2,707 research outputs found

    Inside Job: Diagnosing Bluetooth Lower Layers Using Off-the-Shelf Devices

    Full text link
    Bluetooth is among the dominant standards for wireless short-range communication with multi-billion Bluetooth devices shipped each year. Basic Bluetooth analysis inside consumer hardware such as smartphones can be accomplished observing the Host Controller Interface (HCI) between the operating system's driver and the Bluetooth chip. However, the HCI does not provide insights to tasks running inside a Bluetooth chip or Link Layer (LL) packets exchanged over the air. As of today, consumer hardware internal behavior can only be observed with external, and often expensive tools, that need to be present during initial device pairing. In this paper, we leverage standard smartphones for on-device Bluetooth analysis and reverse engineer a diagnostic protocol that resides inside Broadcom chips. Diagnostic features include sniffing lower layers such as LL for Classic Bluetooth and Bluetooth Low Energy (BLE), transmission and reception statistics, test mode, and memory peek and poke

    Computational Music Biofeedback for Stress Relief

    Get PDF
    The purpose of our project is to use EEG technology to combat stress in our daily lives. One of the most accessible EEG technologies that targets this challenge is the Muse headband, a wearable device that pairs with a phone application to help users train their brains to relax. The applications main goal is to help users train their brain to be more relaxed by monitoring and reporting their levels of stress. However, one of the shortcomings we noticed is that the constant notifications of how stressed we are actually adds to the level of stress as opposed to helping train our brains towards a more relaxed state. In order to improve this solution, our program uses the live brain waves transmitted by the Muse headband and feedforward techniques to not only track brain users activity, but also help the user move towards a more relaxed state using music and binaural beats. While we werent able to test the system on an unbiased population due to time constraints, preliminary exploration on ourselves on both short term and longer term sessions shows that longer uses of our system led to more a relaxed state

    InternalBlue - Bluetooth Binary Patching and Experimentation Framework

    Full text link
    Bluetooth is one of the most established technologies for short range digital wireless data transmission. With the advent of wearables and the Internet of Things (IoT), Bluetooth has again gained importance, which makes security research and protocol optimizations imperative. Surprisingly, there is a lack of openly available tools and experimental platforms to scrutinize Bluetooth. In particular, system aspects and close to hardware protocol layers are mostly uncovered. We reverse engineer multiple Broadcom Bluetooth chipsets that are widespread in off-the-shelf devices. Thus, we offer deep insights into the internal architecture of a popular commercial family of Bluetooth controllers used in smartphones, wearables, and IoT platforms. Reverse engineered functions can then be altered with our InternalBlue Python framework---outperforming evaluation kits, which are limited to documented and vendor-defined functions. The modified Bluetooth stack remains fully functional and high-performance. Hence, it provides a portable low-cost research platform. InternalBlue is a versatile framework and we demonstrate its abilities by implementing tests and demos for known Bluetooth vulnerabilities. Moreover, we discover a novel critical security issue affecting a large selection of Broadcom chipsets that allows executing code within the attacked Bluetooth firmware. We further show how to use our framework to fix bugs in chipsets out of vendor support and how to add new security features to Bluetooth firmware

    First experiences with Personal Networks as an enabling platform for service providers

    Get PDF
    By developing demonstrators and performing small-scale user trials, we found various opportunities and pitfalls for deploying personal networks (PNs) on a commercial basis. The demonstrators were created using as many as possible legacy devices and proven technologies. They deal with applications in the health sector, home services, tourism, and the transportation sector. This paper describes the various architectures and our experiences with the end users and the technology. We conclude that context awareness, service discovery, and content management are very important in PNs and that a personal network provider role is necessary to realize these functions under the assumptions we made. The PNPay Travel demonstrator suggests that PN service platforms provide an opportunity to develop true trans-sector services

    MilliSonic: Pushing the Limits of Acoustic Motion Tracking

    Full text link
    Recent years have seen interest in device tracking and localization using acoustic signals. State-of-the-art acoustic motion tracking systems however do not achieve millimeter accuracy and require large separation between microphones and speakers, and as a result, do not meet the requirements for many VR/AR applications. Further, tracking multiple concurrent acoustic transmissions from VR devices today requires sacrificing accuracy or frame rate. We present MilliSonic, a novel system that pushes the limits of acoustic based motion tracking. Our core contribution is a novel localization algorithm that can provably achieve sub-millimeter 1D tracking accuracy in the presence of multipath, while using only a single beacon with a small 4-microphone array.Further, MilliSonic enables concurrent tracking of up to four smartphones without reducing frame rate or accuracy. Our evaluation shows that MilliSonic achieves 0.7mm median 1D accuracy and a 2.6mm median 3D accuracy for smartphones, which is 5x more accurate than state-of-the-art systems. MilliSonic enables two previously infeasible interaction applications: a) 3D tracking of VR headsets using the smartphone as a beacon and b) fine-grained 3D tracking for the Google Cardboard VR system using a small microphone array
    • …
    corecore