3 research outputs found

    Implementing Explicit and Finding Implicit Sharing in Embedded DSLs

    Full text link
    Aliasing, or sharing, is prominent in many domains, denoting that two differently-named objects are in fact identical: a change in one object (memory cell, circuit terminal, disk block) is instantly reflected in the other. Languages for modelling such domains should let the programmer explicitly define the sharing among objects or expressions. A DSL compiler may find other identical expressions and share them, implicitly. Such common subexpression elimination is crucial to the efficient implementation of DSLs. Sharing is tricky in embedded DSL, since host aliasing may correspond to copying of the underlying objects rather than their sharing. This tutorial summarizes discussions of implementing sharing in Haskell DSLs for automotive embedded systems and hardware description languages. The technique has since been used in a Haskell SAT solver and the DSL for music synthesis. We demonstrate the embedding in pure Haskell of a simple DSL with a language form for explicit sharing. The DSL also has implicit sharing, implemented via hash-consing. Explicit sharing greatly speeds up hash-consing. The seemingly imperative nature of hash-consing is hidden beneath a simple combinator language. The overall implementation remains pure functional and easy to reason about.Comment: In Proceedings DSL 2011, arXiv:1109.032

    Generalising tree traversals and tree transformations to DAGs:Exploiting sharing without the pain

    Get PDF
    We present a recursion scheme based on attribute grammars that can be transparently applied to trees and acyclic graphs. Our recursion scheme allows the programmer to implement a tree traversal or a tree transformation and then apply it to compact graph representations of trees instead. The resulting graph traversal or graph transformation avoids recomputation of intermediate results for shared nodes – even if intermediate results are used in different contexts. Consequently, this approach leads to asymptotic speedup proportional to the compression provided by the graph representation. In general, however, this sharing of intermediate results is not sound. Therefore, we complement our implementation of the recursion scheme with a number of correspondence theorems that ensure soundness for various classes of traversals. We illustrate the practical applicability of the implementation as well as the complementing theory with a number of examples

    Arrows for knowledge-based circuits

    No full text
    Knowledge-based programs (KBPs) are a formalism for directly relating agents' knowledge and behaviour in a way that has proven useful for specifying distributed systems. Here we present a scheme for compiling KBPs to executable automata in finite environments with a proof of correctness in Isabelle/HOL. We use Arrows, a functional programming abstraction, to structure a prototype domain-specific synchronous language embedded in Haskell. By adapting our compilation scheme to use symbolic representations we can apply it to several examples of reasonable size
    corecore