580 research outputs found

    An analytical model for turbulence scattered rays in the shadow zone for outdoor sound propagation calculation

    Get PDF
    In outdoor sound propagation, an inherent problem of the ray tracing method is its inability to determine the sound pressure level in the shadow zone, where geometrical rays do not penetrate. This is a serious problem in a turbulent atmosphere where significant sound energy will be scattered into the shadow. Empirical corrections that are determined from measurements or numerical simulations are limited to situations within the bounds of the empirical corrections. This paper describes a different approach where the ray tracing model is modified analytically into a scattered ray model. Rays are first diffracted from the shadow boundary, which is determined by the geometrical ray paths. The diffracted rays are then scattered by turbulence in their way to the receiver. The amount of scatter is determined from turbulence statistics that are determined from a Gaussian turbulence model. Most of the statistics are determined analytically except one element, which is determined empirically from numerical simulations. This turbulence scattered ray model is shown to have good accuracy against calculations based on the parabolic equation, and against previously published measurement data. It was found that the agreement is good both with and without turbulence, at distance up to 2 km from the shadow boundary. © 2009 Acoustical Society of Americ

    A Framework for Simulation of Aircraft Flyover Noise Through a Non-Standard Atmosphere

    Get PDF
    This paper describes a new framework for the simulation of aircraft flyover noise through a non-standard atmosphere. Central to the framework is a ray-tracing algorithm which defines multiple curved propagation paths, if the atmosphere allows, between the moving source and listener. Because each path has a different emission angle, synthesis of the sound at the source must be performed independently for each path. The time delay, spreading loss and absorption (ground and atmosphere) are integrated along each path, and applied to each synthesized aircraft noise source to simulate a flyover. A final step assigns each resulting signal to its corresponding receiver angle for the simulation of a flyover in a virtual reality environment. Spectrograms of the results from a straight path and a curved path modeling assumption are shown. When the aircraft is at close range, the straight path results are valid. Differences appear especially when the source is relatively far away at shallow elevation angles. These differences, however, are not significant in common sound metrics. While the framework used in this work performs off-line processing, it is conducive to real-time implementation

    Evaluation of EM-wave propagation in fully three-dimensional atmospheric refractive index distributions

    Get PDF
    We present a novel numerical method, based on high-frequency localization, for evaluation of electromagnetic-wave propagation through atmospheres exhibiting fully three-dimensional (height, range and cross-range) refractive index variations. This methodology, which is based on localization of Rytov-integration domains to small tubes around geometrical optics paths, can accurately solve three-dimensional propagation problems in orders-of-magnitude shorter computing times than other algorithms available presently. For example, the proposed approach can accurately produce solutions for propagation of ≈20 cm GPS signals across hundreds of kilometers of realistic, three-dimensional atmospheres in computing times on the order of 1 hour in a present-day single-processor workstation, a task for which other algorithms would require, in such single-processor computers, computing times on the order of several months

    Radiation and Scattering of EM Waves in Large Plasmas Around Objects in Hypersonic Flight

    Full text link
    Hypersonic flight regime is conventionally defined for Mach larger than 5; in these conditions, the flying object becomes enveloped in a plasma. This plasma is densest in thin surface layers, but in typical situations of interest it impacts electromagnetic wave propagation in an electrically large volume. We address this problem with a hybrid approach. We employ Equivalence Theorem to separate the inhomogeneous plasma region from the surrounding free space via an equivalent (Huygens) surface, and the Eikonal approximation to Maxwell equations in the large inhomogeneous region for obtaining equivalent currents on the separating surface. Then, we obtain the scattered field via (exact) free space radiation of these surface equivalent currents. The method is extensively tested against reference results and then applied to a real-life re-entry vehicle with full 3D plasma computed via Computational Fluid Dynamic (CFD) simulations. We address both scattering (RCS) from the entire vehicle and radiation from the on-board antennas. From our results, significant radio link path losses can be associated with plasma spatial variations (gradients) and collisional losses, to an extent that matches well the usually perceived blackout in crossing layers in cutoff. Furthermore, we find good agreement with existing literature concerning significant alterations of the radar response (RCS) due to the plasma envelope

    Radiation and Scattering of EM Waves in Large Plasmas Around Objects in Hypersonic Flight

    Get PDF
    Hypersonic flight regime is conventionally defined for Mach> 5; in these conditions, the flying object becomes enveloped in a plasma. This plasma is densest in thin surface layers, but in typical situations of interest it impacts electromagnetic wave propagation in an electrically large volume. We address this problem with a hybrid approach. We employ Equivalence Theorem to separate the inhomogeneous plasma region from the surrounding free space via an equivalent (Huygens) surface, and the Eikonal approximation to Maxwell equations in the large inhomogeneous region for obtaining equivalent currents on the separating surface. Then, we obtain the scattered field via (exact) free space radiation of these surface equivalent currents. The method is extensively tested against reference results and then applied to a real-life re-entry vehicle with full 3D plasma computed via Computational Fluid Dynamic (CFD) simulations. We address both scattering (RCS) from the entire vehicle and radiation from the on-board antennas. From our results, significant radio link path losses can be associated with plasma spatial variations (gradients) and collisional losses, to an extent that matches well the usually perceived blackout in crossing layers in cutoff. Furthermore, we find good agreement with existing literature concerning significant alterations of the radar response (RCS) due to the plasma envelope

    Spatial Sound Rendering – A Survey

    Get PDF
    Simulating propagation of sound and audio rendering can improve the sense of realism and the immersion both in complex acoustic environments and dynamic virtual scenes. In studies of sound auralization, the focus has always been on room acoustics modeling, but most of the same methods are also applicable in the construction of virtual environments such as those developed to facilitate computer gaming, cognitive research, and simulated training scenarios. This paper is a review of state-of-the-art techniques that are based on acoustic principles that apply not only to real rooms but also in 3D virtual environments. The paper also highlights the need to expand the field of immersive sound in a web based browsing environment, because, despite the interest and many benefits, few developments seem to have taken place within this context. Moreover, the paper includes a list of the most effective algorithms used for modelling spatial sound propagation and reports their advantages and disadvantages. Finally, the paper emphasizes in the evaluation of these proposed works
    • …
    corecore