661 research outputs found

    Performance Analysis of Arbitrarily-Shaped Underlay Cognitive Networks: Effects of Secondary User Activity Protocols

    Full text link
    This paper analyzes the performance of the primary and secondary users (SUs) in an arbitrarily-shaped underlay cognitive network. In order to meet the interference threshold requirement for a primary receiver (PU-Rx) at an arbitrary location, we consider different SU activity protocols which limit the number of active SUs. We propose a framework, based on the moment generating function (MGF) of the interference due to a random SU, to analytically compute the outage probability in the primary network, as well as the average number of active SUs in the secondary network. We also propose a cooperation-based SU activity protocol in the underlay cognitive network which includes the existing threshold-based protocol as a special case. We study the average number of active SUs for the different SU activity protocols, subject to a given outage probability constraint at the PU and we employ it as an analytical approach to compare the effect of different SU activity protocols on the performance of the primary and secondary networks.Comment: submitted to possible IEEE Transactions publicatio

    Spectral Efficiency of Multi-User Adaptive Cognitive Radio Networks

    Full text link
    In this correspondence, the comprehensive problem of joint power, rate, and subcarrier allocation have been investigated for enhancing the spectral efficiency of multi-user orthogonal frequency-division multiple access (OFDMA) cognitive radio (CR) networks subject to satisfying total average transmission power and aggregate interference constraints. We propose novel optimal radio resource allocation (RRA) algorithms under different scenarios with deterministic and probabilistic interference violation limits based on a perfect and imperfect availability of cross-link channel state information (CSI). In particular, we propose a probabilistic approach to mitigate the total imposed interference on the primary service under imperfect cross-link CSI. A closed-form mathematical formulation of the cumulative density function (cdf) for the received signal-to-interference-plus-noise ratio (SINR) is formulated to evaluate the resultant average spectral efficiency (ASE). Dual decomposition is utilized to obtain sub-optimal solutions for the non-convex optimization problems. Through simulation results, we investigate the achievable performance and the impact of parameters uncertainty on the overall system performance. Furthermore, we present that the developed RRA algorithms can considerably improve the cognitive performance whilst abide the imposed power constraints. In particular, the performance under imperfect cross-link CSI knowledge for the proposed `probabilistic case' is compared to the conventional scenarios to show the potential gain in employing this scheme

    Aggregate Interference Modeling in Cognitive Radio Networks with Power and Contention Control

    Full text link
    In this paper, we present an interference model for cognitive radio (CR) networks employing power control, contention control or hybrid power/contention control schemes. For the first case, a power control scheme is proposed to govern the transmission power of a CR node. For the second one, a contention control scheme at the media access control (MAC) layer, based on carrier sense multiple access with collision avoidance (CSMA/CA), is proposed to coordinate the operation of CR nodes with transmission requests. The probability density functions of the interference received at a primary receiver from a CR network are first derived numerically for these two cases. For the hybrid case, where power and contention controls are jointly adopted by a CR node to govern its transmission, the interference is analyzed and compared with that of the first two schemes by simulations. Then, the interference distributions under the first two control schemes are fitted by log-normal distributions with greatly reduced complexity. Moreover, the effect of a hidden primary receiver on the interference experienced at the receiver is investigated. It is demonstrated that both power and contention controls are effective approaches to alleviate the interference caused by CR networks. Some in-depth analysis of the impact of key parameters on the interference of CR networks is given via numerical studies as well.Comment: 24 pages, 8 figures, submitted to IEEE Trans. Communications in July 201

    Breaking the Area Spectral Efficiency Wall in Cognitive Underlay Networks

    Get PDF
    In this article, we develop a comprehensive analytical framework to characterize the area spectral efficiency of a large scale Poisson cognitive underlay network. The developed framework explicitly accommodates channel, topological and medium access uncertainties. The main objective of this study is to launch a preliminary investigation into the design considerations of underlay cognitive networks. To this end, we highlight two available degrees of freedom, i.e., shaping medium access or transmit power. While from the primary user's perspective tuning either to control the interference is equivalent, the picture is different for the secondary network. We show the existence of an area spectral efficiency wall under both adaptation schemes. We also demonstrate that the adaptation of just one of these degrees of freedom does not lead to the optimal performance. But significant performance gains can be harnessed by jointly tuning both the medium access probability and the transmission power of the secondary networks. We explore several design parameters for both adaptation schemes. Finally, we extend our quest to more complex point-to-point and broadcast networks to demonstrate the superior performance of joint tuning policies
    corecore