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Abstract: One of the main obstacles to the applications of Dempster-Shafer formalism is its

computational complexity. If we combine rn different pieces of knowledge, then in general

case we have to perform up to 2 m computational steps, which for large m is infeasible.

For several important cases algorithms with smaller running time have been proposed. We

prove, however, that if we want to compute the belief bd(Q) in any given query Q, then

exponential time is inevitable.

It is still inevitable, if we want to compute bel(Q) with given precision e. This restric-

tion corresponds to the natural idea that since initial masses are known only approximately,

there is no sense in trying to compute beI(Q) precisely. A further idea is that there is al-

ways some doubt in the whole knowledge, so there is always a probability P0 that the

expert's knowledge is wrong. In view of that it is sufficient to have an algorithm that gives

a correct answer a probability > 1 -P0. If we use the original Dempster's combination

rule, this possibility diminishes the running time, but still leaves the problem infeasible in

the general case.

We show that for the alternative combination rules proposed by Smets and Yager

feasible methods exist. We also show how these methods can be parallelized, and what

parallelization model fits this problem best.

I(eywords: Dempster-Shafer formalism, combination rules, Monte-Carlo methods, feasi-

ble, parallel.

1. FORMULATION OF THE PROBLEM

Dempster-Shafer formalism in brief. Dempster-Shafer (DS) formalism, proposed in

(Sharer, 1976), is very promising and is already widely used. In this formalism knowledge

is described by a finite set of statements E_,...,E_, to each of which a number (mass)

m(Ei) is assigned so that }--_i rn(Ei) = 1. Then, if someone asks a query Q, we must
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produce as an answer the beIief bel(Q) that Q is true. This belief is defined as a sum of

masses rn(Ei) of all the statements E/ that imply Q (i.e., for which Ei _ Q is true). In

addition to belief in Q one can also ask for the pIausibility pl(Q) of Q.

Comment. From the computational viewpoint the problems of computing bel and pI are

equivalent, because beI(Q) = 1- pl(_Q) and pl(Q) = 1-bel(-_Q). Therefore in the

following text we'll analyze only the problem of computing beliefs. In (Yager, 1987) a

slightly different definition of plausibility is given; our negative theorems and algorithms

can be easily applied to this definition as well.

If we have several pieces of knowledge that are represented in the Dempster-Shafer

form, then we can combine them into a single knowledge base. Several combination rules

have been proposed. The original Dempster's rule is as follows: if we are given two pieces

(El, m I (Ei)) and (Fi, rn2(Fi)), then for the statements of the resulting knowledge base we

take all consistent combinations Ei&Fj, and to each of these statements X we assign the

mass

re(X) = El,i: X--.(Z,,_F_) m,(Ei)m2(Fj)

where Consis means consistent and _i,j: A means the sum over all i,j, for which .4 is

true.

Comment. Informally speaking, this means that we neglect all the inconsistent combina-

tions and "divide" our belief between the consistent ones.

It was shown (Zadeh, 1984) that this rule sometimes contradicts our intuition. Fol-

lowing (Smets, 1988), let us briefly describe this contradiction. Suppose that we have

three suspects in a murder case: Peter, Paul, and Mary, and two witnesses. The first

witness is almost sure that Peter is a murderer, and his degrees of belief are: 0.99 that

Peter murdered, 0.01 that Paul murdered, and 0 that Mary did it. The second witness

has a 0.99 belief that Mary is the murderer, 0.01 that Paul is the murderer, and 0 that

Peter is the one. From commonsense viewpoint, this means that we have strong suspi-

cions against Peter and Mary. However, the original Dempster's rule leads to a different

conclusion. Indeed, let us denote "Peter is the murderer" by El, "Paul is the murderer"

by E2, and "Mary is the murderer" by E3. Then, the beliefs rnl, rn2 of the two witnesses

are ml(E1) = m2(E3) -- 0.99, rnl(E3) = m2(E1) = 0, and rnl(E2) : m2(E.2) = 0.0i. The

original Dempster's combination rule than leads to m(E_) = 1 and re(E1) = re(E3) = 0,

i.e., to the conclusion that Paul is certainly the murderer.



Becauseof this contradiction, alternative combination rules were proposed by Yager

(1985, 1987) and Smets (1988). Smets proposed the formula

re(X) : E rn1(E{)m2(Fi)

i,j: X*-(Ei&Fi)

for all X (in particular for identically false X = f, that corresponds to the case, when

the statements Ei and Fj are inconsistent). For the case when we have to combine k > 2

pieces of knowledge, he proposed a likewise formula

= ml(E,)...mk(r;).
i .... ,j: X_--.(Ei&...&Fj.)

Yager applies this rule only for X, that are different from t ("identically true") and f

("identically false"), and assigns re(f) = 0 and

re(t) =
i ..... j: ".Consis(Ei&...a_ Fj ) Vt*--.(Ei &...& Fj )

Computational complexity is the main obstacle to the application of Dempster-

Shafer formalism. Although this formalism is widely used, but there are some obstacles

to its application, the main of which is its computational complexity (Bonissone, 1987,

Dempster and Kong, 1987, Kyburg, 1987, Paass 1988, Pearl 1988, Hsia 1989, Phillips

1990). Indeed, when we apply one of the above combination rules to combine m pieces

of knowledge, and each of them consist of at least 2 different statements, then we have

to analyze at least 2 rn different combinations of statements. Therefore we must make at

least 2 m computational steps. For large rn this is infeasible (e.g., for m = 200 it takes

> 1060 steps). So it is difficult to compute masses. But even if we manage to compute

them, there is still a problem to compute beliefs from masses. If we directly apply the

above formula for bel(Q), and the number of statements in the resulting knowledge base

is exponentially large, we must undertake exponentially many computational steps. The

running time remains exponentially big even if we use the computationally optimal "fast

Mobius" algorithm (Kennes, 1990, Kennes and Smets, 1990). So what to do?

For some cases faster algorithms are known that compute bel(Q) for different Q

in < 2 m steps (Barnett, 1981), (Gordon and Shortliffe, 1985), (Sharer, 1985), (Shenoy

and Sharer, 1986), (Shafer and Logan, 1987), (Wilson, 1989, 1991). These methods are

applicable in many important cases, but still the problem remains: what to do in the

general case ?



General case: negative result. Orponen (I990) proved that exponential time is in-

evitable in the following sense: even for the propositional case the problem of computing

beliefs is #P-complete (Garey and Johnson 1979). The majority of computer scientists

believe that P 7_ NP; so from their viewpoint no feasible algorithm is possible for comput-

ing beliefs (likewise results are proved in (lVIaung and Paris, 1990) for different uncertainty

formalisms).

Is this negative result really tragic? To answer this question let's look at the usual

logic, without any masses or degrees of belief. In this case knowledge consists of statements

El, ..., E_,, and for every query Q the possible answers are "yes" (if EI&E2&...&E,., _ Q),

"no" if EI&E2&...&En _ "Q and "unknown" in all other cases. For this case many

negative results are known, starting from the famous Godel's theorem. However, efficient

inference engines and theorem provers exist and are successfully applied. In other words,

theoretically the logical case is infeasible, but in practice it is feasible.

So the natural question is: is the Dempster-Shafer case practically feasible (in some

reasonable sense) or not?

Feasible: in what sense? The natural formulation of this question is as follows: suppose

that we already have an inference engine for logical statements, and we can use it as an

additional tool while computing beliefs bel(Q). In this case the running time is equal to

the weighted sum of the number of real computational steps and the number of calls of

this inference engine. Will this new computational time still be exponentially large?

If it is small, then we can quickly compute beliefs, and therefore DS approach is

feasible. If this running time turns out to be exponentially large, this wouid mean that

even the usage of the existing inference engines does not help, and therefore DS approach

is infeasible.

The purpose of this paper is to analyze whether DS approach is practically feasible (in

the above sense) or not. Our answer will be: "yes, it's feasible".

What we are planning to do. In Section 2 we give precise definitions and formulate

a negative result: that the problem of computing beliefs precisely is practically infeasible.

Since the initial masses express our degree of belief and are therefore only approximately

known, there is no sense in trying to compute the beliefs precisely. However, as we show in

Section 3, the problem of computing the beliefs with a given precision is also infeasible. In

Section 4 we take into consideration that human experts can not only be slightly uncertain



about their degreesof belief, but canalsohave doubts in their wholeknowledge. Therefore,

since there is a probability that what an expert says is absolutely wrong, it is reasonable

to allow the algorithms for computing beI(Q) to err with some (very small) probability.

For Dempster's rule the resulting problem is still infeasible, but for two other rules it is

already feasible[ In Section 5 we show that the methods from Section 4 can be parallelized,

and what parallelization model fits this problem best. All the proofs are given in Section

6.

Our main results first appeared in (Borrett and Kreinovich 1990a, 1990b).

2. ALGORITHMS THAT COMPUTE BELIEFS PRECISELY ARE PRAC-

TICALLY INFEASIBLE

Inference engine: general definition. Assume that some alphabet is given, that in-

cludes the symbols & and f; assume also that two sets of words form this alphabet are

given. The words form the first set will be called statements, words from the second set

queries. We assume that the word f (meaning raise) belongs to both sets, and that if $1

and $2 are statements, then SI&S2 is also a statement. Assume also that an algorithm I

is given, that transforms every pair (S, Q), where S is a statement and Q is a query, into

one of the words "yes" or "no". When I(S, Q)= "yes", we say that Q folIows from S, or S

impges Q and denote it by S ---+Q. We say that the statements S1 and S2 are equivaIent

and denote it by $1 _ $2 if $1 --+ $2 and $2 --+ S1. We demand that this algorithm is

consistent in the sense that if A _ B, then I(A, Q) = _r(B, Q) for all Q. Such consistent

algorithms will be called inference engines.

Comment. One should bear in mind that in many cases (e.g., in first order logic) no

algorithm is possible for which I(S, Q)= "yes" if and only if Q is a logical consequence of

S. Therefore the notion "imply" that stems from the inference engine can be different

from the logical implication.

We say that El,..., Ek impIy Q if EI&E2&...&Ek implies Q. If S implies f, we say

that S is inconsistent, else that S is consistent. The fact that a formula S is consistent

will be denoted by Consis(S).

Dempster-Shafer knowledge base: definition. By a piece of knoMedge we mean a

pair consisting of the finite set of statements El,..., E, and a function m that assigns to

each statement from this set a value m(Ei) >_ 0 so that _ m(Ei) = 1. For every query Q

we define the belief bel(Q) in Q as the sum of m(Ei) for all Ei, for which I(Ei, Q)-- "yes"

(i.e., for which Ei implies Q).



By a Dempster-Shafer knowledge base (or simply knowledge base for short) we mean

a finite list of pieces of knowledge. For every knowledge base we can define the resulting

piece of knowledge by applying one of the above-defined combination rules: Dempster's,

Smets' and Yager's (we'll denote them by D, S and Y). For every query Q by a beliefbeI(Q)

in Q with respect to a knowledge base we mean its belief with respect to the resulting piece

of knowledge.

Comment. In the combination formulas we must understand -% _ and Consis in the

sense of the inference engine I.

In the present section we'll consider algorithms that combine normal computational

steps with calls of an inference engine I.

Comment. In more theoretical terms, we can say that we consider algorithms, that use I

as an oracle (Garey and Johnson, 1979).

Assume that two positive real numbers are fixed: to and re. to will be called the time

of one computational step and tc the time of one caB. For every input by a running time of

an algorithm we mean the total number No of normal computational steps, multiplied by

to, plus the total number Nc of calls, multiplied by tc. By the length of the input we mean

the total length of the knowledge base and the query. By a computational complexity

tu(n) of an algorithm U we mean the maximum of its running time on all the inputs of

length <__n.

We say that an algorithm computes the beliefs precisely if for every inference engine

I, for every knowledge base and every query Q it computes beI(Q).

THEOREM 1 (D, S, Y). If an algorithm U computes the beliefs precisely, then t_:(n) >_

ca n for some a > 1.

Comment. So, whatever combination rule we use, it takes exponentially many compu-

tational steps to compute beliefs precisely. Therefore the problem "to compute beliefs

precisely" is infeasible.

3. ALGORITHMS THAT COMPUTE BELIEFS WITH GIVEN PRECISION

ARE PRACTICALLY INFEASIBLE

Initial masses express our degree of belief. It is very difficult to express one's degree

of belief with great precision: e.g., who can boast that he is 83% and not 84% sure in

something? So these initial degrees of belief are only approximately known, and therefore



there is no sensein trying to compute the resulting beliefs with bigger precision than the

precision of the input data. So the natural idea is to fix someprecision e > 0 and compute

beliefs only with this precision. Alas, the resulting problem is also infeasible. Let us give

precise definitions.

Definition. Assume that a positive number e is fixed. We say that an algorithm U

computes the beliefs with precision e if for every inference engine I, for every knowledge

base and every query Q it generates a real number U(Q), for which IU(Q) - bel(Q)l <_ e.

Comment. If e >_ 1/2, then we can take an algorithm that always generates 1/2, and thus

satisfy this inequality for all possible values of belief. Therefore this definition makes sense

only when e < 1/2.

THEOREM 2 (D, S, Y). If an algorithm U computes the beliefs with precision e < 1/2,

then tu(n) >. ca'* for some a > 1.

So this computation also demands exponential time and is therefore infeasible.

4. MONTE-CARLO METHODS: FEASIBLE FOR SMETS'S AND YAGER'S

RULES, STILL INFEASIBLE FOR DEMPSTER'S RULE

Why probabilistic methods? Let us now take into consideration the fact that human

experts can not only be slightly uncertain about their degrees of belief, but can also have

doubts in their whole knowledge. In other words, there is a probability p0 (small but

positive) that what an expert says is absolutely wrong. If this is the case, then, no matter

what algorithm we apply, the resulting values of belief will be absolutely inadequate. In

view of that it is not necessary to achieve a 100% correctness of the algorithm. The only

thing that is reasonable to demand is that the probability that an algorithm errs must be

smaller than this P0, so that the resulting probability of an error (due both to the possible

errors of the algorithm and the errors in the initial data) is not much greater than p0.

So we arrive at the following definitions:

Definitions. By a standard random number generator we mean a program or device

that generates real numbers that are uniformly distributed on the interval [0,1]. By a

probabiIistic algorithm we mean an algorithm that in addition to normal computational

steps and calling I calls a standard random number generator. The result of applying an

algorithm U to the data :c will be denoted by U(z).

In addition to t0 and tc let us fix a number tr > 0 (called the time of one ca11 of

this random number generator); let us define a running time of a probabilistic algorithm



U on any input data as Noto

computational steps, Nc is the

calls of a generator. Let us now

U as a maximum running time

random number generator. If

polynomiM-time aIgorithm. If

algorithm.

+Nctc + Nrt,-, where No is the totM number of normal

total number of calls of I, and N,- is the total number of

define the computational compIexity tu(n) of an algorithm

for all inputs of length n and for all possible values of the

tu(n) is bounded by some polynomial of n, we call U a

it is limited by a linear function, we call U a Bnear-time

Comment. By definition a probabilistic algorithm uses a random number generator, there-

fore its output is not uniquely determined by the inputs: for every input it is a random

variable.

Definition. Assume that positive numbers e and p0 are given. We say that a state-

ment is reliably true if it is true with probability 1 - P0 or greater. We say that a proba-

bilistic algorithm U computes the beliefs with precision e and reliability 1 - Po if for every

knowledge base, for every inference engine I, and for every query Q it is reliably true that

Iv(Q) - b t(O)l <

In other words, P([U(Q) - bel(Q)l < e) > 1 - po.

Comment. In order to formulate the related negative result we must recall the denotation

RP: it is the class of problem that can be solved (with reliability 1 - p0) in polynomial

time. The majority of computer scientists believe that RP ¢ NP (for details see, e.g.,

Maung and Paris, 1990).

THEOREM 3 (D). //" e < 1/4, Po < 1, and RP _: NP, then there is no polynomial-time

algorithm that computes beliefs with precision e and reliability 1 - Po.

Comment. So if we use Dempster's combination rule, the problem of computing beliefs is

stilI infeasible.

THEOREM 4 (S, Y) For every e < 1/4 and p0 < 1 there exists a linear-time algorithm

that computes beliefs with precision e and reliability 1 - po.

Comments. 1. So the problem is feasible!

2. Linear-time means that when the size of the probiem increases (i.e., the number of

pieces of knowledge increases, and/or the number of statements in every piece), then the

number of calls of the inference engine I grows linearly of slower. What is this time equal



to in absolute units, that is, is it reasonably small or really big, dependson how quickly

the inferenceengine works.

Description of the algorithm. Let us describe the algorithm from Theorem 4.

For that weneedan auxiliary algorithm that givena pieceof knowledge(El, ..., E,_), m,

generates a statement Ei with probability m(Ei). To get it we first compute the values

rl = ra(E1), r2 = m(E1)+m(E2), r3 = r2+m(E3), ..., rn = rn-I +m(En) = re(E1)+...+

rn(E_) = 1. Then we call a standard random number generator and compare the result r

consequently with rl,r2, ...,rn = 1. If r _< ra, generate Ea; if ri-1 < r < ri, generate Ei.

Comments. I. One can easily check that the probability of generating Ei is precisely

m(Ei).

2. This auxiliary algorithm is already a linear-time one. We can, however, further

diminish its running time, if we use bisection search instead of a linear search.

As a second auxiliary step we must find an integer N depending on e and P0; in general

case we can take N = 2e -2 ln(2/p0). For small e and p0 we can take smaller values of N:

e.g., to get a 10% precision and 96% reliability it is sufficient to take N = 100.

Now the main algorithm is as follows. Suppose that we are given a knowledge base,

that consists of several pieces of knowledge P1, ..., Pk. We do the following:

1) (in case of Smets's combination rule) Reserve an integer variable M for a counter,

and set its initial value to 0. Then N time repeat the following:

Apply the auxiliary algorithm to each piece of knowledge Pi, and get a random state-

ment E_'; then apply I to check whether Q follows from all these statements, i.e., whether

I(Ef&E_&...&E_,, Q) = "yes". If "yes", add 1 to the counter M; if not, leave _l/unchanged.

As a desired estimate for bel(Q) we take M/N, where M is the value of the counter

after N iterations.

2) (in case of Yager's combination rule) Same algorithm; the only difference is that

we add 1 if [(Ef&E_&...&E_, Q)="yes" and the set {Ef, E_,...,E_} is consistent, i.e.,

I(E[" & E_ &... & Ek, f)--"no".

Comments. 1. This algorithm belongs to the class of Monte-Carlo methods. Such methods

were proposed for Dempster-Shafer formalism in (Pearl, 1988, Kampke, 1988, Laskey and

Lerner, 1989). If we this algorithm with the original Dempster's combination rule, then for
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the casewhen the conflicts between the piecesof knowledge are in somereasonablesense

restricted, we also get linear-time estimates (Wilson, 1989, 1991).

2. Our result that Smets's and Yager's rules are better than Dempster's rule because

they are feasible and Dempster's is not is in good accordance with the above-mentioned

fact that the original Dempster's rule, unlike the two others, contradicts to our intuition

(Zadeh, 1984).

5. PARALLEL COMPUTATION OF BELIEFS

Parallelization: possible advantages. Monte-Carlo methods can be easily imple-

mented in parallel (see, e.g., Pearl, 1988): indeed, they consist of applying the inference

engine to several randomly chosen sets of statements. If we have several processors at our

disposal, then we can make each of them choose and process one set of statements. So

each processor applies the inference engine only once, and the resulting running time of

this parallel algorithm equals to the running time of the inference engine. So we compute

the beliefs precisely in the same time as we apply the inference engine, and adding masses

and beliefs does not increase the running time!

How to implement it. Theoretically the more processors we have, the quicker are the

results. But in real parallel systems a lot of time is consumed on communication protocols,

information exchange, waiting in the queues, etc. The more processors we have, the more

time-consumlng all these communication procedures become, and they seriously impact

the whole computation process. So if we implement our parallelized algorithms on real

parallel systems with many processors, this additional time will add to our running time

and thus worsen our theoretical estimates.

In our case, however, during the main stage ("call inference engine") no communica-

tion is necessary, so we don't need to waste time on protocols. As a result each processor

generates one bit ("yes" or "no"), and to estimate a belief we must send these bits to one

processor and process them there. This can be done also without any protocols, by using a

small shared memory of N bits, where N is the number of processors. Such an architecture

was produced by Septor Electronics for use in machinery control applications (Roberts,

1989, Hardin and Taylor, 1990) and was efficiently used to parallelize Monte-Carlo algo-

rithms (Kreinovich et al, 1990).
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6. PROOFS

Comment. Some of the ideas that we use in these proofs appeared first in (Dantsin, 1990;

Dantsin and Kreinovich, 1990).

Proofs of Theorems 1 and 2. If an algorithm computes beliefs precisely, then, of

course, it also computes beliefs with precision e. Therefore, if we prove Theorem 2, we get

Theorem 1 as a corollary. So it is sufficient to prove Theorem 2. Let's do it.

Since we are proving a negative result, it is sufficient to construct a case, in which

the algorithm must work for a long time. Suppose that U is an algorithm that computes

beliefs with precision e. Let's take a knowledge base that consists of n pieces of knowl-

edge P1,P2,...,P,. i 'h piece of knowledge consists of two statements Ei and -_Ei, with

mi(Ei) = rni(_Ei) = 0.5. For Q let us take a statement that is different from any Boolean

combination of these El. We'll use the denotations E + for Ei and E_- for _Ei.

Let us consider only such I, that for Boolean formulas, formed from Ei, coincide with

logical implication. So, for example, El&E2 -+ El, but EI&-_E2 -/4 Ea. In particular,

for every sequence g = (q, ..., e,_) of + and - symbols I(E_ l>_'_2>_...2,.......__,>_" , f)="no". In

other words, all possible combinations of Ei and -,El are consistent.

Three combination rules differ only in case of inconsistent knowledge. Therefore

for the above-described case, when all the combinations are consistent, all three rules

lead to the same combined knowledge. This knowledge consists of 2" statements E =

E;' _E 2_=&...&E," _", and the mass of each statement equals to ml (El I )m2(E_ =)...m(E_" ) =

(1/2)" = 2-". So for every query Q the belief beI(Q) equals to the sum of the masses of

all the statements that imply Q, i.e., to 2-aN(Q), where by N(Q) we denoted the total

number of statements E that imply Q.

Let us denote the number of times, during which our algorithm U called the inference

engine I to know whether E implies Q for some E, by N. If N < 2", this means that for

some of 2" combinations E we did not ask whether E --+ Q. So, if we take an inference

engine J that coincides with I on all Boolean combinations of Ei and on all the pairs

(E, Q). for which the algorithm U called I, and apply the same algorithm to this J instead

of I, U will not feel the difference, because whenever it asks an inference engine something,

it still gets the same results. So the result Uj(Q) of applying this algorithm to J will be

same, as in case of I: Uj(Q) = UI(Q). Let's take two such J: J_ says "yes" for all

pairs (E, Q), for which U did not ask /'; and J2 answers "no" on all such pairs. Let us

I 1 __[% _



denote the number of statements, for which Ji(E, Q)= "yes", by Ni(Q). The difference

between NI(Q) and N2(Q) consists precisely of 2" - Nc statements E, for which U did

not ask I, i.e., N:(Q) - N2(Q) = 2" - N. Since in our case beI(O) = 2-_N(Q), we

conclude, that the values of belief beli(Q), that correspond to Ji, satisfy the equality

beI_(Q) - bel2(Q) = 2-"(2" - N) = 1 - 2-'_N. But we took an algorithm that computes

beliefs with precision e, therefore the result U(Q) of this algorithm must differ from both of

these beliefs by no more than e: tbeII(Q)-U(Q)] <_ e and ]beI2(Q)-L;(Q)] <__e. From these

inequalities we conclude, that [bel:(Q)-bel2(Q)[ <_ lbdl(Q)-V(Q)l+lbd2(Q)-V(Q)l <_2_.

and so 1 - 2-nN _< 2e. So 2-"N > (1 - 2e) and therefore N >__2"(1 - 2e). Since e < 1/2,

this difference 1 - 2e is positive.

So the total running time is >_ t¢N >_ 2"(1-2e), i.e. it is really exponentially increasing

with the length of the input. Q.E.D.

Proof of Theorem 3. Let's prove this theorem by reductio ad absurdum: we'll suppose

that such a polynomial algorithm U exists, and conclude that RP = NP, i.e., that there

exists a polynomial-time probabilistic algorithm that solves one of NP-complete problems.

Namely, we'll construct such an algorithm for the propositional satisfiability problem.

Indeed, suppose that U exists, and we have a propositional formula P with n propositional

variables Xl,...,xn. Let's figure out whether this formula is satisfiable or not. For that

purpose let's introduce a new propositional variable x,_+l and consider the knowledge base

that consists of the following n + 1 pieces of knowledge P:, ..., Pk+:. When i _< k, then Pi

consists of two statements xi and "-,xi with equal masses. Pk+l consists of two statements

P&-,zn+i and xx&x2&...&x,_,.U.z,,+:, also with equal masses.

Statements of the combined knowledge base are formed as follows: for every i from

1 to n we must choose either xi or ",xi, and then we must choose either P&-,xn+:, or

x1&xa&...,.kx,&xn+l. In other words, we must first choose an n-dimensional Boolean

vector 2" = (Xl,..., z,), and then choose one of the statements, with which it is consistent:

P&--,x,+l or .rl&x2&...&x,,&z,,+:. For each vector 2" consistency is easy to check: if P is

true for this a7 (and this can be checked in polynomial time), then the first is consistent, if

x: = z2 = ... = z,_ = true, then the second one is consistent. So we can easily implement

logical consistency checking for these cases.

The resulting masses are as follows: If P is not satisfiable, then the combina-

tions with P&-,x,,+: are inconsistent, and therefore the only consistent combination is

z:&x2&...&x,,&z,_+:; therefore it gets the mass 1. If P is satisfiable, and N is the number

of Boolean vectors that satisfy it, then we have N + 1 consistent combinations. Since all

12



the massesin all the piecesof knowledgeareequal, the massesassignedto theseconsistent

combinations are also equal, so we assign 1/(N + 1) to each.of them.

Let us take Q = x,_+l. For every statement E from the combined knowledge base

we already know x,,+l, so the trivial algorithm will work as I in this case. The resulting

belief bet(Q) is as follows: if P is satisfiable, then beI(Q) = 1. If P is not satisfiable, then

bel(Q) = 1/(N + 1), where N > 1, so bel(Q) <_ 1/2.

If IU(Q) - bel(Q)l < 1/4, then in case bel(Q) = 1 we have U(Q) > 1 - 1/4 = 3/4,

and in case beI(Q) <_ 1/2 we have U(Q) < 1/2+ 1/4 = 3/4. So if we apply U to this

knowledge base and compare U(Q) with 3/4, we can tell whether P is satisfiable or not:

if U(Q) < 3/4, it is satisfiable; when U(Q) > 3/4, it is not. So, using U, we constructed

an algorithm that checks whether a formula is satisfiable with reliability _> 1 - P0. So our

assumption that a polynomial-time algorithm U can compute beliefs with given precision

and reliability contradicts to the assumption that RP # NP. Therefore such an algorithm

U is impossible. Q.E.D.

Proof of Theorem 4. That the algorithm described in Section 4 is linear-time can be

easily seen: the number Nc of calls for I equals either to N (in Smets's case) or to 2N (in

Yager's case); in both cases it does not depend on the input length at all. Likewise the

number of times during which this algorithm calls the random-number generator is limited

by N. As for additional computations, for each of N iterations they demand looking

through all the pieces of the knowledge base N times, i.e., the necessary running time is

< const • Nn and is therefore linear in n.

Let us now prove that these linear-time algorithms really work. Let's first con-

sider the Smets's rule. By definition beI(Q) = _-,E: E--Q re(E), where E runs over

all combinations Ei&..._:Fj of statements form different pieces of knowledge. And the

masses re(E) are equal to re(E) = _i,j: E.-.(E,S_..._:F_)rnl(Ei)...rnk(Fj). Substitut-

ing this expression for re(E) into the formula for bel(Q), we conclude, that bel(Q) =

_-,E: E--O _-,i,j: E--(E_...._.Fj)rnl(Ei)...mk(Fj). We defined an inference engine as a con-

sistent algorithm, i.e., an algorithm, for which A _ B implies that I(A, Q) = I(B, Q). In

particular, if E _ (E_&...&Fj), then E --* Q if and only if (E_,._...&Fj) _ Q. Therefore

the above expression for bel(Q) can be simplified:

i,j: ( Ei&c...&Fi )-- Q

13



Let us now prove that this expression equals to some probability. We say that a

statement is randomIy chosen from a piece of knowledge ((El,..., Ek),m) if it coincides

with Ei with probability m(Ei). We suppose that the choices from different pieces of

knowledge are independent. In this case the probability that a sequence Ei,..., F 1 is chosen,

equals to ml(Ei)...mt.(Fj). Therefore the right-hand side of the above formula for beI(Q)

is the sum of the probabilities of all cases, in which the chosen sequence implies Q, i.e.,

beI(Q) equaIs to the probability that a random sequence implies Q.

Comment. This fact does not mean that we interpret masses as probabilities: it is a purely

formal equality, that may have nothing to do with semantics of masses, but that turns out

to be useful for computing beliefs.

This probability can be computed as follows: we make several (N) simulations of the

random event, and estimate probability p by a ratio M/N, where M is the'. number of

cases, in which the event happened (in our case in which the randomly chosen sequence

implied Q). The precision of these estimates is known from mathematical statistics: to get

a precision e with reliability 1 -po, we must take N = 2e -2 ln(2/p0) (so called Hoefding

theorem; see also Dantsin and Kreinovich, 1990, Wilson, 1989, 1991).

For big N the distribution for the difference p - M/N is close to Gaussian, so we can

use the estimates for the Gaussian distribution. In particular, we get N = 100 for e = 0.1

and p0 = 0.05.

For Yager's case the arguments are the same, with the only difference that bel(Q) is

equal to the probability that the randomly chosen sequence is consistent and implies Q.

Q.E.D.
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