11,288 research outputs found

    Minimal structures for the implementation of digital rational lossless systems

    Get PDF
    Digital lossless transfer matrices and vectors (power-complementary vectors) are discussed for applications in digital filter bank systems, both single rate and multirate. Two structures for the implementation of rational lossless systems are presented. The first structure represents a characterization of single-input, multioutput lossless systems in terms of complex planar rotations, whereas the second structure offers a representation of M-input, M-output lossless systems in terms of unit-norm vectors. This property makes the second structure desirable in applications that involve optimization of the parameters. Modifications of the second structure for implementing single-input, multioutput, and lossless bounded real (LBR) systems are also included. The main importance of the structures is that they are completely general, i.e. they span the entire set of M×1 and M×M lossless systems. This is demonstrated by showing that any such system can be synthesized using these structures. The structures are also minimal in the sense that they use the smallest number of scalar delays and parameters to implement a lossless system of given degree and dimensions. A design example to demonstrate the main results is included

    The role of lossless systems in modern digital signal processing: a tutorial

    Get PDF
    A self-contained discussion of discrete-time lossless systems and their properties and relevance in digital signal processing is presented. The basic concept of losslessness is introduced, and several algebraic properties of lossless systems are studied. An understanding of these properties is crucial in order to exploit the rich usefulness of lossless systems in digital signal processing. Since lossless systems typically have many input and output terminals, a brief review of multiinput multioutput systems is included. The most general form of a rational lossless transfer matrix is presented along with synthesis procedures for the FIR (finite impulse response) case. Some applications of lossless systems in signal processing are presented

    Design of doubly-complementary IIR digital filters using a single complex allpass filter, with multirate applications

    Get PDF
    It is shown that a large class of real-coefficient doubly-complementary IIR transfer function pairs can be implemented by means of a single complex allpass filter. For a real input sequence, the real part of the output sequence corresponds to the output of one of the transfer functions G(z) (for example, lowpass), whereas the imaginary part of the output sequence corresponds to its "complementary" filter H(z)(for example, highpass). The resulting implementation is structurally lossless, and hence the implementations of G(z) and H(z) have very low passband sensitivity. Numerical design examples are included, and a typical numerical example shows that the new implementation with 4 bits per multiplier is considerably better than a direct form implementation with 9 bits per multiplier. Multirate filter bank applications (quadrature mirror filtering) are outlined

    Perceptually smooth timbral guides by state-space analysis of phase-vocoder parameters

    Get PDF
    Sculptor is a phase-vocoder-based package of programs that allows users to explore timbral manipulation of sound in real time. It is the product of a research program seeking ultimately to perform gestural capture by analysis of the sound a performer makes using a conventional instrument. Since the phase-vocoder output is of high dimensionality — typically more than 1,000 channels per analysis frame—mapping phase-vocoder output to appropriate input parameters for a synthesizer is only feasible in theory

    Glottal Spectral Separation for Speech Synthesis

    Get PDF

    A new approach to the realization of low-sensitivity IIR digital filters

    Get PDF
    A new implementation of an IIR digital filter transfer function is presented that is structurally passive and, hence, has extremely low pass-band sensitivity. The structure is based on a simple parallel interconnection of two all-pass sections, with each section implemented in a structurally lossless manner. The structure shares a number of properties in common with wave lattice digital filters. Computer simulation results verifying the low-sensitivity feature are included, along with results on roundoff noise/dynamic range interaction. A large number of alternatives is available for the implementation of the all-pass sections, giving rise to the well-known wave lattice digital filters as a specific instance of the implementation

    A Unifying Framework for Finite Wordlength Realizations.

    No full text
    A general framework for the analysis of the finite wordlength (FWL) effects of linear time-invariant digital filter implementations is proposed. By means of a special implicit system description, all realization forms can be described. An algebraic characterization of the equivalent classes is provided, which enables a search for realizations that minimize the FWL effects to be made. Two suitable FWL coefficient sensitivity measures are proposed for use within the framework, these being a transfer function sensitivity measure and a pole sensitivity measure. An illustrative example is presented

    Estimation of glottal closure instants in voiced speech using the DYPSA algorithm

    Get PDF
    Published versio
    corecore