923 research outputs found

    On the Experimental Evaluation of Vehicular Networks: Issues, Requirements and Methodology Applied to a Real Use Case

    Get PDF
    One of the most challenging fields in vehicular communications has been the experimental assessment of protocols and novel technologies. Researchers usually tend to simulate vehicular scenarios and/or partially validate new contributions in the area by using constrained testbeds and carrying out minor tests. In this line, the present work reviews the issues that pioneers in the area of vehicular communications and, in general, in telematics, have to deal with if they want to perform a good evaluation campaign by real testing. The key needs for a good experimental evaluation is the use of proper software tools for gathering testing data, post-processing and generating relevant figures of merit and, finally, properly showing the most important results. For this reason, a key contribution of this paper is the presentation of an evaluation environment called AnaVANET, which covers the previous needs. By using this tool and presenting a reference case of study, a generic testing methodology is described and applied. This way, the usage of the IPv6 protocol over a vehicle-to-vehicle routing protocol, and supporting IETF-based network mobility, is tested at the same time the main features of the AnaVANET system are presented. This work contributes in laying the foundations for a proper experimental evaluation of vehicular networks and will be useful for many researchers in the area.Comment: in EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 201

    Implementation of CAVENET and its usage for performance evaluation of AODV, OLSR and DYMO protocols in vehicular networks

    Get PDF
    Vehicle Ad-hoc Network (VANET) is a kind of Mobile Ad-hoc Network (MANET) that establishes wireless connection between cars. In VANETs and MANETs, the topology of the network changes very often, therefore implementation of efficient routing protocols is very important problem. In MANETs, the Random Waypoint (RW) model is used as a simulation model for generating node mobility pattern. On the other hand, in VANETs, the mobility patterns of nodes is restricted along the roads, and is affected by the movement of neighbour nodes. In this paper, we present a simulation system for VANET called CAVENET (Cellular Automaton based VEhicular NETwork). In CAVENET, the mobility patterns of nodes are generated by an 1-dimensional cellular automata. We improved CAVENET and implemented some routing protocols. We investigated the performance of the implemented routing protocols by CAVENET. The simulation results have shown that DYMO protocol has better performance than AODV and OLSR protocols.Peer ReviewedPostprint (published version

    Design and Experimental Evaluation of a Database-Assisted V2V Communications System Over TV White Space

    Get PDF
    Automakers are increasingly employing wireless communications technologies into vehicles, which are expected to be one of the primary tools to improve traffic flow and traffic safety. Anticipating a significant increase in the accompanying spectrum and capacity requirements, in this paper, we speculate about using dynamic spectrum access in general, and TV white space in particular for vehicular communications. To this end, we describe the concept, design, general architecture and operation principles of a vehicle-to-vehicle communications system over TV white space. This system makes dual use of a geolocation database and spectrum sensing to understand spectrum vacancies. In this architecture, whenever a database query result is available, that information is prioritized over sensing results and when the database access is disrupted, vehicles rely on the spectrum sensing results. After describing the general concepts, we numerically analyze and evaluate the benefits of using proxy vehicles for geolocation database access. Finally, we present the middleware-centric implementation and field test results of a multi-hop vehicle-to-vehicle communications system over the licensed TV-band. We present results regarding multi-hop throughput, delay, jitter, channel switching and database access latencies. This study complements our previous work which described spectrum sensing based vehicle-to-vehicle communications design and testing

    AnaVANET: an experiment and visualization tool for vehicular networks

    Get PDF
    International audienceThe experimental evaluation of wireless and mobile networks is a challenge that rarely substitutes simulation in research works. This statement is even more evident in vehicular communications, due to the equipment and effort needed to obtain significant and realistic results. In this paper, key issues in vehicular experimental evaluation are analyzed by an evaluation tool called AnaVANET, especially designed for assessing the performance of vehicular networks. This software processes the output of well-known testing tools such as ping or iperf, together with navigation information, to generate geo-aware performance figures of merit both in numeric and graphical forms. Its main analysis capabilities are used to validate the good performance in terms of delay, packet delivery ratio and throughput of NEMO, when using a road-side segment based on IPv6 GeoNetworking

    Enabling Trustworthy Service Evaluation in Service-Oriented Mobile Social Network

    Get PDF
    We propose a Trustworthy Service Evaluation (TSE) system to enable users to share service reviews inservice-oriented mobile social networks (S-MSNs). Each service provider independently maintains a TSE for itself, which collects andstores users’ reviews about its services without requiring any third trusted authority. The service reviews can then be made available tointerested users in making wise service selection decisions. It identify three unique service review attacks, i.e., linkability, rejection, and modification attacks, and develop sophisticated security mechanisms for the TSE to deal with these attacks. Specifically, the basicTSE (bTSE) enables users to distributedly and cooperatively submit their reviews in an integrated chain form by using hierarchical and aggregate signature techniques. It restricts the service providers to reject, modify, or delete the reviews. Thus, the integrity and authenticity of reviews are improved. Further, It extend the bTSE to a Sybil-resisted TSE (SrTSE) to enable the detection of two typical sybil attacks. In the SrTSE, if a user generates multiple reviews toward a vendor in a predefined time slot with differentpseudonyms, the real identity of that user will be revealed. Through security analysis and numerical results, It show that the bTSE and the SrTSE effectively resist the service review attacks and the SrTSE additionally detects the Sybil attacks in an efficient manner.Through performance evaluation, It show that the bTSE achieves better performance in terms of submission rate and delay than a service review system that does not adopt user cooperation

    Formal Specification Language for Vehicular Ad-Hoc Networks

    Get PDF
    Vehicular Ad-Hoc Network (VANET) is a form of Mobile Ad-Hoc Network (wireless Network), originally used to provide safety & comfort for passengers, & currently being used to establish Dedicated Short Range Communications (DSRC) among near by Vehicles (V2V Communications) and between vehicles and nearby fixed infrastructure equipments; Roadside equipments (V2I Communications). VANET was used also to warn drivers of collision possibilities, road sign alarms, auto-payment at road tolls and parks. Usually VANET can be found in Intelligent Transportation Systems (ITS). VANET is the current and near future hot topic for research, that has been targeted by many researchers to develop some applications and protocols specifically for the VANET. But a problem facing all VANET researchers is the unavailability of a formal specification language to specify the VANET systems, protocols, applications and scenarios proposed by those researchers. A specification language is a formal language that is used during the systems design, analysis, and requirements analysis. Using a formal specification language, a researcher can show “What his system does”, Not How. As a contribution of our research we have created a formal specification language for VANET. We made the use of some Romans characters & some basic symbols to represent VANET Systems & Applications. In addition, we have created some combined symbols to represent actions and operations of the VANET system and its participating devices. Our formal specification language covers many of the VANET aspects, and offers Validity Test and Consistency Test for the systems. Using our specification language, we have presented three different case studies based on a VANET system model we have created and put them into the system validity and consistency tests and showed how to describe a VANET system and its applications using our formal specification language

    Efficient Resource Management Mechanism for 802.16 Wireless Networks Based on Weighted Fair Queuing

    Get PDF
    Wireless Networking continues on its path of being one of the most commonly used means of communication. The evolution of this technology has taken place through the design of various protocols. Some common wireless protocols are the WLAN, 802.16 or WiMAX, and the emerging 802.20, which specializes in high speed vehicular networks, taking the concept from 802.16 to higher levels of performance. As with any large network, congestion becomes an important issue. Congestion gains importance as more hosts join a wireless network. In most cases, congestion is caused by the lack of an efficient mechanism to deal with exponential increases in host devices. This can effectively lead to very huge bottlenecks in the network causing slow sluggish performance, which may eventually reduce the speed of the network. With continuous advancement being the trend in this technology, the proposal of an efficient scheme for wireless resource allocation is an important solution to the problem of congestion. The primary area of focus will be the emerging standard for wireless networks, the 802.16 or “WiMAX”. This project, attempts to propose a mechanism for an effective resource management mechanism between subscriber stations and the corresponding base station
    corecore