5,842 research outputs found

    Beyond Moore's technologies: operation principles of a superconductor alternative

    Full text link
    The predictions of Moore's law are considered by experts to be valid until 2020 giving rise to "post-Moore's" technologies afterwards. Energy efficiency is one of the major challenges in high-performance computing that should be answered. Superconductor digital technology is a promising post-Moore's alternative for the development of supercomputers. In this paper, we consider operation principles of an energy-efficient superconductor logic and memory circuits with a short retrospective review of their evolution. We analyze their shortcomings in respect to computer circuits design. Possible ways of further research are outlined.Comment: OPEN ACCES

    Functionality-power-packaging considerations in context aware wearable systems

    Get PDF
    Wearable computing places tighter constraints on architecture design than traditional mobile computing. The architecture is described in terms of miniaturization, power-awareness, global low-power design and suitability for an application. In this article we present a new methodology based on three different system properties. Functionality, power and electronic Packaging metrics are proposed and evaluated to study different trade offs. We analyze the trade offs in different context recognition scenarios. The proof of concept case study is analyzed by studying (a) interaction with household appliances by a wrist worn device (acceleration, light sensors) (b) studying walking behavior with acceleration sensors, (c) computational task and (d) gesture recognition in a wood-workshop using the combination of accelerometer and microphone sensors. After analyzing the case study, we highlight the size aspect by electronic packaging for a given functionality and present the miniaturization trends for ‘autonomous sensor button

    Design and evaluation of a person-centric heart monitoring system over fog computing infrastructure

    Get PDF
    Heart disease and stroke are becoming the leading cause of death worldwide. Electrocardiography monitoring devices (ECG) are the only tool that helps physicians diagnose cardiac abnormalities. Although the design of ECGs has followed closely the electronics miniaturization evolution over the years, existing wearable ECG have limited accuracy and rely on external resources to analyze the signal and evaluate heart activity. In this paper, we work towards empowering the wearable device with processing capabilities to locally analyze the signal and identify abnormal behavior. The ability to differentiate between normal and abnormal heart activity significantly reduces (a) the need to store the signals, (b) the data transmitted to the cloud and (c) the overall power consumption. Based on this concept, the HEART platform is presented that combines wearable embedded devices, mobile edge devices, and cloud services to provide on-the-spot, reliable, accurate and instant monitoring of the heart. The performance of the system is evaluated concerning the accuracy of detecting abnormal events and the power consumption of the wearable device. Results indicate that a very high percentage of success can be achieved in terms of event detection ratio and the device being operative up to a several days without the need for a recharge

    EndoTOFPET-US a Novel Multimodal Tool for Endoscopy and Positron Emission Tomography

    Full text link
    The EndoTOFPET-US project aims to jointly exploit Time-Of-Flight Positron Emission Tomography (TOFPET) and ultrasound endoscopy with a multi-modal instrument for the development of new biomarkers for pancreas and prostate oncology. The paper outlines the functionality of the proposed instrument and the challenges for its realization. The high level of miniaturization and integration poses strong demands to the fields of scintillating crystallography, ultra-fast photon detection, highly integrated electronics and system integration. Solutions are presented to obtain a coincidence time resolution better than 200 ps and a spatial resolution of ~1 mm with an asymmetric TOFPET detector. A tracking system with better than 1 mm spatial resolution precision enables the online alignment of the system. The detector design, the production and test status of the single detecto

    SecuCode: Intrinsic PUF Entangled Secure Wireless Code Dissemination for Computational RFID Devices

    Full text link
    The simplicity of deployment and perpetual operation of energy harvesting devices provides a compelling proposition for a new class of edge devices for the Internet of Things. In particular, Computational Radio Frequency Identification (CRFID) devices are an emerging class of battery-free, computational, sensing enhanced devices that harvest all of their energy for operation. Despite wireless connectivity and powering, secure wireless firmware updates remains an open challenge for CRFID devices due to: intermittent powering, limited computational capabilities, and the absence of a supervisory operating system. We present, for the first time, a secure wireless code dissemination (SecuCode) mechanism for CRFIDs by entangling a device intrinsic hardware security primitive Static Random Access Memory Physical Unclonable Function (SRAM PUF) to a firmware update protocol. The design of SecuCode: i) overcomes the resource-constrained and intermittently powered nature of the CRFID devices; ii) is fully compatible with existing communication protocols employed by CRFID devices in particular, ISO-18000-6C protocol; and ii) is built upon a standard and industry compliant firmware compilation and update method realized by extending a recent framework for firmware updates provided by Texas Instruments. We build an end-to-end SecuCode implementation and conduct extensive experiments to demonstrate standards compliance, evaluate performance and security.Comment: Accepted to the IEEE Transactions on Dependable and Secure Computin

    A passive GHz frequency-division multiplexer/demultiplexer based on anisotropic magnon transport in magnetic nanosheets

    Full text link
    The emerging field of magnonics employs spin waves and their quanta, magnons, to implement wave-based computing on the micro- and nanoscale. Multi-frequency magnon networks allow for parallel data processing within single logic elements whereas this is not the case with conventional transistor-based electronic logic. However, a lack of experimentally proven solutions to efficiently combine and separate magnons of different frequencies has impeded the intensive use of this concept. In this Letter, we demonstrate the experimental realization of a spin-wave demultiplexer enabling frequency-dependent separation of GHz signals. The device is based on two-dimensional magnon transport in the form of spin-wave beams in unpatterned magnetic nanosheets. The intrinsic frequency-dependence of the beam direction is exploited to realize a passive functioning obviating an external control and additional power consumption. This approach paves the way to magnonic multiplexing circuits enabling simultaneous information transport and processing.Comment: 16 pages, 3 figure
    • …
    corecore