1,017 research outputs found

    The Control Method for Wavelength-Based CCT of Natural Light Using Warm/Cool White LED

    Get PDF
    Reproducing circadian patterns of natural light through lighting requires technology that can control correlated color temperature (CCT) and short wavelength ratio (SWR) simultaneously. This study proposes a method for controlling wavelength-based CCT of natural light using LED light sources. First, the spectral power distribution (SPD) of each channel of the test lighting (two-channel LED lighting with warm white and cool white) is identified through actual measurement. Next, CCT and SWR are calculated based on the additive mixing of SPD using the mixing ratio from the measured SPD. Finally, the regression equations for mixing ratio-CCT and mixing ratio-SWR are derived through regression analysis. These equations are then utilized to implement a wavelength-based CCT control algorithm. For performance and evaluation purposes, natural light reproduction experiments were conducted, achieving a mean error of 94.5K for CCT and 1.5% for SWR

    Roadmap for User-Performance Drive Lighting Management Logic

    Get PDF
    Smart control systems, especially lighting ones, have become essential in energy-saving fields. However, these technologies can be implemented in buildings with other objectives such as ensuring human health. Unsuitable light exposure can seriously endanger human health due to the circadian rhythm disruption. Considering all lighting parameters, a suitable Circadian Stimulus (CS) can be achieved. Thus, the regulation of this variables by control systems to promote a good circadian rhythm and to benefit human health and well-being is crucial. The main aim of this research is to set up the keys to develop a novel control scheme that include CS levels as the main factor to consider. From the study of already developed methodologies this research concludes with a diagram proposal to be considered in the development of the new algorithm of lighting control systems

    Software-Defined Lighting.

    Full text link
    For much of the past century, indoor lighting has been based on incandescent or gas-discharge technology. But, with LED lighting experiencing a 20x/decade increase in flux density, 10x/decade decrease in cost, and linear improvements in luminous efficiency, solid-state lighting is finally cost-competitive with the status quo. As a result, LED lighting is projected to reach over 70% market penetration by 2030. This dissertation claims that solid-state lighting’s real potential has been barely explored, that now is the time to explore it, and that new lighting platforms and applications can drive lighting far beyond its roots as an illumination technology. Scaling laws make solid-state lighting competitive with conventional lighting, but two key features make solid-state lighting an enabler for many new applications: the high switching speeds possible using LEDs and the color palettes realizable with Red-Green-Blue-White (RGBW) multi-chip assemblies. For this dissertation, we have explored the post-illumination potential of LED lighting in applications as diverse as visible light communications, indoor positioning, smart dust time synchronization, and embedded device configuration, with an eventual eye toward supporting all of them using a shared lighting infrastructure under a unified system architecture that provides software-control over lighting. To explore the space of software-defined lighting (SDL), we design a compact, flexible, and networked SDL platform to allow researchers to rapidly test new ideas. Using this platform, we demonstrate the viability of several applications, including multi-luminaire synchronized communication to a photodiode receiver, communication to mobile phone cameras, and indoor positioning using unmodified mobile phones. We show that all these applications and many other potential applications can be simultaneously supported by a single lighting infrastructure under software control.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111482/1/samkuo_1.pd

    The effects of blue light from digital displays on visual fatigue

    Get PDF
    With the ever-increasing viewing time of digital displays, the potential effects of blue light emitted from these displays on eye health and eye fatigue are a real concern. This study presents a literature review of six laboratory studies conducted between 2014 and 2022 on the effect of using filters to attenuate the harmful effects of blue light. The review delves into smartphone and computer screen effects, recent literature reviews on blue light, and potential hazards associated with short-wavelength light. Although the majority of the studies recommended blue light filters, only three of the six laboratory studies (Shi et al. 2021, Tu et al. 2021, Lin et al. 2017) found significant positive effects. A pilot study was conducted with six participants, focusing on the immediate effects of blue light exposure from an 18-inch screen of a laptop computer, while playing a graphic-based and a text-based game with three filter conditions, no-filter, an eyeglass filter, and a digital filter. Eye fatigue symptoms of tired eyes, sore eyes, dry eyes, and blurred vision showed a reduction of perceived ratings when blue light filters were used. Symptoms of tired eyes, and dry eyes reached a significant level of p-value ,\u3c 0.5 improvement over no filter. The digital filter, which has not been tested before for computer screens, provided a statistically significantly better rating than the eyeglass filter. While the results suggest an improvement for those using blue light filter technologies and may help to advocate for more blue light blocking technology in workplace design, the overall conclusion underscores the ongoing need for comprehensive research, considering limitations such as the small sample size of the pilot study and the absence of long-term effects research

    Persistent Phosphors for Smartphone-Based Luminescence Thermometry and Anti-Counterfeiting Applications

    Get PDF
    Leuchtstoffe anhaltender Lumineszenz im sichtbaren Spektrum eröffnen neue Möglichkeiten für Smartphone-basierte Anwendungen. Videoaufnahmen mit dem Smartphone mit 30 Bildern pro Sekunde können persistente Lumineszenzlebenszeiten einer Größenordnung von 100 ms und länger bestimmen. Die mit dem Smartphone aufgezeichneten Daten können benutzt werden um Anwendungen zu realisieren, die ansonsten nur für kurze Lebenszeiten möglich sind. Diese Alternative umgeht den Bedarf an teuren und relativ komplizierten Messinstrumenten, die für die Detektion von kurzen Lebenszeiten eingesetzt werden, wie zum Beispiel Multichannel scaling, Hochgeschwindigkeitskameras und Mikroskope zur Messung der Fluoreszenzlebenszeit. Diese Arbeit konzentriert sich auf die Detektion anhaltender Lumineszenz für Temperaturmessung und Anwendungen zur Fälschungssicherung mit dem Smartphone. Für die Smartphone-basierte Temperaturmessung wurde ein optimierter Gd2O2S: Eu3+ als Leuchtstoff verwendet, der mithilfe einer UV-Quelle angeregt werden kann. Der Leuchtstoff zeigte eine temperaturabhängige Lumineszenz, die hell und lange anhaltend genug war, um mit einer Smartphone-Kamera mit 30 Bildern pro Sekunde aufgezeichnet zu werden. Der Leuchtstoff hat eine Photolumineszenz-Quantenausbeute von 65 % und seine Lebenszeit nimmt mit steigender Temperatur ab. Dies wurde beobachtet über einen Temperaturbereich von 270 K bis 338 K, in dem die Lebenszeit von 1107 ms bis auf 100 ms abfiel. Die Analyse der zeitintegrierten Emission mit dem Smartphone nach einer Anregung mit 375 nm zeigte, dass die Temperaturen im Bereich von 270 K bis 338 K präzise gemessen werden konnten mit einer Messungenauigkeit unter 2 K. Darüber hinaus wurde die Lebenszeitmessung nicht durch Hintergrundstrahlung beeinträchtigt und ermöglichte somit eine genaue Temperaturmessung auch bei einer Hintergrundbeleuchtungsstärke von bis zu 1500 lx. Um eine Smartphone-basierte Fälschungssicherung zu realisieren wurden anhaltende Leuchtstoffe mit einstellbarer Lebenszeit bei Raumtemperatur benutzt, um dynamische, lumineszierende Etiketten zu entwickeln. Dynamische Fälschungssicherung wurde mithilfe von Ti4+-dotierten Gd2O2S: Eu3+ realisiert, wobei die Ti4+-Dotierung eine Kontrolle der Lebenszeit bei Raumtemperatur ermöglicht. Durch eine Veränderung der Kodotierung von 0 bis 0.09 mol% konnte die Lebenszeit von 1.17 ± 0.02 bis 5.95 ± 0.07 s durchgestimmt werden mit einer Anregung bei 375 nm. Durch eine Kombination von Leuchtstoffen mit verschiedenen Lebenszeiten konnten somit dynamische Etiketten zur Fälschungssicherung entwickelt werden. Die Lebenszeit der Leuchtstoffe für diese dynamischen Muster bestimmte dabei die Komplexität der Fälschungssicherung. Solche Muster, die aus einer Kombination von Leuchtstoffen mit großen Unterschieden in der Lumineszenzlebenszeit entwickelt wurden, konnten mit bloßem Auge beobachtet werden. Im Gegensatz dazu sind zeitliche Änderungen in Etiketten mit viel kürzerer Lebenszeit im Bereich von 0.2 s nur schwer mit bloßem Auge nachzuvollziehen. Mithilfe der Smartphone-Kamera mit einer Aufzeichnungsrate von 30 Bildern pro Sekunde können die versteckten Merkmale jedoch leicht entschlüsselt werden. In Hinblick auf die tatsächliche Anwendung am Verkaufsort, ist eine UV-Quelle einerseits normalerweise nicht vorhanden in einem Smartphone und andererseits stellt der Einsatz von UV-Strahlung für die Anregung der Leuchtstoffe eine Gesundheitsrisiko dar. Um die Nutzung einer UV-Quelle gänzlich zu vermeiden, wurden zweifarbige dynamische Etiketten zur Fälschungssicherung entwickelt. Diese erlauben eine Anregung mithilfe eines herkömmlichen Smartphone-Blitzlichtes während die Emission einfach mit der Kamera aufgezeichnet werden kann. Zu diesem Zweck wurden grün emittierende (SrAl2O4: Eu2+, Dy3+ (SAED)) und rot emittierende (CaS: Eu2+ und SrS: Eu2+) Leuchtstoffe entwickelt. Die Lebenszeit von SAED konnte variiert werden von 0.5 s bis 11.7 s durch Glühen des kommerziell erhältlichen Stoffes, was eine Verringerung der Störstellendichte im Material zur Folge hat. Die Lumineszenzlebenszeit von CaS: Eu2+ und SrS: Eu2+ konnte dagegen zwischen 0.1 bis 0.6 s und 150 bis 377 ms eingestellt werden mithilfe der Eu2+-Dotierdichte. Die Nutzung eines Smartphones ermöglicht nicht nur lebenszeit-basierte Temperaturmessungen ohne teure Messinstrumente, sondern eröffnet darüber hinaus eine kostengünstige Methode zur Authentifizierung von lumineszenzbasierten, dynamischen Markierungen zur Fälschungssicherung

    BEst (Biomarker Estimation): Health Biomarker Estimation Non-invasively and Ubiquitously

    Get PDF
    This dissertation focuses on the non-invasive assessment of blood-hemoglobin levels. The primary goal of this research is to investigate a reliable, affordable, and user-friendly point-of-care solution for hemoglobin-level determination using fingertip videos captured by a smartphone. I evaluated videos obtained from five patient groups, three from the United States and two from Bangladesh, under two sets of lighting conditions. In the last group, based on human tissue optical transmission modeling data, I used near-infrared light-emitting diode sources of three wavelengths. I developed novel image processing techniques for fingertip video analysis to estimate hemoglobin levels. I studied video images creating image histogram and subdividing each image into multiple blocks. I determined the region of interest in a video and created photoplethysmogram signals. I created features from image histograms and PPG signals. I used the Partial Least Squares Regression and Support Vector Machine Regression tools to analyze input features and to build hemoglobin prediction models. Using data from the last and largest group of patients studied, I was able to develop a model with a strong linear correlation between estimated and clinically-measured hemoglobin levels. With further data and methodological refinements, the approach I have developed may be able to define a clinically accurate public health applicable tool for hemoglobin level and other blood constituent assessment

    Towards early hemolysis detection: a smartphone based approach

    Get PDF
    Os especialistas em diagnóstico in vitro (IVDs) têm confiado maioritariamente na inspeção visual (ótica) manual e, em segundo lugar, em sensores óticos ou câmaras embutidas ou dispositivos médicos incorporados que suportam o exame da qualidade da amostra na fase pré-analítica. Com o aumento dos volumes de amostras para serem processadas e dos respetivos dados complexos gerados por esse processamento, aquelas técnicas tornaram-se cada vez mais difíceis de utilizar, ou os respetivos resultados não ficam imediatamente disponíveis. Para superar as complexidades impostas por tais técnicas tradicionais, o aumento do uso de dispositivos móveis e algoritmos de processamento de imagem no setor de saúde abriu caminho para a constituição de novos casos de uso baseados em análises móveis de amostras, pois fornecem uma interação simples e intuitiva com objetos gráficos familiares que são mostrados no ecrã dos smartphones. As interfaces gráficas e as técnicas de interação suportadas por dispositivos móveis podem pois proporcionar ao especialista em IVD uma série de vantagens e valor agregado devido à maior familiaridade com estes dispositivos e à grande acessibilidade que evidenciam atualmente, tendo o potencial de facilitar as análises de amostras. No entanto, o uso sistemático de dispositivos móveis no setor da saúde encontra-se ainda numa fase muito incipiente, em particular na área de IVD. Nesta tese, propõe-se conceber e discutir a arquitetura, a conceção e a implementação de um protótipo de uma aplicação móvel para smartphone (designada por "HemoDetect") que implementa um conjunto sugerido de algoritmos, interfaces e técnicas de interação que foram desenvolvidos com o objetivo de contribuir para a compreensão de técnicas mais eficientes para ajudar a detetar a hemólise, um processo que designa a rotura de glóbulos vermelhos (eritrócitos) e libertação do respetivo conteúdo (citoplasma) para o fluído circundante (por exemplo, plasma sanguíneo), complementando-as com estatísticas e medições de laboratório, mostrando a utilização de um protótipo durante experiências, permitindo assim chegar-se a um conceito viável que permita apoiar eficazmente a deteção precoce de hemólise.In Vitro Diagnostics (IVDs) specialists have been firstly relying on manual visual (optical) inspection and, secondly, on optical sensors or cameras embedded or built-in medical devices which support the examination of sample quality in pre-analytical phase. With increasing sample processing volumes and their generated complex data, these techniques have become increasingly difficult or results are not readily available. In order to overcome the complexities posed by these traditional techniques, the increased usage of mobile devices and algorithms in the healthcare industry paves the way into shaping new use cases and discovery of mobile analysis of samples, as they provide a user-friendly and familiar interaction with objects displayed on their screens. The interfaces and interaction techniques rendered by mobile devices, bring, to the IVD specialist, a number of advantages and added value due to increased familiarity with the devices or their accessibility, which is made easier. However, they are at the beginning of their journey in the healthcare industry, in particular in the IVD and point-of-care areas. In this thesis, the proposal is to discover and discuss the architecture, design and implementation of a smartphone prototype app (called “HemoDetect”) with its algorithms, interfaces and interaction techniques which was developed to help detect hemolysis which represents the rupture of red blood cells (erythrocytes) and release of their contents (cytoplasm) into surrounding fluid (e.g. blood plasma), and complementing it with from-the-lab statistics and measurements showing its utilization during experiments, which ultimately may be a feasible concept that could support early hemolysis detection.Les spécialistes du diagnostic in vitro (DIV) se sont d'abord appuyés sur l'inspection visuelle (optique) manuelle et, ensuite, sur des capteurs optiques ou des caméras intégrées ou intégrées à des dispositifs médicaux qui facilitent l'examen de la qualité des échantillons en phase pré-analytique. Avec l'augmentation des volumes de traitement des échantillons et des données complexes générées, ces techniques sont devenues de plus en plus difficiles ou les résultats ne sont pas facilement disponibles. Afin de surmonter les complexités posées par ces techniques traditionnelles, l'utilisation croissante des appareils mobiles et des algorithmes dans le secteur de la santé ouvre la voie à la définition de nouveaux cas d'utilisation et à la découverte d'analyses d'échantillons mobiles, car ils fournissent une interaction conviviale et familière. avec des objets affichés sur leurs écrans. Les interfaces et les techniques d'interaction rendues par les appareils mobiles apportent au spécialiste des dispositifs de DIV un certain nombre d'avantages et de valeur ajoutée en raison d'une familiarisation accrue avec les appareils ou de leur accessibilité, ce qui est facilité. Cependant, ils sont au début de leur parcours dans le secteur de la santé, en particulier dans le domains des DIV et point-of-care. Dans cette thèse, la proposition est de découvrir et de discuter de l’architecture, de la conception et de la mise en oeuvre d’une application pour smartphone (appelée «HemoDetect») avec ses algorithmes, interfaces et techniques d’interaction, qui a été développée pour aider à détecter l’hémolyse qui représente une rupture des globules rouges (érythrocytes) et la libération de leur contenu (cytoplasme) dans le liquide environnant (par exemple, le plasma sanguin), en le complétant par des statistiques de laboratoire et des mesures montrant son utilisation au cours des expériences, ce qui pourrait finalement être un concept réalisable qui pourrait permettre une détection précoce de l'hémolyse
    corecore