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Abstract Automakers are increasingly employing wireless communications technologies into 

vehicles, which are expected to be one of the primary tools to improve traffic flow and traffic 

safety. Anticipating a significant increase in the accompanying spectrum and capacity 

requirements, in this paper, we speculate about using dynamic spectrum access in general, and 

TV white space in particular for vehicular communications. To this end, we describe the concept, 

design, general architecture and operation principles of a vehicle-to-vehicle communications 

system over TV white space. This system makes dual use of a geolocation database and spectrum 

sensing to understand spectrum vacancies. In this architecture, whenever a database query result 

is available, that information is prioritized over sensing results and when the database access is 

disrupted, vehicles rely on the spectrum sensing results. After describing the general concepts, we 

numerically analyze and evaluate the benefits of using proxy vehicles for geolocation database 

access. Finally, we present the middleware-centric implementation and field test results of a multi-

hop vehicle-to-vehicle communications system over the licensed TV-band. We present results 

regarding multi-hop throughput, delay, jitter, channel switching and database access latencies. 

This study complements our previous work which described spectrum sensing based vehicle-to-

vehicle communications design and testing.  
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white space database. 
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1.  INTRODUCTION 

 Vehicles capable of communicating with other vehicles, and “connected vehicle” are not 

anymore future concepts with the automobile manufacturers increasingly employing wireless 

communications technologies in new vehicles. Advanced driving support applications which rely 

on wireless communications among the vehicles, aiming to increase driver awareness and 

situation perception are being envisioned to help decrease accidents. Similarly, efficiency of 

traffic flow is expected to improve by using such technologies [1]. 

The U.S. Federal Communication Commission (FCC) allocated 75 MHz of spectrum in the 

5.9 GHz band for dedicated short-range communications (DSRC) to be used by intelligent 

transportation systems (ITS), in 1999. Ever since then, applications of one-way or two-way 

vehicle-oriented communications have evolved into various forms. Recently, 10 MHz of 

spectrum centered at 760 MHz band has been allocated for ITS in Japan. The first generation of 

vehicles capable of communicating in this band will become available in Japan in 2015. Europe 

has allocated 50 MHz of spectrum in the 5.8 GHz band for ITS. Furthermore, several standards 

supporting vehicular communications have already been designed, e.g., ARIB STD-T109 in 

Japan, ETSI ITS-G5 in Europe, IEEE 1609 and IEEE 802.11p elsewhere. 

The number of vehicles which are capable of performing wireless communications is a 

negligibly small fraction of the total current market, as of today. Furthermore, the spectrum 

requirements of these vehicles presently are relatively low compared to wireless applications 

deployed in other sectors. However, not only the communications among vehicles, but also the 

communications between people, objects and vehicles are expected to become ubiquitous in the 

future, resulting in a significant increase in the accompanying spectrum and capacity requirements. 

This requirement of spectrum may further be enhanced by the developments in automated driving 

systems where autonomous vehicles might need to exchange significant amount of sensor and 

image data with hard real-time delivery requirements. Eventually, vehicular applications might 

suffer from spectrum scarcity and overcrowding, as has already been experienced by other mobile 

wireless communications sectors.  For example, one recent study [2] looks into the spectrum 

requirements of vehicular communications for safety applications in which more than 80 MHz of 

spectrum is deemed as necessary to be able to keep the packet error ratio under 1%.  

 Spectrum scarcity and overcrowding might eventually lead to the need to look for spectral 

resources elsewhere, as in the dynamic spectrum access (DSA) paradigm where unlicensed 

devices temporarily borrow licensed but spatially and/or temporally unused spectrum. In the rest 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



of this paper, we will first describe our previous work regarding DSA for vehicular 

communications in general, and V2V communications over TV white space (TVWS) in particular. 

Following that, we will continue with the description of the database assisted vehicular 

communications system underlying concepts, and a brief description of the architecture. After 

describing the general concepts and operation principles, we analyze and numerically evaluate 

the benefits of using proxy vehicles for geolocation database access. Finally, we will present the 

middleware-centric implementation and field test results of a multi-hop vehicle-to-vehicle 

communications setup over the licensed TV band. Results regarding multi-hop throughput, delay, 

jitter, channel switching and database access latencies will be presented. 

2. PREVIOUS WORK ON V2V COMMUNICATIONS OVER TVWS 

In the vehicular environment, application of dynamic spectrum access principles can help 

to satisfy capacity demand for vehicular applications, and to offload time-insensitive applications 

from the spectrum dedicated to time-critical applications. However, applying the dynamic 

spectrum access concepts to highly mobile environments brings additional challenges due to the 

mobility of the participating hosts. All of the existing standards center around a fixed or nomadic 

base station (or access point) in which a master-slave relationship exists. In vehicle to vehicle 

communications, this type of architecture becomes less relevant since most of the 

communications occur among vehicles in a geographically confined but continuously moving 

area. 

 Relatively static channel utilization of the broadcast television spectrum makes it one 

possible candidate for dynamic spectrum access in vehicular environments. In order to 

opportunistically access the unused spectrum, vehicles must be aware of their spectral 

environment. Two approaches being considered for spectrum awareness are incumbent user 

signal sensing and geolocation database lookup. Both approaches have advantages and drawbacks 

in vehicular environments. More specifically, neither of these approaches individually can 

provide sufficient incumbent protection from interference that might be created by vehicular 

cognitive network nodes [3]. 

 Towards merging spectrum sensing with geolocation database lookup, a representation 

method of white space vectors customized for high mobility environments is studied in [4]. Once 

the spectrum holes are detected, the next step is to coordinate and agree with the other vehicle(s) 

on the channels that are suitable for communications. One of the first studies that looked into the 

potential of using white spaces for vehicular communications is [5]. In [5], a distributed and 
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autonomous dynamic spectrum coordination method tailored for vehicular environments is 

proposed. Vehicles coordinate to agree on a control channel, to subsequently setup data channels, 

and from there to further exchange information on spatial and temporal spectrum variations. 

Vehicles in this method make use of each other’s temporal and spatial proximity relationships to 

autonomously agree on control and data channels.  

 In [6] we reported and demonstrated the first ever field tests of vehicle-to-vehicle 

communications over TV white space between two moving vehicles. Furthermore, [7] 

investigates the spatial dependencies in selecting an appropriate vacant channel for multi-hop 

vehicle-to-vehicle communications by taking into account several factors, such as the distance 

between the vehicles, channel bit rate, vehicle velocities, statistical information of channel 

utilization and propagation range of candidate channels. In [8] and [9] we described a combination 

and extension of the work in [6], with the distributed and autonomous control and data channel 

selection algorithms tailored for a group of vehicles and multi-hop communications which can 

work in an unknown spectral environment were developed and demonstrated. The system relied 

on limited spectrum sensing capabilities of the emulated TV signals in the field test area.  

 Moreover, the study in [10] looks into the feasibility of performing vehicular dynamic 

spectrum access across vacant TV channels via a queueing theory approach. It leverages actual 

quantitative measurements obtained from a wireless spectrum measurement campaign conducted 

along a major interstate highway in Massachusetts. The results show that in most rural and 

suburban areas, TV white space is a feasible resource for vehicle communications, satisfying 

performance requirements assuming that the sensing and channel switching functions are 

performed sufficiently fast. Work in [11] further advances the concept of vehicular dynamic 

spectrum access by employing artificial intelligence methods such as machine learning, to make 

a vehicle gradually learn from the past spectral experience and hence quickly converge into the 

best performing channel depending on the application requirements. In [12] we presented an 

assessment regarding the viability of using TV spectrum within the context of a vehicular dynamic 

spectrum access network.  

Finally, complementing the system in [8] and [9], in [13] we extended the system design 

so as to include dual use of sensing and database information. We presented the general design 

and operation principles of a vehicle to vehicle communications system in which the TV white 

space information is obtained from a centrally authorized white space database. In the following 

section we will briefly review that architecture as well as the system operation, and describe 

implementation of the middleware that governs the flow of events. 
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3. OVERVIEW OF SYSTEM ARCHITECTURE AND OPERATION 

Centrally authorized geolocation database is recently being ruled as the preferred method 

of primary user protection in certain markets. The secondary user of the spectrum must be location 

aware, and must periodically access the database querying the information regarding available 

white space. In centralized network topologies, base stations and access points can query the 

database on behalf of individual users. In an ad-hoc vehicle-to-vehicle communications setting, 

additional wireless connectivity to query the database would be necessary in each vehicle. 

Additionally, and depending on the market, the regulators require that a mobile node performs a 

database query whenever it moves more than 100 meters. If this rule is adopted for vehicular 

networks, a vehicle traveling at 100 km/h would create one database query every 3.6 seconds. A 

better way of accomplishing this could be to have one vehicle act as a proxy to obtain information 

from the database and distribute it among its peers, not only for the current location but also for 

"future" locations by taking hints from the neighboring vehicles' velocity vectors.  

3.1 Dual Use of Geolocation Database and Spectrum Sensing 

Since the centrally authorized geolocation database is (at least at present) the preferred 

method of primary user protection [14][15], the vehicles must be able to identify their location 

and query the database for available white space. In addition to the database access, we allow for 

spectrum sensing as the fallback option in case that the database access is lost, owing to high 

mobility of the network nodes (Figure 1).  

 

Figure 1. Conceptual view showing dual use of geolocation database and spectrum sensing. 
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When flipping to spectrum sensing as the method of spectrum awareness, the sensing 

subsystem obtains the list of vacant channels in the cache (effectively the last database access 

results) and builds a channel sensing plan by skipping those channels known as “occupied” at the 

time of switchover. If, for some reason, database access cannot be restored for a prolonged time, 

the system might end up starving spectrum in the worst case. This happens due to the sensing 

subsystem not visiting the previously occupied channels and continuously detecting other 

occupied channels as the vehicle changes location in time. To avoid spectrum starvation, we come 

back to the occupied channel list in the cache and select n channels randomly to include in the 

target channels for sensing list. Details of this scheme are explained in the flowchart in Figure 2. 

 

Figure 2. Database and sensing flip-over with spectrum starvation hedging. 

 In order to reduce the potentially high load on the wireless 3G/4G cellular network used to 

query the database, we implemented two procedures: 1) the vehicles which constitute the network 

swarm (described below in Section 3.3) select a proxy in charge of communication with the 

database and dissemination of the spectrum availability within the swarm; and 2) the proxy 
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downloads spectrum availability information for multiple locations on the road in advance. The 

proxy is selected based on its x-y Cartesian coordinates. The area map is divided into a mesh. All 

vehicles compare their location within a square field in the mesh (which we call the “distribution 

area”) to the center of that area. A vehicle which is presently at, or close to the center of the 

distribution area implicitly assumes the role of a proxy and initiates a query to the database. The 

information received from the database is periodically announced on the distribution control 

channel (DCC). Since we assume congestion of the 760 MHz/5.9 GHz licensed bands, we do not 

choose those bands to distribute the database information. Thus, the proxy simply selects the 

white space channel which will be available for the longest distance, as the DCC. A careful 

selection of the DCC would help to distribute the spectrum information without the need to change 

it frequently which also allows vehicles within and outside a swarm to discover the channel 

availability. Nodes other than the proxy simply sequentially listen to all TV channels, starting 

from the lowest index, until they discover the DCC. There might be cases where two or more 

vehicles assume the role of proxy in the same distribution area at the same time. While this is not 

the ideal situation, it would nevertheless not cause ambiguity as long as the same information is 

delivered on the same DCC. Conveniently, this discovery procedure must be performed only in 

case of a “cold start”, or when a vehicle travels over to a completely new trajectory. This concept 

is outlined in Figure 3. 

 

Figure 3. General concept showing the control and data plane separation with actual and virtual 

swarms of vehicles. 

3.2 Proxy Database Access Modeling and Evaluation 

 When using a proxy vehicle to access the white space, the number of vehicles individually 

accessing the white space database would decrease with the increasing “distribution area” size. 

An appropriate size of this area can be determined by several factors to support fast distribution 
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of the database information within the area. This, of course, depends on the transmission range of 

the Distribution Control Channel. Here we examine the impact of the proxy access with various 

sizes of the “distribution area” through a simple model evaluation. Model evaluation is conducted 

in a 15 km square area in which vehicles are randomly placed. We examine the relationship 

between the number of vehicles and the number of vehicles directly accessing the white space 

database, with and without proxies. We choose five different sizes of the “distribution area” (100 

m, 200 m, 250 m, 500 m, 1000 m-square area) when using a proxy. Note that we here assume the 

DCC can reliably cover the distribution area. 

 Figure 4 presents the results of simple model evaluation. In the simplest case of individual 

access, all vehicles can obtain information from the database immediately. This comes with the 

price of linear increase in the number of database accesses. On the other hand, when using a proxy 

for database access, the average number of vehicles directly accessing the database can be 

calculated as follows 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑜 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 =  𝑁 –
(𝑁 − 1)𝑛

𝑁(𝑛−1)
 

where n is the number of vehicles and N is the number of distribution areas in the evaluation area. 

With use of proxies, the number of vehicles accessing the database ideally converges to N. This 

might prove especially beneficial in urban areas. 

 

Figure 4. Number of total vehicles vs number of vehicles accessing the database with and 

without proxies. 

 Current FCC regulations require that a mobile TV white space device perform database query 

whenever it moves for more than 100 meters [14]. To act as a simple remedy for excessive queries 
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to the white space database in case of high mobility of the nodes, the regulations allow for 

prefetching of data.  As the trajectory of vehicles, at least until the next intersection, is highly 

predictable, the proxy can trade a number of per–point database queries for a single query 

addressing multiple locations. The query process can further be made efficient by filtering out the 

“cells” that the road curvature is clearly not passing through, thus decreasing the amount of 

information that needs to be shared with other swarm members. From another point of view, by 

excluding the irrelevant cells from the query, a longer “look ahead” in terms of available spectrum 

might be possible. 

 On the other hand, if a proxy is querying the database on behalf of the others, as in a swarm, 

then, a more comprehensive pattern which includes other vehicles’ position and speed vectors is 

required. This relevant-cells-only concept for the case of three vehicles is illustrated in Figure 5. 

 

Figure 5. Look-ahead and relevant-cells-only database query area for a three-vehicle swarm. 

3.3 Swarm Formation 

 In addition to querying the database, the information about location of nodes is needed to 

establish and maintain network topology. Conveniently, localization is already an important part 

of the licensed DSRC network design. To fulfill traffic safety assistance tasks, the vehicles 

broadcast their data including their identifier, location, speed, heading, and acceleration in the 

licensed 760 MHz or 5.9 GHz band. These messages are broadcasted periodically, for instance 

ten times per second, as defined in the SAE J2735 [16], the ETSI ITS [17], and the Japanese 

Advanced Safety Vehicle (ASV) Message Set specifications [18]. This inherent information 

exchange implicitly provides a tool for each vehicle to be aware of the network topology within 

its one-hop reach of broadcasts. Subsequently, from the information received about its neighbors, 

each vehicle can create and maintain a swarm table in which it stores one-hop neighbors’ list and 

prunes out the data belonging to two-hop neighbors. If the vehicles are lined up as in a convoy, 
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then it is probable that a vehicle will be listening to more than one vehicle’s safety messages. This 

would lead to the multiple choices of swarm join probabilities. Whether a vehicle joins a swarm 

k or not is a decision taken by the vehicle itself by considering the following constraints: 1) the 

current member population of the swarm k; 2) whether the speed, direction, acceleration, etc 

vectors of elements of swarm k are similar to those of ego vehicle. The information related to the 

swarm operation is distributed over Group Control Channel (GCC). We do not assume that these 

swarm tables to be maintained with perfect accuracy, because high mobility of nodes causes 

frequent changes in the network topology as vehicles travel with different speeds and frequently 

merge and leave roads.  We assume that the vehicles share the same view of regional maps so that 

they can synchronize on Cartesian coordinates. In the field experiments described below, all 

vehicles were preloaded with the same maps. Also, vehicles in the experiments were always part 

of a single swarm due to the very small number of participating cars. 

 Given that the role of DCC is to share (announce) channel availability information, and that 

padding of additional information on the DSRC broadcast packets is not in compliance with the 

relevant standards mentioned above (i.e., SAE J2735, ETSI ITS, J-ASV), the remaining issue is 

how to exchange swarm related information among the swarm members. A mechanism is needed 

on the application (data) plane to form “virtual swarms” of nodes which run a certain application 

and require data exchange. The virtual swarm nodes must congregate to the same white space 

channel and select a data route in the case of multi-hop exchanges. In our design, the necessary 

information is shared over the group control channel (GCC). Note that these control and 

distribution channels can be logical or physically allocated channels. 

3.4 Data Channel Selection 

 Data channel selection can also exploit the look-ahead and relevant-cells-only concepts 

employed in database query, this time to select the data channel from a set of available channels. 

The simplest way of doing this is apparently to consider the available channel(s) that would 

provide the longest availability (in terms of distance) without the need to switch to another 

channel. For this, the vehicle trajectory and the channel availability information are overlapped 

for each channel and the resulting “longest” channel is chosen as the data channel. This simple 

solution, however, may lead to channel collisions as the number of communicating pairs of 

vehicles selecting this longest one as their preferred channel of data transfer increases. A number 

of schemes that further look into the application types of each pair can be conceived of which 

would go beyond the scope of this paper. In the field tests described below, we simply selected 
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the longest available channel as the data channel among the set of vehicles participating in the 

experiments. 

3.5 Database Design 

 The database used during the field tests is developed and implemented by the National 

Institute of Information and Communication Technology (NICT) of Japan.  It was implemented 

in such a way that divided the entire Japanese archipelago into cells of 100m x 100m resulting in 

approximately 550 million cells in which the incumbent TV station information is calculated per 

channel. Cells were identified by their latitude and longitude identifiers in addition to a cell 

number. The database was located in Yokosuka City, approximately 900 km away from the test 

site, and was accessed via the 3G/LTE networks. 

4. EXPERIMENTAL EVALUATION AND RESULTS 

 We obtained experimental licenses for five TV channels, through channel 13 to 17 of 5.7 

MHz of width each, centered at 473, 479, 485, 491 and 497 MHz. The license was effective for 

several weeks, covering a 5 km stretch of the public roads in Miyazaki, southwestern Japan. The 

power limit for the TV band devices was approximately 80 mW over these five channels. TV 

band devices employed OFDM without channel bonding. Relevant parameters are summarized 

in Table 1. A schematic outline of the field tests is given in Figure 6. 

Location Misatocho, Miyazaki 

Channels TV Ch 13 to 17 (470-500 MHz) 

Bandwidth 5.7 MHz/channel 

Output Power 79 mW 

Modulation OFDM 64QAM 

Database NICT-Yokosuka, access via 3G/LTE 

Table 1. TV band device operation parameters. 
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Figure 6. Outline of the field tests. 

 The tests involved three vehicles with a camera installed on the headrest of one of them as 

shown in Figure 7. An application that transferred real-time video images from the car with the 

camera to other vehicle(s) was implemented and used during the tests. Vehicles traveled at or 

below 40 km/h, the speed limit for the public roads in the experimentation area. Note that, while 

the camera is installed in only one of the cars, the sequence of the vehicles need not be as shown 

in Figure 7 as the location based routing scheme implemented in the middleware core uses a so-

called georouting algorithm. In other words, depending on the position of the source and 

destination(s) of the application, the routing scheme builds and maintains a route that takes into 

account the actual coordinates of the vehicles. This scheme was also tested by changing the 

sequence of the vehicles without changing the source and destination of the application to confirm 

that the position of the source (car with video camera) triggers a makeover of the routing table in 

all cars. 

 

Figure 7. Field tests with a front-view camera installed in the lead car feeding real-time video 

images to others. 
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4.1 Throughput and Delay 

 We first measured the throughput of the system without the relay car in between the source 

and destination (i.e. single hop). The values vary depending on the distance between the cars, 

however the average is roughly 5 Mbps. When the relay car is introduced in between the source 

and destination (i.e. two hops) the average throughput drops to around 2 Mbps. This is a well 

known issue stemming from the shared media access of more than two nodes. Theoretically, end-

to-end throughput can be maintained the same in multi-hop structures if each hop uses a different 

channel, however this requires extra hardware and/or other sophisticated schemes such as full-

duplex radio. The throughput results for TCP and UDP, as well as the packet loss percentage and 

end-to-end delays are summarized in Table 2 for a packet size of 1470 bytes. The distance 

between the cars in the single hop measurements was around 140 meters, and was 185 meters in 

total with two hops. 

 Throughput 

(TCP) 

Throughput 

(UDP) 

Packet Loss 

(UDP) 

End-to-end delay 

One hop 4.64 Mbps 6 Mbps - 3.1 msec 

Two hops 2.24 Mbps 2.7 Mbps 1% 7.2 msec 

Table 2. Throughput, delay and packet loss performance results for single hop and two hops. 

Figure 8 presents a snapshot of the display inside the rear car showing the near real-time video 

feed being received from the lead car. It is worth noting that the video codec delays in these tests 

were much more significant than the packet transmission delays (2 seconds versus 7 msecs). 

Figure 9 zooms into the user interface inside the rear car showing real-time operating parameters. 

Upper portion shows the data route active in between the cars, middle portion shows the spectrum 

sensing results, and the lower portion shows database query results coming from the proxy car 

overlaid onto the actual map of the test area. More will be said about sensing performance below.  
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Figure 8. Snapshot of the view inside the rear car showing video feed from the lead car. 

 

Figure 9. User interface inside the rear car showing routing, sensing and database overlay. 

4.2 Incumbent Sensing 

 We implemented a cross-correlation method that looks into a single segment of the 13-

segment Japanese digital terrestrial broadcast scheme (ISDB-T) to perform incumbent sensing. 

In ISDB-T, HDTV broadcast signal occupies 12 segments, and the remaining single 428 KHz 

segment is used for mobile terrestrial digital audio/video and data broadcasting (the so-called 

“1seg” service). Our sensing implementation was tuned to detect signals on this 1seg service band 

which sits in the center of the TV channel. Sensing capability of the TV band devices was -

108dBm/430KHz (-111.3dBm/200kHz). Figure 10 presents results pertaining to detection 
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probability of the 1seg signals. These results were obtained when the vehicles were stationary. 

For comparison, we provide spectrum analyzer screen shots of the corresponding channels in 

Figure 11. We also observed false alarm rates of 15%, 7% and 1% for channels 43, 44 and 46, 

respectively. The false alarm usually spreads to other channels too when the vehicles are not 

stationary.  

 

Figure 10. Incumbent detection probability for channels 35, 37, 39 and 41. 

 

Figure 11. Spectrum analyzer screen captures of the corresponding channels in Figure 10. 

4.3 Database Access Latency and Channel Switching Latencies 

 When accessed over 3G cellular, database access takes 9 seconds for cold start. This includes 

connection setup times. The same cold start access time over LTE is 0.3 seconds. For the 

subsequent queries, response time decreases to 0.4 seconds for 3G and to 0.12 seconds for LTE 
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on average per query. As the vehicles traveled from an area with no incumbent signal on the 

borrowed channel, to another area with incumbent activity on that channel, they switched 

channels by negotiating over the group control channel (GCC). We measured the time to switch 

in between the channels. Vehicles traveled at approximately 40km/h and with 40-50 meters of 

separation during channel switchover tests. Switchovers were performed for the following 

patterns: Ch 14  Ch 16, Ch 16ch  Ch 15, Ch 15  Ch 16, Ch 16  Ch 14. The time that the 

channel on the first hop change from a soon-to-be occupied channel to a vacant one, on the 

average, is 2.69 seconds and the time it takes for both hops change the channel is 2.70 seconds. 

Most of this delay comes from the radio to “settle” on a new channel. 

4.4 Delay Jitter Evaluation 

 While average end-to-end delay time is a valuable performance metric, for most applications 

the analysis is incomplete without delay jitter evaluations. Here we present results of delay jitter 

analysis. As mentioned previously, end to end delay times are 3.1 and 7.2 msec for one-hop and 

two-hop scenarios, respectively. Jitter varies similarly for both topologies. Average jitter in single 

hop topology is 2.35 msec and that of two-hop topology is 5.88 msec. Corresponding distribution 

patterns of the jitter for one-hop and two-hop topologies are given in Figure 12 and Figure 13. 

Note the wider distribution with two humps in case of the multi-hop topology. 

 

Figure 12. Jitter distribution for one-hop topology. 
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Figure 13. Jitter distribution for two-hop topology. 

5. SUMMARY AND CONCLUSIONS 

We have presented an architecture that makes use of a centralized TV white space database 

to determine the spectrum opportunities for V2V communications. We have also implemented a 

spectrum sensing subsystem which complements the database-oriented operation. We 

implemented and tested the system in the field by using licensed TV channels and presented 

results pertaining to throughput, sensing, channel switchover, database access latencies, end-to-

end delays and jitter. Future work would look into scalability of the inter- and intra-swarm 

schemes with proxy elements distributing the database information.  
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