3,263 research outputs found

    Simulation and measurement of quasi-optical multipliers

    Get PDF

    Comparison of coupled mode theory and FDTD simulations of coupling between bent and straight optical waveguides

    Get PDF
    Analysis of integrated optical cylindrical microresonators involves the coupling between a straight waveguide and a bent waveguide. Our (2D) variant of coupled mode theory is based on analytically represented mode profiles. With the bend modes expressed in Cartesian coordinates, coupled mode equations can be derived in a classical way and solved by numerical integration. Proper manipulation of the propagation matrix leads to stable results even in parameter domains of compact and/or radiative structures, which seemed unsuitable for a perturbational approach due to oscillations of the matrix elements along the propagation. Comparisons with FDTD calculations show convincing agreement

    High-level programming of stencil computations on multi-GPU systems using the SkelCL library

    Get PDF
    The implementation of stencil computations on modern, massively parallel systems with GPUs and other accelerators currently relies on manually-tuned coding using low-level approaches like OpenCL and CUDA. This makes development of stencil applications a complex, time-consuming, and error-prone task. We describe how stencil computations can be programmed in our SkelCL approach that combines high-level programming abstractions with competitive performance on multi-GPU systems. SkelCL extends the OpenCL standard by three high-level features: 1) pre-implemented parallel patterns (a.k.a. skeletons); 2) container data types for vectors and matrices; 3) automatic data (re)distribution mechanism. We introduce two new SkelCL skeletons which specifically target stencil computations – MapOverlap and Stencil – and we describe their use for particular application examples, discuss their efficient parallel implementation, and report experimental results on systems with multiple GPUs. Our evaluation of three real-world applications shows that stencil code written with SkelCL is considerably shorter and offers competitive performance to hand-tuned OpenCL code

    A Radial-Dependent Dispersive Finite-Difference Time-Domain Method for the Evaluation of Electromagnetic Cloaks

    Get PDF
    A radial-dependent dispersive finite-difference time-domain (FDTD) method is proposed to simulate electromagnetic cloaking devices. The Drude dispersion model is applied to model the electromagnetic characteristics of the cloaking medium. Both lossless and lossy cloaking materials are examined and their operating bandwidth is also investigated. It is demonstrated that the perfect "invisibility" from electromagnetic cloaks is only available for lossless metamaterials and within an extremely narrow frequency band.Comment: 18 pages, 10 figure

    Scalable numerical approach for the steady-state ab initio laser theory

    Get PDF
    We present an efficient and flexible method for solving the non-linear lasing equations of the steady-state ab initio laser theory. Our strategy is to solve the underlying system of partial differential equations directly, without the need of setting up a parametrized basis of constant flux states. We validate this approach in one-dimensional as well as in cylindrical systems, and demonstrate its scalability to full-vector three-dimensional calculations in photonic-crystal slabs. Our method paves the way for efficient and accurate simulations of lasing structures which were previously inaccessible.Comment: 17 pages, 8 figure
    • …
    corecore