frame data association step in order to resolve lost target and

occlusion issues.

9.1.4 Implementation of the particle filter

With none of the multi-target approaches showing any attractive theoretical or prac-

tical aspects, attention returned to looking in detail at the implementation of the

single target particle filter. A grey scale histogram representation was chosen. The

integral histogram was used for fast extraction of representations at particle posi-

tions. With a frame rate of 5fps temporal differencing allowed stationary background

components of the image to be ignored and successful particle filter based tracking of

distinctive targets was demonstrated in a small range of scenarios. It was seen that

the objects could be successfully tracked through small occlusions. The approach

of using a simple multi-part histogram was adopted and the subsequent improved

localization of the tracked object was illustrated. It was seen that the standard

weighted mean estimate of state had its inadequacies when the process noise was

not controlled well and paths of targets with similar appearance crossed.

9.1.5 Choice of similarity distance and particle likelihood

The next step was to look more closely at the operational components of the par-

ticle filter itself. It was of interest to see if the performance of the trackers would

be compromised if the components were simplified for fixed-point embedded soft-

ware implementation. The components of interest were the histogram dissimilarity

distance and the measurement likelihood function, together with their parameters.

The standard dissimilarity measure was taken to be the Bhattacharyya distance

and the standard likelihood was taken to be Gaussian in form. Alternative distance

measures such as the Matusita distance, the Histogram Intersection distance, the

chi-squared distance etc. had all been chosen by other researchers. It was shown

that there was little to choose between the distances: the Matusita distance was

just an alternative expression of the Bhattacharyya distance, the others could be

seen to have a link to the Bhattacharyya distance and simply introduce a bit of

further scatter in the randomization of the particle set. The Histogram Intersection

distance was shown to be adequate and was adopted because of its computational

simplicity.
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An important element was seen to be the choice of the value of the standard

deviation if the Gaussian likelihood was used. The value was generally seen, in

published work, to be a tunable parameter in the particle filter implementation

without its central importance being considered. A wide range of values had been

reported in the literature. It was shown that if the chosen distance measure ranged

in value between 0 and 1 then the value of the parameter should be chosen to be

approximately 0.2.

With the understanding of the choice of the Gaussian parameter, it was rec-

ognized that a linear likelihood would suffice in place of the Gaussian itself. It

was demonstrated that there was no difference in tracking performance between a

histogram representation Bhattacharyya based Gaussian likelihood and one with

the computationally more attractive Histogram Intersection based linear likelihood.

This shifted the attention to an examination of the methods for state estimation

and particle re-sampling.

9.1.6 State estimation

Recent work had argued correctly that the weighted mean state estimate was inad-

equate and claimed a theoretically sound MAP approach. Experimentation showed

that in the context of histogram based tracking in grey scale video the proposed

MAP approach also showed deficiencies. An alternative approach was developed in

which the dominant modes of the likelihood distribution were identified and the one

closest to the predicted position of the relevant tracker was chosen, even though it

might not be the largest one. The findings suggested that the mode selection ap-

proach gave a better performance than both the weighted mean and the theoretically

sound MAP approach.

9.1.7 Particle re-sampling

Alternative approaches to re-sampling were considered. Whilst researchers in the

field tend to find theoretical justification for their own choice of re-sampling method,

in the work associated with this thesis it was found that there was little to distinguish

between the approaches. One of them, however, offered a computational advantage

over the others in that it was not dependent on the need for a WHILE loop, and

hence that method was adopted.

9.1.8 Object detection for tracker initialization

Two possible approaches to tracker initialization were suggested. The first one was

a target bounding box model-fitting approach based upon a mean-shift localization.
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It had some similarities to the work of Beleznai et al. [47] but differed in the way

the initial points in the mean-shift tracks were chosen. Instead of searching for local

intensity maxima the start points are preset as either a set of grid points or as points

along a line. Even though the target model, a rectangle, was simple, it turned out to

be adequate for the task by returning a satisfactory near central position estimate

for objects of interest. Using the detected centres as input to a multi-target PHD

filter was considered but the additional demands of the filter suggested that there

was no advantage in its use.

The mean-shift approach, being essentially ‘blob’ based, needed the generation

of a background image. A counting based background image generation method was

developed.

The second detection approach was designed to draw on the resources already

available for particle filter tracking. It did not need the production of a background

image. It used image intensity change sensitive ‘pads’ and a local histogram of pad

background pixels built when the pads report little change from frame to frame. A

pad change trigger then initiated a search around the pad for foreground pixels from

which a trackable histogram could be inferred.

9.2 Further work

Effective tracker initialization remains an important area of investigation. The ap-

proaches have to be simple in order to be implementable within the frame rate and

computational constraints imposed by a fixed-point processor of the kind described

in Section 1.2. The descriptions of the two approaches described in Chapter 8 il-

lustrated the concepts and can be regarded as starting points for further work. As

with initialization approaches in general, they are prone to occasional initialization

on non-target disturbances. False alarms tend to have characteristic signatures in

the developing tracks. For example, the spacing between false alarm track points

tends to vary unpredictably whereas true track points indicate a regular object ve-

locity. Strategies for suppression of false initializations need to be developed.

Whilst optical flow based methods were rejected on the basis of the low frame

rate, there is still some opportunity for motion based possible target detection

through the use of the motion vector component of MPEG coding. Image com-

pression for storage is one task carried out by the processor alongside any analytics

addition. Motion vectors extracted from the compression process might be useful

features that could be grouped to indicate regions of the image linked to trackable

objects.

The work was essentially preparatory to hardware implementation, it remains
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to investigate the realization and performance of the proposals on the processor

itself. It is not a trivial task, each processor design presents unique programming

constraints and advantages. The need for unforeseen processor specific algorithmic

compromises and approximations will emerge at the coding stages. But there are

some further general processor independent aspects that might be considered. For

example, one general processor difficulty lies with the randomization of the particle

proposals. It is recognized that the randomization is a central element of the Monte-

Carlo representation of the probability distribution functions, but it would be of

interest to investigate the use of predefined, not necessarily uniform, ziggurat style

grid patterns for the placement of the particle prior.

It was concluded that the multi-target tracking task could be dealt with by

treating each tracker as independent, initializing a separate tracker with its own

representation signature for each object. The problem of the best management of

resources for multi-trackers has not been considered and is an aspect that needs

to be developed further. One approach would be to allow only a fixed number of

trackers to be in action at any time, with newly appearing objects being assigned

a tracker when one becomes available, with trackers signing off when they move

beyond a perimeter or the boundaries of the image. An alternative might be to

not track all the objects at every available frame but have a ‘sampling’ approach in

which the objects might be looked at every available frame early in the tracks but

less frequently as the tracks develop. In effect the behaviour of the trackers during

frames when they are ignored would be similar to that of trackers moving through

occlusion.
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Appendix A

Video sequences linked to the

figures

The accompanying DVD contains a set of AVI files showing short animated se-

quences associated with figures from the thesis.

The filenames are:

Chapter 4

Fig 4.1 Overhead PHD.avi

Chapter 5

Fig 5.5 Overhead.avi

Fig 5.5 Additional Overhead.avi

Fig 5.7 Overhead motion.avi

Fig 5.7 Additional Overhead motion.avi

Fig 5.8a Square.avi

Fig 5.8b PETS2006.avi

Fig 5.8c iLIDS.avi

Fig 5.8d PETS2001 van.avi

Fig 5.9 Overhead occlude.avi

Fig 5.10 Large process failure.avi

Chapter 7

Fig 7.2 Mode select.avi
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Chapter 8

Fig 8.3 Overhead mean shift.avi

Fig 8.3 Square mean shift.avi

Fig 8.4 Yard detection shadow.avi

Fig 8.9 Pad iLIDS.avi

Fig 8.9 Pad Overhead.avi

Fig 8.9 Pad Yard.avi
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Publications

P.Dunne and B. Matuszewski. Choice of similarity measure, likelihood function and

parameters for histogram based particle filter tracking in CCTV grey scale video.

Image and Vision Computing, 29(2-3):178-189, 2011

P.Dunne and B. Matuszewski. Histogram-based detection of moving objects for

tracker initialization in surveillance video. International Journal of Grid and Dis-

tributed Computing, 4(3):71-78, 2011
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Abstract

The choice of particle filter dissimilarity distance measures and likelihood functions is considered in the
context of object tracking in grey scale CCTV video. The geometrical interpretation of the Bhattacharyya
coefficient and distance is reviewed and the relationships between the Bhattacharyya, Matusita, histogram
intersection and χ2 distances are examined. It is argued that as long as the likelihood function satisfies cer-
tain criteria its analytical form is not critical in the stated tracking context. This is demonstrated through an
experimental comparison between the use of the standard Bhattacharyya distance/Gaussian likelihood com-
bination and the potentially computationally simpler histogram intersection distance/triangular likelihood
combination in particle filter tracking sequences. It is shown that the differences between the approaches are
marginal when the likelihood criteria are applied. Whilst the analysis was focused on a specific application
and context, we suggest that the findings will be of value to particle filter tracking in general.

Keywords: particle filter, similarity measure, likelihood, grey scale, histogram intersection

1. Introduction

Video object tracking for commercial and surveil-
lance applications can be required for situations
ranging from real-time focus of attention tasks, such
as alerting CCTV control room operatives to possi-
ble intrusion in a restricted area with indication of
the point of entry and subsequent path, to longer
term data collection for statistical analysis such as
collecting pathway patterns, learning about naviga-
tional strategies in stores, monitoring the lengths of
queues etc.
The tracking task consists of identifying regions

in the image frames corresponding to an object of
interest, using some method to characterize the ob-
ject and then following an updated characterization
from frame to frame.
The method used to characterize the object is

dependent upon the available computational re-
sources and the quality of the image at each frame.

∗Corresponding author
Email addresses: pdunne@uclan.ac.uk (Peter Dunne),

bmatuszewski1@uclan.ac.uk (Bogdan Matuszewski)

It can range from fitting shape models to the tar-
get objects to representing the objects in terms of
their colour or edge signature. A useful overview of
approaches is given by Yilmaz et al [1].

The particle filter has become an established tool
for the job. It is a recursive Bayesian estimation
technique that maintains multiple motion hypothe-
ses, is capable of handling non-Gaussian probability
distributions and recovering tracks that have been
interrupted by occlusion. It has been researched
extensively in the last decade and a range of re-
finements and levels of sophistication have emerged
[2, 3]. Examples illustrating the variety of applica-
tions of the filter include broadcast sport video se-
quences tracking players using shape and colour [4],
occupational therapy research tracking the motion
of persons descending a stairwell [5], multi-feature
tracking of faces and pedestrians [6], colour based
tracking of pedestrians and soccer players [7], and
the classification of commuters in a railway station
[8].

The motivation for the work described in this pa-
per was linked to the development of analytics com-
ponents to run as camera embedded software using
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the Chipwrights range of single instruction multiple
data fixed point visual signal processors [9]. The
processors have a primary role of dealing with im-
age capture, intensity correction, compression, sen-
sor multiplexing etc. but there is spare processing
capacity for additional tasks.
The expected CCTV applications included situa-

tions in which the colour information might be weak
[10, 11] e.g. with people with dark or plain cloth-
ing in poorly illuminated indoor public spaces or
in outdoor environments under sodium or infra-red
lighting etc. We reasoned that approaches shown to
work with grey scale would be transferable to poly-
chromatic systems, but ones developed to work with
colour might not transfer to monochrome very well.
The additional need for computational economy,
and a commercial requirement of backward com-
patibility with existing monochrome installations,
led us to consider working with only the incoming
luminance channel of the image data and use grey
scale histograms for object characterization.
There have been suggestions that such his-

tograms might not be adequate for the task [12].
Our preliminary investigations confirmed the find-
ings that the grey-scale histogram approach pro-
duced tracks that did not correlate closely with
the frame-to-frame mean squared difference match-
ing of the target regions. The investigations sug-
gested, however, that grey-scale signature tracking
produced target correspondence adequate for the
surveillance type applications and was worth ex-
ploring further.
We re-examined the relationship between types of

histogram comparison dissimilarity measure in or-
der to determine the one most appropriate for the
application. Recognizing that the variance of the
standard particle filter likelihood function is gen-
erally taken to be a design parameter we reviewed
choices of its value and developed an argument that
upper and lower limits can be put on that choice.
We carried out experiments to show not only

that adequate grey scale tracking could be achieved
but that a combination of a simple likelihood func-
tion and histogram comparison measure can per-
form just as well as the more traditional Gaus-
sian/Bhattacharyya combination.
We begin, in section 2, by reviewing the basic

theoretical structure of the particle filter. In sec-
tion 3 we consider a selection of examples from
published work to illustrate the range of parame-
ter values used with typical dissimilarity measures
and likelihood functions. This sets the context for

the analysis to follow. In sections 4 and 5 the nature
of the Bhattacharyya distance measure and its role
in the Gaussian likelihood function is considered.
Distance measures other than the Bhattacharyya
distance are briefly considered in section 6, but the
main focus of that section is the relationship be-
tween Bhattacharyya distance and the less com-
monly used histogram intersection distance. The
discussion links the Bhattacharyya distance to the
simpler sum of absolute difference based L1 dis-
tance and other proposed distance measures. Sec-
tion 7 looks at the use of a simple triangular likeli-
hood function in place of a Gaussian. The experi-
mental investigations into the use of the simplified
approaches in place of the standard approaches are
described and discussed in section 8 and prospects
for computational economy are considered in sec-
tion 9. The findings are discussed in section 10 and
conclusions are drawn in section 11.

2. The particle filter

The particle filter is based upon the use of a pos-
sibly non-linear state transition model subject to
additive noise νk, in which a current state xk de-
pends on the immediately preceding state xk−1:

xk = fk(xk−1, νk) (1)

and the use of a measurement model:

zk = h(xk, nk) (2)

in which a current measurement is taken to be a
possibly non-linear function of the current state
with measurement noise nk.

The objective of the Bayesian tracker is to recur-
sively estimate the state xk of each tracked object
by constructing the posterior probability density
function (pdf) p(xk|z1:k) where z1:k is a sequence of
measurements from k time steps. The particle filter
approach approximates the pdf with a set of pos-

sible states
{
xi
k

}Ns

i=1
, or ‘particles’, and associated

weights
{
ωi
k

}Ns

i=1
such that the posterior pdf can be

approximated as:

p (xk|z1:k) ≈
Ns∑
i=1

ωi
kδ
(
xk − xi

k

)
(3)

where δ(.) is the Dirac delta function.
The recursion element occurs in the sequential

update of the particle weights as the pdf develops
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from p(xk−1|z1:k−1) at time k -1 to p(xk|z1:k) at
time k. It can be shown [3] that:

wi
k ∝ wi

k−1

p(zk|xi
k)p(x

i
k|xi

k−1)

q(xi
k|xi

k−1, z1:k)
(4)

where q(.) is an importance density from which

samples
{
xi
k

}Ns

i=1
are drawn.

If the importance density is taken to be the tran-
sition prior p(xi

k|xi
k−1) then the update equation

reduces to:
wi

k ∝ wi
k−1p(zk|xi

k) (5)

If the proposals are re-sampled according to their
original normalized weight at k -1 then wi

k−1 is reset

to 1
Ns

, where Ns is the number of samples, and the
proportionality becomes:

wi
k ∝ p(zk|xi

k) (6)

where p(zk|xi
k) is a measurement based likelihood

function.
In histogram based particle filter trackers it is

common to assume that the distribution of his-
togram dissimilarity measures D is Gaussian. The
Gaussian measurement likelihood function has the
form:

p(zk|xi
k) ∝ exp

(
−Di

2

2σ2

)
(7)

where σ is the standard deviation of the distribution
of distance measures. The measurement noise nk is
characterized by this distribution.
Once the likelihood of the states has been deter-

mined the final estimated state can be returned as
either a weighted mean:

E [xk|z1:k] ≈
Ns∑
i=1

ω̃i
kx

i
k (8)

where w̃i
k is the normalized weight:

w̃i
k =

wi
k

Ns∑
i=1

wi
k

(9)

or as a maximum a posteriori (MAP) estimate:

xmap
k = argmax

xk

p(xk|z1:k) ≈ argmax
xk

w
(i)
k (10)

although it has been argued that this maximum
weight estimator might not be a fair approximation
to the MAP [13].

A re-sampling process ensures that particles with
high weights are preferentially reproduced and
propagated to the next recursion step at the ex-
pense of those with low weights. The process is
carried out in order to prevent the degeneration of
the particle set into one in which only a small pro-
portion of the particles end up carrying most of the
weight.

The behaviour of the particle filter is determined
by the choices of the state transition function (1),
the magnitude of its associated process noise νk,
and in the case of a Gaussian likelihood (7) the
choice of distance measure D and the likelihood
standard deviation σ.

3. Choice of Gaussian likelihood standard
deviation in published work

There has been a good range of high quality work
relating to colour and grey-scale intensity or inten-
sity gradient histogram based particle filter tracking
during the last decade. The use of a Gaussian like-
lihood measure (7) has become standard and use of
the Bhattacharyya distance [14] as the dissimilarity
measure D is common, although other measures are
used. The Bhattacharyya distance returns a value
in the range [0,1].

As the numerical value of the distribution stan-
dard deviation σ is generally taken to be a tuneable
design parameter we can expect to see a range of
reported values dependent on the choice and range
of the distance measure. Out of a large body of
work in the field we have selected some represen-
tative examples in order to make the point. A re-
cent approach [7], using the Bhattacharyya distance
measure reports using σ = 0.8 in one example and
σ = 0.6 in others. Another [6], using a multiple
feature approach and the Bhattacharyya distance,
reports using σ = 0.09 for the colour component.

Early examples of Bhattacharyya distance colour
based particle filter tracking [15, 16, 17] expressed
the likelihood Eq.(7) in the form exp(−λD2) with
λ = 20. This corresponds to a value of σ = 0.16. A
more recent example [5] uses λ = 50 to give σ = 0.1.
Lu et al. [4] use a HOG distance measure in a
Gaussian likelihood with λ = 10 to give σ = 0.22.

In a slightly different approach, [18] uses
exp(−(1− α)D2), with α = 0.6 giving σ = 1.12. It
is common, however, to see reported work in which
numerical values for the likelihood parameters are
not given [19, 20, 21, 22, 23].
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Considering the reported variation of Gaussian
likelihood parameters in the context of colour/grey-
scale histogram based tracking involving the Bhat-
tacharyya distance, and the apparently crucial
choice of the parameters as design components, it is
worthwhile re-examining the role of the likelihood
standard deviation and its relationship to the dis-
tance measure in order to get better guidance on
the choice of design values.

4. The Bhattacharyya coefficient and dis-
tance

If two n-bin histograms are represented as p =
{pu}u=1...n and q = {qu}u=1...n, and normalized

such that
n∑

u=1
pu = 1 and

n∑
u=1

qu = 1 , then the

Bhattacharyya coefficient is defined as ρ[p,q] =
n∑

u=1

√
pu

√
qu. It has a geometrical interpreta-

tion [24] as the cosine of the angle between the

n-dimensional unit vectors
(√

p1, .....,
√
pn
)T

and(√
q1, .....,

√
qn
)T

.
The Bhattacharyya distance is a dissimilarity

measure. It is defined [14] to be B =
√
1− ρ[p,q].

This formulation ensures that the distance between
two identical histograms has B = 0 and dissimilar
histograms have values 0 < B ≤ 1.
The upper limit of 1 (rather than

√
2) occurs

because the histogram bin values cannot be neg-
ative. This means that the unit vectors will have
no negative components, the maximum angle be-
tween the two unit vectors will be 90deg and hence
Bmax =

√
1− 0.

5. Choice of the likelihood standard de-
viation for particle weighting and re-
sampling

The particle filter state transition equation (1)
and its associated noise νt propagates the particle
representation of the probability density function
from the last frame into the current one.
In normal operation a proportion of the particles

will end up in the region of the target position with
the remainder spread into places that the target
might reach with changes of speed and direction.
In the ideal case this would return a set of particle
distance measures spread across the full range [0,1].
In practice, with occlusion or changes in scene illu-
mination, the distribution of particle distances can

cover less than the full range and show either a pos-
itive or negative skew. A typical particle distance
frequency distribution from real data is shown in
figure 1. The Gaussian weighting for that set, using
a likelihood standard deviation of σ = 0.2, together
with curves for σ = 0.1 and 0.3, is also shown.
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Figure 1: Gaussian weighting of the Bhattacharyya distance
measure for a typical set of 512 particles from a tracking
sequence. The standard deviation of the distribution is set
to σ = 0.2. The curves to the left and right of the central
one have standard deviations of σ = 0.1 and σ = 0.3 respec-
tively. The lower figure shows the frequency distribution of
the distances

The particle weighting has two functions: it pro-
vides values for the estimate of the object state
through the weighted mean, and it provides feed-
back for the evolution of the particle set. The
process of re-sampling with replacement from the
weighted particle set removes particles that are not
very representative of the target state and produces
multiple copies of those that are more representa-
tive. The weighting of the particle set changes the
effective size of the set as unrepresentative parti-
cles end up making diminished contributions to the
calculations at each stage. The effective particle
number can be estimated [3, 25] using:

Neff =
1

Ns∑
i=1

(w̃i
k)

2

(11)

where w̃i
k is the normalized weight of the ith parti-

cle at the kth step as defined in (9), and Ns is the
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number of particles.
In some particle filters the effective particle num-

ber is used to trigger re-sampling if Neff falls below
a given threshold. For example Doucet et al. [25]
used a threshold of Ns/3 in their early simulations.
It is common, however, for re-sampling to be imple-
mented at each iteration irrespective of the value of
Neff . Even if it is not used to trigger re-sampling
Neff can be used to give an indication of the degree
of degeneracy of the filter.
We can relate the effective particle number to

the standard deviation of the Gaussian likelihood
weighting function (see Appendix A) for the ideal
case in which the dissimilarity measures are uni-
formly spread across the full [0,1] range. We start

with wi = exp
(
− li

2

2σ2

)
where li has Ns uniformly

incremented discrete values from 0 to 1. This leads
to the normalized weight of:

wi =
2

Nsσ
√
2π

exp

(
− li

2

2σ2

)
(12)

Using this value for the weight in equation (11)
leads to

Neff =
√
πσNs (13)

for σ ≤ 0.3.
For σ = {0.1, 0.2, 0.3} we get

√
πσ =

{0.18, 0.35, 0.53}, producing Neff of approximately
one fifth, one third and one half respectively of the
particle set.
It is also useful to refer to the Bhattacharyya

coefficient and consider the angle between the tar-
get vector and vectors from the particle set. For
σ = {0.1, 0.2, 0.3} the 3σ Bhattacharyya distances
correspond approximately to angles between fea-
ture vectors of θ = {25, 50, 79}deg respectively. For
a uniform distribution of distances, using a Gaus-
sian with σ = 0.1 will result in an effective particle
set of size Neff ∼ Ns/5 focusing on feature vec-
tors within 25deg of the target vector. This looks
attractive at first sight but, in practice, distribu-
tion skew will mean that there will be many fewer
than Ns/5 contributing. Re-sampling of such a di-
minished set is likely to result in loss of diversity
amongst the particle population. We suggest that
such a value of σ is likely to make the filter have
difficulty tracking the target.
If we look at the other extreme with σ = 0.3 we

are likely to have an effective sample size greater
than Ns/2 but with significant contribution from
feature vectors that are at angles up to 80deg from

the target vector. If Ns is small then the large angle
feature vectors could have too great an undesirable
influence on the weighted mean and there is a sig-
nificant chance of the particle cloud diverging.

The argument points to the suggestion that σ =
0.2 is a compromise value. This will maintain a par-
ticle set consisting of feature vectors within 50deg of
the target vector, it will produce an effective sam-
ple size of Ns/3, and drawing from 60% of the dis-
tance axis it will be reasonably tolerant to skew
of the weight frequency distribution in the particle
set. Our experimental work, reported in section 8,
supports this choice. It is interesting to note that
Doucet et al. [25] opted for an Neff threshold of
Ns/3 to trigger re-sampling in their particle filter
simulations.

6. Distance measures other than Bhat-
tacharyya

A general class of measures for distances between
d -dimensional real valued vectors a,b, referred to
as the Lr norm, has the form [26]:

Lr(a,b) =

(
n∑

i=1

|ai − bi|r
)1/r

(14)

As we are using the normalized histograms p,q as
the feature vectors the vector components have to
be the square roots of the bin values for the vec-
tors to have unit length, hence we expect to see the
equivalent Lr norm in the form:

Lr(p,q) =

(
n∑

i=1

|√pi −
√
qi|r
)1/r

(15)

The Matusita distance between two probability dis-
tributions p = (p1, .., pn)

T and q = (q1, .., qn)
T is

defined as [27]

M(p,q) =

(
n∑

i=1

(
√
pi −

√
qi)

2

)1/2

(16)

and hence can be seen as an L2 norm.
The Matusita distance is directly related to the

Bhattacharyya distance. The relationship is dis-
cussed in [24] although the authors state the Ma-
tusita distance as the square of the original defi-
nition in [27]. We work with the original defini-
tion. By expanding the square under the summa-
tion in (16) and gathering the terms it can be shown

5



that B = M/
√
2. The link between the Bhat-

tacharyya coefficient and the Matusita distance can
be seen in terms of the triangle cosine rule: the
Bhattacharyya coefficient is the cosine of the an-
gle between the vectors, the Matusita distance is
the magnitude of the difference between the vec-
tors, the Bhattacharyya distance is then a simple
fraction of that distance.

We can use the Matusita distance to bring out
a relationship between the Bhattacharyya distance,
the L1 norm, and the less often used histogram in-
tersection distance. Histogram intersection is de-
fined as [28]:

∩ (p,q) =

n∑
u=1

min(pu, qu)

n∑
u=1

qu

(17)

The measure calculates the commonality (the in-
tersection) between the two histograms p,q. The
measure is normalized by the number of pixels in
the target histogram in order to obtain a fractional
match value between 0 and 1. In our case of normal-
ized histograms the denominator in (17) is unity.
For a perfect match between normalized histograms
∩ (p,q) = 1. To get a dissimilarity measure we take
the complement of the intersection to get the his-
togram intersection distance H :

H = 1− ∩ (p,q) (18)

It can be shown [28] that for normalized histograms
the intersection distance H is linked to an L1 type
distance formed using the simple sum of absolute
differences of the bin values:

1− ∩(p,q) = 1
2

n∑
u=1

|pu − qu| = 1
2L1 (19)

Intersection has been used, for example, in the
context of logo identification in video sequences
[29], spatial histograms for region based track-
ing [30], via the L1 form in ‘Bag-of-Features’
face matching [31] and in multi-segment histogram
matching for particle filter tracking of crossing tar-
gets [32].

We link the Bhattacharyya and histogram inter-
section distances by comparing the square of the
Matusita distance and this binwise absolute differ-
ence form of the intersection:

M2 =

n∑
u=1

(
√
pu −√

qu)
2

=
n∑

u=1

(
√
pu −√

qu) (
√
pu −√

qu) (20)

L1 =
n∑

u=1

|pu − qu| =
n∑

u=1

|√pu
2 −√

qu
2|

=
n∑

u=1

| (√pu −√
qu) | (

√
pu +

√
qu) (21)

We compare equations (20) and (21). For a
given set of histogram bin differences as indicated
by a single Bhattacharyya distance associated with(√

p−√
q
)
, there will be a range of L1 values de-

termined by alternative combinations of component
bin values (0 ≤ p ≤ 1, 0 ≤ q ≤ 1), that give rise to
a set of given differences. The alternative combina-
tions supply the factor

(√
p+

√
q
)
in (21)

Figure 2 shows a comparison of the calcu-
lated histogram intersection distance measure (H )
against the Bhattacharyya distance (B) for a set
of 512 particles from a typical particle filter step.
It can be seen that the scatter of the H measures
about the line H = B is reasonably compact. An
understanding of the form of the scatter can be
found in Appendix B.
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Figure 2: Illustration of the scatter of histogram intersection
distance values plotted against the Bhattacharyya distance
for a typical set of particles

Figure 3 shows the effect of using the H measure
with a Gaussian likelihood function with σ = 0.2.
The Bhattacharyya distance is plotted on the hori-
zontal axis and the weight associated with the cor-
responding H distance is plotted on the vertical
axis.
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Figure 3: Illustration of the effect of using the H distance
with a Gaussian likelihood function, σ = 0.2.

It can be seen that the degree of scatter shown
in figure 2 translates to a scatter about the chosen
Gaussian and is within the limits associated with
σ = 0.1 and σ = 0.3.
This analysis suggests that if we take into ac-

count statistical averaging associated with using a
weighted mean, or pdf mode finding based upon
weighted particle densities, the use of the compu-
tationally simpler histogram intersection distance
might produce outcomes that are not much differ-
ent from those obtained using the Bhattacharyya
distance.
The χ2 measure has also been used as a distance

measure to compare histograms [8, 33]. For our
histograms p,q the measure would be [34]:

χ2(p,q) =
n∑

i=1

(pi − qi)
2

pi + qi
(22)

We can analyze the relationship between this
measure and the Bhattacharyya distance using an
approach like that for the histogram intersection
distance. The numerator in (22) expands in a way
similar to that in (21) except that the factors are
squared:

χ2(p,q) =

n∑
i=1

(√
pi −

√
qi
)2 (√

pi +
√
qi
)2

pi + qi
(23)

The first factor in the numerator is similar to
the Matusita component of the sum. By combining
values of 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1 it can be shown

that the factor
(√

p+
√
q
)2

/ (p+ q) varies between
1 and 2 with most of the values at the upper end of
that range. The argument is presented in Appendix
C. The factor results in values of χ2 being greater

than the corresponding Bhattacharyya values and
having a scatter similar to that in the intersection
case. The effect, using experimental particle data,
is shown in figure 4.
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Figure 4: Comparison between χ2 distances corresponding
to Bhattacharyya distances for a typical set of particles from
a tracking sequence
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Figure 5: Scattered distribution of χ2 distance weightings
with a Gaussian likelihood, using σ = 0.35

The curvature associated with the plot in figure 4
is due to the fact that χ2 is linked to the square of
the Matusita distance in (23). An example plot of
χ2 vs B2 is given in figure C.12 in Appendix C.
Experiment suggests that the functional relation-
ship between the χ2 values and the Bhattacharyya
values can be approximated by χ2 = 3B2.

If χ2 is substituted for B2 in the Gaussian like-
lihood then a standard deviation of σ = 0.35 ≈√
3 × 0.2 should produce a distribution similar to

one with a Bhattacharyya distance and standard
deviation of σ = 0.2. A plot of such a χ2 likelihood
weighting is shown in figure 5. The Bhattacharyya
distances are plotted as abscissae and the weights
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produced using χ2 with σ = 0.35 are plotted as or-
dinates. The scatter is less than in the histogram in-
tersection distance case but the computational de-
mand is a little greater.
We can conclude from this analysis that for the

purposes of estimation there is little to gain in
choosing between the Bhattacharyya, Matusita and
χ2 distances. The first two differ only by a sim-
ple numerical factor, the first and the third differ
approximately by such a factor. Their differences
in the context of particle filter calculations can be
compensated for by adjusting the value of the stan-
dard deviation in the likelihood function. The his-
togram intersection distance, however, offers poten-
tial computational economy through avoidance of
the need to extract square roots. It does produce
a scatter of likelihood weight values but they are
generally within a range corresponding to the use
of Bhattacharyya distances and a Gaussian likeli-
hood with standard deviations between the useful
limits of σ = 0.1 to σ = 0.3. As this standard
deviation range would produce an acceptable re-
weighting, dependent upon the prior spread of the
distance values, we might expect that given suf-
ficient particles distributed reasonably symmetri-
cally around the target location a position estimate
would be returned not far from one calculated using
the Bhattacharyya distance with a standard devi-
ation of σ = 0.2. The behaviour of the histogram
intersection distance suggests that it might produce
particle filter tracking that is not much different
from that produced with the Bhattacharyya dis-
tance.

7. Likelihood functions other than Gaussian

The basic role of the likelihood function is to
give preferential weight to proposed states that are
close to the target state and to suppress propos-
als that are far from the target state. We suggest
that the choice of a Gaussian likelihood function
is due to the common assumption of normally dis-
tributed measurement error. It is of interest to note
that the appropriateness of the underlying Gaus-
sian error model has been questioned by some au-
thors [35, 36, 37] who point out that a heavier tailed
Cauchy distribution might be more appropriate in
some situations. An example of the use of a Cauchy
distribution in the context of particle filter tracking
is given in [38].
Some particle filter applications approximate the

behaviour of such a distribution by adding a con-

stant tail to the likelihood function [39]. The role
of the ‘tail’ is to maintain the distribution through
re-sampling in the event that the target object is
not observed in an image. In such cases the dis-
tance measure would be large and the correspond-
ing weights would be near zero. Allowing a small
but non-zero weight for large distances ensures sur-
vival of the particle set at the re-sampling stage.

Whilst it might indeed be the case that measure-
ment error is best described by either a Gaussian
or a Cauchy distribution, we propose that there is
nothing particularly special about the form of the
particle filter likelihood function other than it must
maintain the positive evolution of the particle set
by preferentially selecting low distance vectors and
suppressing vectors with a large distance.
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Figure 6: Weighting a Bhattacharyya distance function using
a triangular likelihood given by w = −2B + 1 for B < 0.5,
w = 0.01 for B ≥ 0.5

In practice a Gaussian weighting is likely to be
implemented via a look-up table. In order to illus-
trate the non-critical form of the likelihood function
we propose that a simple triangular function of the
form w = −2B + 1 might be used as a selection
device. An example of such a triangular likelihood
with a constant tail is shown in figure 6. In this
case the function drops to zero at B = 0.5 and the
tail returns the weight w = 0.01 for B ≥ 0.5.

When the histogram intersection distance is used
in place of the Bhattacharyya distance the associ-
ated scatter re-distributes the weights in a similar
way to that seen in figure 3. The effect is shown in
figure 7. The combination of histogram intersection
distance and the simple triangular likelihood func-
tion produces a scatter of weightings that are not
much different to those of the Gaussian/intersection
combination seen in figure 3.
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Figure 7: Weighting a histogram intersection distance func-
tion using a triangular likelihood given by w = −2H + 1 for
H < 0.5, w = 0.01 for H ≥ 0.5. Bhattacharyya distance is
plotted on the horizontal axis but the weight is calculated
using the H value corresponding to that Bhattacharyya dis-
tance.

8. Experiments

We explored the proposal that the analytical
form of the likelihood function is not critical in the
context of grey scale histogram based particle filter
tracking by comparing tracks produced using the
standard Bhattacharyya distance/Gaussian likeli-
hood combination against ones produced using the
simple histogram intersection distance/triangular
likelihood combination. We chose to use the his-
togram intersection distance rather than χ2 be-
cause whilst the scatter of distance measures ap-
peared to have similar consequences for each of the
approaches the intersection distance was computa-
tionally more attractive.
Targets were tracked using an elementary SIR

particle filter [3]. Static background elements were
suppressed by the use of a temporal frame difference
based mask. We worked with four image sequences
each of which presented its own challenges to the
tracker.
The first image sequence consisted of an overhead

view of shoppers walking through a mall. The ap-
pearance of the shoppers changes significantly as
they move from the bottom of the scene to the top
due to a mixture of object deformability, viewing
angle and varying lighting conditions.
The second sequence is a daytime outdoor

oblique view of pedestrians. The pedestrians of-
ten occlude each other. In the example shown the
tracked pedestrian passes partly behind two fore-
ground pedestrians having a different grey scale sig-
nature and then completely behind one with a sim-

ilar signature.
The third was an outdoor view of traffic taken

from the AVSS 2007 i-LIDS Vehicle Challenge data
set [40]. In this sequence there is some slight camera
movement and illumination changes.

The fourth sequence is taken from the PETS 2006
data set [41]. It is an indoor scene and the experi-
ment tracks a pedestrian passing close to others of
similar appearance.

In each of the sequences a selected object
was tracked 100 times using the Gaussian like-
lihood/Bhattacharyya distance combination and
then 100 times using the alternative combination.
The frame rates were set to 5fps. The mean
and variance of the 100 measurements of each
track point position was determined for each com-
bination. The mean track from the first like-
lihood/distance combination was then compared
with the second. Investigations were carried out
using smaller and larger statistical sample sizes (be-
tween 5 and 1000 track sequences) but the outcomes
were only significantly different, as expected, for
small sample sizes (e.g. < 10 measured tracks).
The behaviour of most of the targets in each se-
quence was investigated and the outcomes for the
ones reported here were typical of all.

The target starting position was manually initial-
ized in order to ensure comparability of the result-
ing tracks. A single rectangular region with dimen-
sions half those of the bounding box of the target
object was tracked using a normalized 8-bin grey-
scale histogram. For example, the tracking rectan-
gle seen in figure 8(a) had dimensions 17×17 pixels.

The histograms were extracted using the integral
histogram method [42].

A first order state transition step was used with
the state vector x = [x ẋ y ẏ]T. The number of
particles used was Ns = 512.

In the cases where the view was at an oblique
angle the size of the rectangle was adjusted using a
linear function of the target position in the image
in order to retain its relative size in proportion to
the size of the target.

The standard deviation of the additive Gaussian
process noise ( νt in eq. (1)) was set to be 0.2 × the
length of the side of the tracking rectangle for both
the spatial and velocity components of the state
vector. This choice produced a prior particle spread
appropriate to the typical velocities of the targets
in the sequence.

The template histogram q was updated at each
frame using qt = (1−α)qt−1+αp̄ where p̄ was the
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(a) Overhead
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(b) Pedestrians
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(c) i-LIDS
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(d) PETS

Figure 8: Composite images and ground truth to tracker bounding box overlap data for the sequences. Blue (·) points -
Gaussian likelihood\Bhattacharyya distance, red (+) points - triangular likelihood\histogram intersection distance
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histogram extracted at the current target position.
The value of α was set at 0.2 for all sequences.

The measurement noise, i.e. the standard devia-
tion of the likelihood Gaussian function, was kept
constant at σ = 0.2. The likelihood distributions
were given a 3σ ‘tail’ value of 0.01 for all likelihood
values that were initially below that value. The pos-
terior particle set was updated at each step using
standard stratified re-sampling.

Track smoothing was carried out by adjusting
the position components of xt−1 and xt−2 at each
time step t by a recursive procedure that con-
sisted of deriving and averaging velocities from
measured positions at t-3 to t to produce an ad-
justed x̂t−2 and x̂t−1. The resulting comparison
of the tracking approaches can be seen in figure 8.
Both the Bhattacharyya/Gaussian and intersection
distance/triangular tracks are shown for each se-
quence. Snapshots of the targets together with oc-
cluding objects at periodic track points have been
overlaid so that the tracks can be seen in context.

The correspondence of the tracks with the geo-
metrical ground truth of the tracked objects was
investigated. For each sequence the ground truth
was determined manually in each frame as the cen-
troid of the bounding box of the objects. The
tracks for each of the two approaches were com-
pared to the ground truth using the bounding box
spatial overlap [43], defined as the overlapping area
A(GTk, STk) between the ground truth bounding
box GT and the tracking system bounding box ST
in frame k :

A(GTk, STk) =
Area(GTk ∩ STk)

Area(GTk ∪ STk)
(24)

This measure returns a value of 1 when the track
corresponds exactly with the ground truth and 0
when bounding boxes do not overlap at all. The
overlaps for each approach are plotted beneath the
relevant track images in figure 8. It can be seen that
in general the overlap is between 0.6 and 1.0 giv-
ing sufficient correspondence for tracking in surveil-
lance contexts. It can also be seen that the track
points associated with each of the two approaches
are closer to each other than to the geometrical
ground truth. It is to be expected that mean po-
sition of the tracked grey scale feature would not
necessarily correspond to the geometrical centroid
of the tracked object due to a combination of ob-
ject deformation, perspective and shading effects.
The closeness of the overlap for the two tracking ap-

proaches indicates that there is no significant differ-
ence between them in terms of the tracks returned.

9. Computational economy

The differences in computational economy be-
tween the approaches described above come down

to the calculation of w = exp
(
− D2

2σ2

)
with D2 =

1 −
n∑
1

√
pq in the Bhattacharyya case, D2 =

8∑
1

(√
p−√

q
)2

in the Matusita case; or a calcula-

tion of w = −2D + 1 with D = 0.5
n∑
1
|p− q| in the

histogram intersection case.
Irrespective of the particular hardware architec-

ture involved, it is likely that the number of pro-
cessor operations involved in the calculation of the
exponential term is likely to be greater than in the
linear case: the linear calculation can be carried out
with one left shift and an addition. We compared
the impact of the distance measuresD using a Chip-
wrights CW5521 fixed point development simulator
running at 300MHz [9] to carry out each distance
calculation for a fixed number of times. For 10000 8
bin histogram calculations the times were 400ms for
the Matusita calculation, 153 ms for Bhattacharyya
and 40ms for the intersection distance. Similarly,
10000 32 bin calculations took 1780, 614 and 166ms
respectively. The histogram intersection distance
approach ran between 3 and 4 times faster than
the Bhattacharyya one, and 10 times faster than
the Matusita one. The combination of this result
with the expectation of fewer processor operations
for the linear calculation compared to the Gaussian
one leads us to suggest a potential economy of time
and resources (e.g. processing power, memory re-
quired for a fast look-up table implementation of
the Gaussian likelihood function etc.) if the sim-
pler combination is used. Such economy is valuable
in the context of real-time embedded processing in
a multitasking environment.

10. Discussion

The overall aim was to re-examine the compo-
nents of a basic particle filter with the aim of finding
a suitable low complexity approach that would work
adequately with grey scale video. The findings of
Khalid et al.[12] might be interpreted as suggesting
that the intensity information in grey scale images
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is not a sufficient feature for Bhattacharyya dis-
tance based tracking; we have produced a reasoned
demonstration that adequate grey scale tracking
with a particle filter can be achieved. We agree
that the filter does not track the minimum mean-
squared difference position of the target object, but
it does track the grey scale signature well enough
for surveillance type applications.
A review of distance measures and their inter-

relationships satisfied us that the Bhattacharyya
distance and the related Matusita distance had a
clear interpretation in terms of the magnitude of
the difference between histogram based vectors in
a Euclidean feature space. In comparison to these
measures others, like the histogram intersection dis-
tance and χ2, had a less clear fundamental interpre-
tation in this context and produced a scattering of
distances in comparison to the Bhattacharyya dis-
tances.
Following our understanding of effects of choos-

ing a particular Gaussian standard deviation and
a normalized distance measure we proposed that
the use of the potentially computationally advan-
tageous histogram intersection distance, combined
with a triangular likelihood function, might pro-
duce results comparable to those obtained using a
Bhattacharyya measure/Gaussian likelihood com-
bination. The application of our proposal was sup-
ported by our experimental findings. In general the
mean track points for the two approaches stayed
well within the boundaries of the objects being
tracked. It is true that they deviated from the ge-
ometrical centroids of the objects but the results
were still within acceptable limits for the purpose.
A comparison of the worst case differences, in the
overhead sequence tracks, is shown in figure 9
We argued that a well conditioned Gaussian like-

lihood particle filter should have a process stage
that returns distance values across the full range
[0,1]. For such a case we can use equation (13) to re-
late the effective particle number Neff to the Gaus-
sian standard deviation. We interpret the broad
range of likelihood standard deviations, discussed
in section 3, as indicating choices of process noise
parameters that delivered ranges of similarity dis-
tance appropriate for particle re-weighting and re-
sampling in those cases. We suggest, however, that
a Gaussian likelihood particle filter being operated
with normalized distance measures and values of
σ < 0.1 is likely to have a process stage consis-
tently returning a high proportion of distances in
the lower end of the [0,1] range in order to main-

Figure 9: Illustrating the track differences for Gaus-
sian/Bhattacharyya (left) and triangular/histogram inter-
section (right)

tain a reasonable experimental value of Neff . This
will not be spreading the prior particles sufficiently
to accommodate extreme behaviour of the target.
A particle filter being operated with normalized dis-
tances and values of σ > 0.3 might be returning dis-
tance measures across the full range, with > 50%
of the particles contributing to Neff , but will al-
low undue influence from histogram feature vectors
that are very different from the target vector. It is
likely that it would end up spreading the particles
too widely.

11. Conclusions and further work

This work was focused towards producing ade-
quate tracking of objects using a single feature in
a computational resource constrained environment.
We have shown that particle filter approach ade-
quate for surveillance purposes can be carried out
using grey scale video. We examined the choice of
feature distance measure and particle filter likeli-
hood functions to see if mathematically simple ap-
proaches would be adequate for the task. Our anal-
ysis of the Bhattacharyya, Matusita and χ2 dis-
tances showed that they can be expressed as simple
numerical multiples of each other and there is no
fundamental reason to prefer one over the others in
this context.

With respect to the choice of likelihood function
and parameters, a correctly operating particle filter
process stage would place particles at the expected
target positions in the next frame but it should also
place a proportion of the prior in low probability re-
gions in order to respond to extreme behaviour of
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the target. If the distance measure for such a dis-
tribution of particles is designed to return values
spread across the full range [0,1] then for likelihood
based resampling a function behaving like a Gaus-
sian with a standard deviation of σ ∼ 0.2 and a tail
at the 3σ point should deliver adequate tracking.
We have argued that a triangular function with a
constant tail is adequate for the task.

The closeness of the experimental results ob-
tained with the Bhattacharyya distance/Gaussian
combination to those obtained with the histogram
intersection distance/triangular likelihood combi-
nation suggests that the forms of the likelihood
function and distance measure are not critical in
the tracking situations examined. The simpler com-
bination, however, offers potential computational
economy in systems where resources might be con-
strained.

We regard this as a first step in reducing the num-
ber of tuneable elements in a particle filter for use
in the stated context. Directions for further devel-
opment include extending the analysis to the con-
trol of variables in polychromatic and multi-feature
tracking. Colour histograms are often constructed
as a concatenation of bins for each component and
hence become vectors for use with a Bhattacharyya
distance, the arguments above should still apply
in such cases. Such an approach though does not
model dependencies between different colour com-
ponents represented in real scenes. It might be
therefore of value to calculate separately the dis-
similarity for each colour component and model ex-
plicitly the interdependence between them using a
multi-variable likelihood function. It might be valu-
able to see if such approach would improve tracker
performance operated on the polychromatic data.
In both the colour case and that of multi-feature
tracking (e.g.using combinations of intensity his-
tograms, edge and/or shape information etc.) it
would be of interest to explore the degree and im-
pact of the resultant likelihood scatter associated
with the use of the histogram intersection distance
measure with triangular approximation likelihood
function applied to each component.
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Appendix A. Relating effective sample size
to the standard deviation of
the Gaussian weighting func-
tion

We are using weights of wi
k = exp

(
− li

2

2σ2

)
where

l has Ns discrete values in the range [0,1]. We con-
sider σ ≤ 0.3 so that we can assume that the area
under the Gaussian in the range [0,1] is approxi-
mately equal to the area in the range [0,∞].

The area under a Gaussian curve is given by:∫ +∞

−∞
exp

(
−l2

2σ2

)
dl = σ

√
2π (A.1)

which is recognizable as the standard normalizing
coefficient for a Gaussian distribution.

For the likelihood weighting we are only inter-
ested in the positive half of a Gaussian curve with
area given by:∫ +∞

0

exp

(
−l2

2σ2

)
dl =

σ
√
2π

2
(A.2)

In the case of the discrete distribution of Gaus-
sian weights an element of area dA is given by:

dAi = wi
k · 1

Ns
(A.3)

In the limit of large Ns, the area under the weight
curve is given by:

Ns∑
i=1

dAi =

Ns∑
i=1

wi
k · 1

Ns
=

σ
√
2π

2
(A.4)

so that:
Ns∑
i=1

wi
k =

Nsσ
√
2π

2
(A.5)

The normalized weights are then given by:

w̃i
k =

2

Nsσ
√
2π

exp

(
− li

2

2σ2

)
(A.6)

The particle filter effective weight is given by:

Neff =
1

Ns∑
i=1

(
w̃i

k

)2 (A.7)
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We can write the denominator of (A.7) as:

Ns∑
i=1

(
w̃i

k

)2
=

4

Ns
2σ22π

Ns∑
i=1

(
wi

k

)2
If wi

k = exp
(
− li

2

2σ2

)
then

(
wi

k

)2
= exp

(
− li

2

σ2

)
Equating the area under the squared weight curve
with that under the half Gaussian we get:∫ +∞

0

exp

(
−l2

σ2

)
dl =

σ
√
π

2
=

Ns∑
i=1

(
wi

k

)2 · 1

Ns

so that:

Nsσ
√
π

2
=

Ns∑
i=1

(
wi

k

)2
(A.8)

and the denominator of equation (A.7) becomes:

Ns∑
i=1

(
w̃i

k

)2
=

4

Ns
2σ22π

· Nsσ
√
π

2

leading to:
Neff =

√
πσNs (A.9)

Appendix B. Understanding the histogram
intersection distance scatter
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Figure B.10: Plot of histogram intersection distance com-
ponents against the corresponding Bhattacharyya distance
components for 512 x 8 {p, q} bin pairs.

Figure B.10 shows the relationship between the
histogram intersection type component plotted
against the corresponding Bhattacharyya type com-
ponent as described by equations (B.1) and (B.2)
for 512 x 8 {p, q} pairs taken from an experimental
set of 512 normalized candidate 8-bin histograms p
and the single normalized target 8-bin histogram q.

2B2 = M2 =
8∑

u=1

(
√
pu −√

qu) (
√
pu −√

qu)

(B.1)

1− p ∩ q =
1

2

8∑
u=1

|pu − qu|

=
1

2

8∑
u=1

| (√pu −√
qu) | (

√
pu +

√
qu)

(B.2)

The 45deg straight line in figure B.10 corresponds
to points in the plot where either p = 0 or q = 0.
The upper bounding curve corresponds to points
where either p = 1 or q = 1. In the case where
either of the bin values is unity the functional re-
lationship for the curve is given by y = 2

√
x − x.

Points between the upper and lower boundaries cor-
respond to 0 < p < 1, 0 < q < 1. The lower
left hand corner of the graph corresponds to points
where the bin values {p, q} are similar. The up-
per right hand corner of the graph corresponds to
points where the bin values {p, q} are very different.
There are eight curves in figure B.10 corresponding
to the eight bin values q associated with the target
histogram. The points along each curve represent
the 512 p values linked to each q.

The Bhattacharyya distance calculation involves
summing eight abscissa values from figure B.10.
The histogram intersection distance involves sum-
ming from the figure eight ordinate values corre-
sponding to those abscissa values. However, for
each abscissa there can be a number of ordinate
values where the vertical line associated with that
abscissa intersects with the curves. This means that
each Bhattacharyya distance can be associated with
a number of histogram intersection distances hence
we can expect to see a scatter if one distance is
plotted against the other.

The relatively compact form of the scatter in fig-
ure 2 in section 6 can be understood by recognizing
that its extent is limited by bounding 45deg line and
the upper curve in figure B.10. Also, each set of p
and q values must sum to unity so most of the val-
ues tend to be concentrated in the lower left hand
corner of that figure. These limitations mean that
the resulting scatter of the points in figure 2 is not
large. If the sums of eight ordinate values and eight
abscissa values taken from figure B.10 are plotted
against each other in figure 2 then the point will be
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placed above the 45deg line. The multiplication by
1/2 in the histogram intersection distance displaces
the sum of points vertically downwards in that fig-
ure, and the square root in the Bhattacharyya dis-
tance calculation shifts the sums parallel to the x-
axis towards the right. The overall result, as seen
in figure 2, is the observed scattered distribution of
the points around the 45deg diagonal.

Appendix C. The relationship between χ2

and the Matusita distance

The χ2 probability density function describes the
probability of occurrence of a given value of the
sum:

Q =
n∑

u=1

xu
2 (C.1)

for n independent values of x ∼ N (0, 1). It is used
in testing the goodness of fit of experimental data
to expectation. That kind of testing is based upon
the recognition that for frequency binned data the
distribution of

n∑
u=1

(Ou − Eu)
2

Eu
(C.2)

where Ou and Eu represent observed and expected
frequencies respectively is approximated by a χ2

distribution.
For matched pairs of observed and expected his-

togram bin values pu, qu it can be shown [34] that
the distribution of

X2 =

n∑
u=1

(pu − qu)
2

pu + qu
(C.3)

is also approximated by a χ2 distribution. This
quantity X2 is generally labelled as χ2.
Whilst this statistic is used for signifi-

cance/goodness of fit testing its usefulness as
a distance measure can be questioned. Aherne
et al. [24] point out the non-linear nature of χ2

type distances. They replace p and q in (C.3) by√
p and

√
q respectively and apply a first order

Taylor approximation to the denominator to show
that for small distances the χ2 distance is twice
their version of the Matusita distance (which is the
actually the square of Matusita’s original distance).

We can bring out a more direct link between the
χ2 measure and the Matusita distance, and hence
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Figure C.12: Plot of χ2 vs the square of the Bhattacharyya
distance for 512 typical particles, indicating the scatter as-
sociated with the multiplicative factor. Note: the Bhat-
tacharyya distances range from 0 to ∼ 0.8 hence the max-
imum of the squared distances is ∼ 0.6. The graph shows
that the relationship between between the χ2 and the B2

values can be approximated by χ2 = 3B2

the Bhattacharyya distance, in order to understand
the detail of the observed scatter between the dis-
tance measures.

In equation (23) it was shown that χ2 differs from

M2 by a factor
(√

p+
√
q
)2

/ (p+ q) multiplying

each Matusita component
(√

p−√
q
)2
. Expansion

of the numerator of the factor gives:(√
p+

√
q
)2

p+ q
=

p+ q + 2
√
p
√
q

p+ q

= 1 +
2
√
p
√
q

p+ q

In a normalized histogram the values of p or q are
limited to the range [0,1]. If p = q = 1 or if p ≈
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q ≈ 0 then the component
2
√
p
√
q

p+q = 1 so that(√
p+

√
q
)2

p+ q
= 2

If one of p or q = 0 then
2
√
p
√
q

p+q = 0 so that(√
p+

√
q
)2

p+ q
= 1

Other combinations of p and q return values of the
factor between 1 and 2. A typical frequency distri-
bution of the factor for 512 × 8 {p, q} pairs from
a typical step of a particle filter track is shown in
figure C.11. It can be seen that the factor varies
between 1 and 2 with a tendency for most of the
values to be at the upper end of the range. The
relatively large number of entries in the lowest bin
reflects the frequency of occurrence of one of p or
q = 0. For a given set of {p, q} pairs in a histogram
Matusita/Bhattacharyya distance calculation a cor-
responding χ2 distance is going to have different
value due to the bin by bin contributions of the
multiplicative factors. A given p, q difference can
correspond to a range of p, q sums. We can expect
to see a scatter of χ2 distances for a given set of Ma-
tusita/Bhattacharyya distances. A typical scatter
between the χ2 distance and the square of the Bhat-
tacharyya distance, using real particle filter data, is
shown in figure C.12. The graph suggests that the
relationship between between the χ2 and the B2

values can be approximated by χ2 = 3B2
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Abstract 
 

We present an approach to localized object detection that is not dependent upon 

background image construction or object modeling. It is designed to work through camera 

embedded software using spare processing capacity in a visual signal processor. It uses a 

localized temporal difference change detector and a particle filter type likelihood to detect 

possible trackable objects, and to find a point within a detected object at which a particle 

filter tracker might be initialized. 
 

Keywords: object modelling, particle filter, tracker initialization   
 

1. Introduction 
 

Moving object detection and tracking is central to a range of security and business 

intelligence surveillance video applications. The information derived from the processes can 

be used to alert security camera monitoring staff to potential trespass or rule violation in 

sensitive areas. In the case of business intelligence the information can be used to gather 

positive statistical information relating to customer behaviour. 

The approach described in this paper is one of a range of analytics components being 

developed for use with the Chipwrights range of visual signal processors(VSPs) [1] as camera 

embedded software to provide low and intermediate level data for subsequent user analysis 

and interpretation. The VSPs have a primary role of dealing with image capture, intensity 

correction, compression, camera multiplexing etc., but there is spare processing capacity 

available for analytics tasks. The component that we describe is a computationally economic 

method of object detection for counting and possible tracker initialization. 

Recent developments, for example [2,3,4], integrate initialization into the overall 

management of the trackers. They draw upon aspects such as 3D colour representations, 

spatiotemporal pixel homogeneity, optical flow etc. in order to identify objects within the 

images. Typically tracker initialization is carried out when detected objects cannot be 
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accounted for by existing tracked targets yet satisfy criteria relating to size, shape, visibility, 

non-occlusion etc. But sophisticated approaches like those require computational 

commitments and feature information that are not available in our case.  

We aim for grey scale image processing as artificial illumination such as fluorescent and 

sodium lighting can result in what is essentially monochrome footage. To accommodate both 

the multitasking requirements of the VSP and multiple object tracking we aim to process 5 

frames per second(fps). 

Some recent developments contain aspects that are closer to our requirements. For 

example Girisha and Murali [5] describe a method for segmenting motion objects from 

background that is based upon temporal frame differencing. They look at the correlation 

between pixel values at a given location over three sequential frames in order to determine if 

they represent background or belong to a foreground object. Ko et al.[6] describe a 

segmentation technique in which the background at each pixel location is represented by a 

histogram of values in the region surrounding that location. Foreground is detected using a 

thresholded Bhattacharyya distance between the current histogram at the pixel location and 

that of the temporally recursive updated background distribution. 

We have avoided supervised classification approaches because of their likely demands on 

the processing capacity of the single VSP. In addition, our preference is for a generalized 

potential target detector. We avoid full frame background modeling and use temporal frame 

differencing to trigger our detector. As the process is not blob based we avoid difficulties 

associated with morphological processing.  

We track objects using a grey scale histogram based particle filter and use the integral 

histogram approach [7] in order to extract multiple histograms efficiently. Our histogram 

based detector uses the same resources as the particle filters used for subsequent tracking 

hence keeping overall computation costs low. Rather than searching the whole image for 

tracker initiation at each frame we focus on expected target entry locations. 
 

2. Method 
 

2.1. Event trigger 
 

The detector, which we refer to as a ‘pad’, covers an image region with dimensions half 

that of the bounding box of the expected target objects. Pads can be placed singly at 

appropriate places in an image or can be placed as arrays to form a tripwire type detection. 

Typical pad placement can be seen in Figure 1. The event trigger is based upon the absolute 

differences between pixel values in the current frame and the corresponding ones in the 

preceding frame. With a static camera the differences are generally small in the absence of 

objects and significant when an object moves in the pad region. 

The first step in the process is the construction of the thresholded pad temporal difference 

image Dt. 

   1( , ) ( , ) ( , ) ( ,    )t t t Dx y x y x y x y    D P P P      (1) 

 

where Pt is the pad image at time t and D is a pixel difference threshold. A typical Dt  is 

shown in Figure 1(c). With the low frame rate the pixel value changes from frame to frame 

can be significant.  
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The mean difference ˆ
td  across the pad is calculated: 

 

            
,

1ˆ ( , )t t

x y

d x y
N 

 
P

D        (2) 

 

where N is the number of pixels in the pad image. A trigger occurs when ˆ
td  rises through a 

mean differences threshold D and the mean differences are increasing: 

 

i.e.       1
ˆ ˆ ˆ( ) 0t d t td d d            (3) 

 

A range of alternative trigger conditions are possible, the essence is to detect change in 

the pad difference image. 

The video sequence shown in the figure is from the AVSS 2007 i-LIDS Challenge dataset 

[8]. The images were downsized by a factor of 2 and we took every 5
th
 frame to simulate the 

target 5fps rate. 
 

2.2. Extracting object information 
 

In the absence of a trigger we make a normalized 8 bin ‘probably background’ grey scale 

histogram t

Bq  of the pad image at time t. An integral histogram of the whole image is made at 
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Figure 1. (a) pads 1 and 2 in frame  at (t-1)  (b) pads 1 and 2 in frame  at (t) 

(c) tD , pad(1) temporal difference mask  (d) tM , difference masked pad(1) 
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each frame, to be used for the particle filter tracking, so this background histogram can be 

extracted without much extra computation. The histogram is used to recursively update a time 

averaged ‘probably background’ histogram t

Bq : 

    1(1 )t t t

B B B   q q q         (4) 

 

where  has a value typically of the order 0.2. 

When a trigger condition is met we make a histogram t
p  of the pad image. This contains 

information about both background and object. We use this together with t

Bq  to make an 

‘indicative object’ proposal histogram t

oq .  The first step is to construct a difference 

histogram  t

dq  by subtracting the averaged ‘probably background’ histogram from the current 

pad histogram: 

 

    t t t

d B q p q         (5) 

 

Negative bin values in the difference histogram indicate pixel value ranges that are more 

representative of the background rather than the foreground. Figures 2(a)-(c) show a set of 

typical histograms associated with this stage of the process. 

Next, a difference masked pad image pM  (Figure 1(d)) is made by pixelwise 

multiplication of the pad thresholded temporal difference image with the pad image i.e. 

 

     ( , ) ( , )· ( , )   ( , )p t tx y x y x y x y  M D P P      (6) 

 

The masked image will contain pixels associated with the object, shadows, ghosts, and 

zero values associated with the static region. The masked image is grey level sliced using the 

bin boundaries of the n = 8 bin histogram to produce a binary pad image u

pB  for each slice u: 

 

     ( , ) ( ( ( , )) )   ( , ) ,    1,...,u

p px y b x y u x y u n    B M P     (7) 

 

where ( ( , ))pb x yM  is a function that compares the grey scale value ( , )p x yM  against the bin 

boundaries and returns the bin number associated with it;   is the Dirac delta function. The 

lower boundary of the first bin is set to 1 rather than 0 out of the range [0, 255]. This removes 

the mask static pixel contribution. The bins of the proposal histogram t

oq  are set to be the 

sums of the corresponding binary slice if the associated difference histogram bin t

dq  is 

positive, otherwise they are set to zero: 

        ,

( , ) if  ( ) 0
( )

0 otherwise

 

u t

p d
t

x y
o

x y u
u 

 


 



P

B q
q       (8) 

 

The ‘indicative object’ proposal histogram is then normalized: 
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Figure 2. Histograms: (a) averaged probably background t

Bq , (b) pad image t
p , 

(c) differences t t t

d b q p q , (d) proposal t

oq ,  (e) tracking histogram t

oq  extracted 

at the detect point 

 
The proposal histogram, shown in Figure 2(d), indicates the grey scale values which are 

more characteristic of the part of the object entering the pad region than the background. We 

use this proposal histogram and the centre of gravity of the pad pixelwise difference image as 

the starting points of a search for a more representative histogram of the incoming object. 

Even though the proposal histogram is not a true representation of the object histogram, it is 

likely to be closer to it, in terms of the Bhattacharyya distance, than to histograms calculated 

from background in the region of the pad after the triggering event. The proposal histogram 

does not include bins that are dominant in the probably background histogram. 
 

2.2. Updating object information 
 

We use a particle filter type search of the region around the pad to get a better 

representation of the object. A prior is constructed by adding Gaussian random values to the 

centre of gravity 0x of the pad difference image Dt: 

 

   0    where   ( , )   and   ~ (0, )ix y    x x x N   (10) 

 

The standard deviation   of the distribution is taken to be half of the largest dimension 

of the detect pad. A typical particle prior is shown in Figure 3(a). 
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Figure 3. (a) triggered pad, showing the prior particle set (blue), the selected 
high weight set (red) and the object proposed detection(yellow)  (b) typical 

merged tracks from detect points 
 

Histograms j
p are extracted using the integral histogram at the j  particle locations. The 

particles are given a Gaussian weight jw  in terms of their Bhattacharyya distance S from the 

‘probably object’ histogram t

oq  to give a posterior distribution i.e. 

 

    ,

1

1
n

j j t

u o u

u

S p q


        (11) 

 

and           
2

2
exp

2

j
j S

w


 
  

 
     (12) 

 

The standard deviation of the weighting distribution is set at 0.2   [9]. 

The object locations objectx , shown in Figures 3 and 4, are obtained using a weighted 

mean of the distribution of particle locations: 

 

    
1

N
j j

object

j

w


x x      (13) 

 

where jw  is the normalized weight of the thj particle: 
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Figure 4. Examples of typical detections of pedestrians in a shopping mall, 
using an overhead camera 

 

The final step of the detection process is to extract a tracking histogram at the object 

location and initialize a particle filter tracker at that point. An 8-bin tracking histogram t

oq  

extracted at the object location in Figure 3(a) is shown in Figure 2(e). The histogram is 

extracted from a rectangular region with dimensions half those of the expected bounding box 

at the object location. In some cases, for tracking purposes, the rectangular region is split into 

four quadrants and a 32 bin histogram is constructed by concatenating four 8-bin histograms 

from those quadrants. This gives a tracking histogram with some indication of the spatial 

layout of the pixel values representing the foreground. 

The objects are tracked using a simple SIR particle filter [10]. The particle state is 

described by the state vector [ , , , ]t x

T

yx v y vs . The particle filter initial velocities are taken to 

be zero but they pick up the velocity of the object within a couple of iterations. Typical tracks 

are shown in Figure 3(b). 
 

3. Implementation 
 

The implementation of the method is illustrated in two situations presenting different 

difficulties. The first one has an oblique view with slight camera movement, rigid objects and 

some slight illumination variation. The second with a stable camera, constant illumination, 

and non-rigid objects having various shapes and appearances. 

Figure 3 shows a two pad array being used with the i-LIDS Challenge footage. In practice 

the pads can produce more than one trigger per object if passing objects are in contact with 

the pads for a number of frames. There are a range of heuristic strategies that can be 

employed to deal with trigger multiplicity. One approach is to disable the pad after the first 

trigger and then re-enable it once the tracker reports that the objects has cleared the area. 

However it is often the case that the second trigger gives a more representative histogram of 
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the object so it can be useful to disable after an immediate second one. In the case of target 

overlaps, due to closely moving traffic for example, a re-enabled pad would trigger on the 

following object and initiate a new tracker. In such a situation a blob based system would 

have to assume occlusion and fit multiple models; the pad and histogram approach is capable 

of identifying separate objects within a blob and initiating independent trackers. An 

alternative is to keep the pads active and track all triggers independently; trackers that appear 

to have similar positions, velocities and tracker histograms are then merged into one. A 

typical tracker combination outcome is shown in Figure 3(b). 

Figure 4 shows the use of an array of pads with an overhead camera in a shopping mall 

scenario. The target objects in the mall example can challenge impositions of a pedestrian 

model: shopping trolleys, luggage and other baggage can present a variety of shapes to the 

system. The potential of the approach can be seen in this sequence: with appropriate choice of 

trigger threshold the shopping mall sequence detected 22 out of 23 objects, returned 3 false 

positives (triggering on temporal difference ‘ghosts’) and 1 false negative. This returns values 

of precision, sensitivity and F-score [11] of the order 0.9. The heuristics are in continuing 

development. 
 

4. Conclusion 
 

We have presented a computationally economic approach to object initial detection for 

counting and possible tracker initialization. It is one of a number of approaches developed to 

use spare processing capacity for embedded analytics in intelligent cameras. It has potential 

for development in contexts such as vehicle or pedestrian traffic density indication, or as a 

tracker initializer in situations such as tripwires or perimeter violation detection. The method 

does not demand the use of a target model nor does it require the development of a full 

background image or classifier training. It works with moderate quality monochrome footage 

and can be used in a range of contexts.  
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