3 research outputs found

    Coupled and decoupled force/motion controllers for an underwater vehicle-manipulator system

    Get PDF
    Autonomous interaction with the underwater environment has increased the interest of scientists in the study of control structures for lightweight underwater vehicle-manipulator systems. This paper presents an essential comparison between two different strategies of designing control laws for a lightweight underwater vehicle-manipulator system. The first strategy aims to separately control the vehicle and the manipulator and hereafter is referred to as the decoupled approach. The second method, the coupled approach, proposes to control the system at the operational space level, treating the lightweight underwater vehicle-manipulator system as a single system. Both strategies use a parallel position/force control structure with sliding mode controllers and incorporate the mathematical model of the system. It is demonstrated that both methods are able to handle this highly non-linear system and compensate for the coupling effects between the vehicle and the manipulator. The results demonstrate the validity of the two different control strategies when the goal is located at various positions, as well as the reliable behaviour of the system when different environment stiffnesses are considered

    Modelling and control of lightweight underwater vehicle-manipulator systems

    Get PDF
    This thesis studies the mathematical description and the low-level control structures for underwater robotic systems performing motion and interaction tasks. The main focus is on the study of lightweight underwater-vehicle manipulator systems. A description of the dynamic and hydrodynamic modelling of the underwater vehicle-manipulator system (UVMS) is presented and a study of the coupling effects between the vehicle and manipulator is given. Through simulation results it is shown that the vehicle’s capabilities are degraded by the motion of the manipulator, when it has a considerable mass with respect to the vehicle. Understanding the interaction effects between the two subsystems is beneficial in developing new control architectures that can improve the performance of the system. A control strategy is proposed for reducing the coupling effects between the two subsystems when motion tasks are required. The method is developed based on the mathematical model of the UVMS and the estimated interaction effects. Simulation results show the validity of the proposed control structure even in the presence of uncertainties in the dynamic model. The problem of autonomous interaction with the underwater environment is further addressed. The thesis proposes a parallel position/force control structure for lightweight underwater vehicle-manipulator systems. Two different strategies for integrating this control law on the vehicle-manipulator structure are proposed. The first strategy uses the parallel control law for the manipulator while a different control law, the Proportional Integral Limited control structure, is used for the vehicle. The second strategy treats the underwater vehicle-manipulator system as a single system and the parallel position/force law is used for the overall system. The low level parallel position/force control law is validated through practical experiments using the HDT-MK3-M electric manipulator. The Proportional Integral Limited control structure is tested using a 5 degrees-of-freedom underwater vehicle in a wave-tank facility. Furthermore, an adaptive tuning method based on interaction theory is proposed for adjusting the gains of the controller. The experimental results show that the method is advantageous as it decreases the complexity of the manual tuning otherwise required and reduces the energy consumption. The main objectives of this thesis are to understand and accurately represent the behaviour of an underwater vehiclemanipulator system, to evaluate this system when in contact with the environment and to design informed low-level control structures based on the observations made through the mathematical study of the system. The concepts presented in this thesis are not restricted to only vehicle-manipulator systems but can be applied to different other multibody robotic systems

    Planejamento de movimento de sistemas robóticos de intervenção subaquática baseado na teoria dos helicoides

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Engenharia MecânicaOs veículos subaquáticos não tripulados (ou UUV, do inglês Unmanned Underwater Vehicles) são responsáveis pela execução de grande parte das operações em ambientes imersos. Os sistemas veículo-manipulador subaquáticos (ou UVMS, do inglês Underwater Vehicle-Manipulator Systems) são UUV voltados para a execução de tarefas de intervenção. Além de aplicações em missões científicas e de resgate, os UVMS são muito usados em instalações offshore de extração/distribuição de petróleo e gás em tarefas de construção, manutenção, inspeção e operação. A maioria dos sistemas de intervenção subaquática é teleoperada devido às dificuldades de operação no ambiente imerso e às características cinemáticas e dinâmicas dos UVMS. A evolução desses sistemas de intervenção subaquática envolve o desenvolvimento de sua autonomia. Um requisito básico para isso é a capacidade do sistema planejar as ações necessárias para realizar as tarefas a ele especificadas. Esta tese estuda o planejamento de movimento dos UVMS durante a execução de tarefas de intervenção. Este problema consiste em definir os movimentos que o sistema (veículo e manipuladores) deve realizar para executar as tarefas especificadas atendendo às restrições impostas pelo espaço de trabalho. O trabalho utiliza a análise cinemática baseada na teoria dos helicoides, teoria dos grafos e ferramentas derivadas para definir modelos cinemáticos dos UVMS em diferentes cenários de execução de tarefas de intervenção. A cooperação entre manipuladores de um mesmo UVMS e entre dois ou mais UVMS é estudada, assim como a variabilidade dos modelos cinemáticos em função de mudanças no contexto da operação. A partir da análise realizada, define-se uma sistematização da modelagem cinemática dos sistemas de intervenção por componentização, visando facilitar e automatizar esse processo. Um framework computacional é projetado para facilitar a implementação desses modelos. Com base nesses resultados, define-se uma estrutura geral para o desenvolvimento de estratégias de planejamento de movimento. Simulações de uso dessa estrutura em diferentes cenários de operação são apresentadas. Assim, este trabalho contribui para a autonomia de UUV/UVMS, considerada o principal objeto de pesquisa da área e que no caso dos sistemas de intervenção subaquática reduzirá custos de operação, além de possibilitar o uso destes em novas missões.Unmanned Underwater Vehicles (UUV, for short) are used in most immerse operations. Underwater Vehicle-Manipulator Systems (UVMS, for short) are a particular kind of UUV designed for intervention tasks. Besides their application in scientific and rescue missions, UVMS are much used in offshore oil and gas extraction/distribution facilities for construction, maintenance, inspection and operation tasks. Most underwater intervention systems are teleoperated due the operational difficulties in the immerse environment and the UVMS kinematic/dynamic features. The evolution of these underwater intervention systems involves the development of their autonomy. The system ability to plan the necessary actions to perform its assigned tasks is a basic requirement for that. This thesis studies the motion planning of UVMS while executing intervention tasks. The problem consists of defining the motion that the system (vehicle and manipulators) must do to execute the specified taks while complying with the workspace imposed restrictions. A computational framework is designed to aid the implementation of these models. A general structure to the developed of motion planning strategies based on these results is defined. Simulations using this strucute in different operation scenarios are presented. So, this work contributes to the autonomy of UUV/UVMS, which is considered a major research field and it will reduce operation costs of underwater intervention systems, besides allowing their use in new missions
    corecore