96 research outputs found

    Monte-Carlo methods make Dempster-Shafer formalism feasible

    Get PDF
    One of the main obstacles to the applications of Dempster-Shafer formalism is its computational complexity. If we combine m different pieces of knowledge, then in general case we have to perform up to 2(sup m) computational steps, which for large m is infeasible. For several important cases algorithms with smaller running time were proposed. We prove, however, that if we want to compute the belief bel(Q) in any given query Q, then exponential time is inevitable. It is still inevitable, if we want to compute bel(Q) with given precision epsilon. This restriction corresponds to the natural idea that since initial masses are known only approximately, there is no sense in trying to compute bel(Q) precisely. A further idea is that there is always some doubt in the whole knowledge, so there is always a probability p(sub o) that the expert's knowledge is wrong. In view of that it is sufficient to have an algorithm that gives a correct answer a probability greater than 1-p(sub o). If we use the original Dempster's combination rule, this possibility diminishes the running time, but still leaves the problem infeasible in the general case. We show that for the alternative combination rules proposed by Smets and Yager feasible methods exist. We also show how these methods can be parallelized, and what parallelization model fits this problem best

    A logic-based analysis of Dempster-Shafer theory

    Get PDF
    AbstractDempster-Shafer (DS) theory is formulated in terms of propositional logic, using the implicit notion of provability underlying DS theory. Dempster-Shafer theory can be modeled in terms of propositional logic by the tuple (Σ, ϱ), where Σ is a set of propositional clauses and ϱ is an assignment of mass to each clause Σi ϵ Σ. It is shown that the disjunction of minimal support clauses for a clause Σi with respect to a set Σ of propositional clauses, ξ(Σi, Σ), when represented in terms of symbols for the ϱi 's, corresponds to a symbolic representation of the Dempster-Shafer belief function for δi. The combination of Belief functions using Dempster's rule of combination corresponds to a combination of the corresponding support clauses. The disjointness of the Boolean formulas representing DS Belief functions is shown to be necessary. Methods of computing disjoint formulas using network reliability techniques are discussed.In addition, the computational complexity of deriving DS Belief functions, including that of the logic-based methods which are the focus of this paper, is explored. Because of intractability even for moderately sized problem instances, efficient approximation methods are proposed for such computations. Finally, implementations of DS theory based on domain restrictions of DS theory, hypertree embeddings, and the ATMS, are examined

    A method of classification for multisource data in remote sensing based on interval-valued probabilities

    Get PDF
    An axiomatic approach to intervalued (IV) probabilities is presented, where the IV probability is defined by a pair of set-theoretic functions which satisfy some pre-specified axioms. On the basis of this approach representation of statistical evidence and combination of multiple bodies of evidence are emphasized. Although IV probabilities provide an innovative means for the representation and combination of evidential information, they make the decision process rather complicated. It entails more intelligent strategies for making decisions. The development of decision rules over IV probabilities is discussed from the viewpoint of statistical pattern recognition. The proposed method, so called evidential reasoning method, is applied to the ground-cover classification of a multisource data set consisting of Multispectral Scanner (MSS) data, Synthetic Aperture Radar (SAR) data, and digital terrain data such as elevation, slope, and aspect. By treating the data sources separately, the method is able to capture both parametric and nonparametric information and to combine them. Then the method is applied to two separate cases of classifying multiband data obtained by a single sensor. In each case a set of multiple sources is obtained by dividing the dimensionally huge data into smaller and more manageable pieces based on the global statistical correlation information. By a divide-and-combine process, the method is able to utilize more features than the conventional maximum likelihood method

    ON THE USE OF THE DEMPSTER SHAFER MODEL IN INFORMATION INDEXING AND RETRIEVAL APPLICATIONS

    Get PDF
    The Dempster Shafer theory of evidence concerns the elicitation and manipulation of degrees of belief rendered by multiple sources of evidence to a common set of propositions. Information indexing and retrieval applications use a variety of quantitative means - both probabilistic and quasi-probabilistic - to represent and manipulate relevance numbers and index vectors. Recently, several proposals were made to use the Dempster Shafes model as a relevance calculus in such applications. The paper provides a critical review of these proposals, pointing at several theoretical caveats and suggesting ways to resolve them. The methodology is based on expounding a canonical indexing model whose relevance measures and combination mechanisms are shown to be isomorphic to Shafer's belief functions and to Dempster's rule, respectively. Hence, the paper has two objectives: (i) to describe and resolve some caveats in the way the Dempster Shafer theory is applied to information indexing and retrieval, and (ii) to provide an intuitive interpretation of the Dempster Shafer theory, as it unfolds in the simple context of a canonical indexing model.Information Systems Working Papers Serie
    • …
    corecore