76 research outputs found

    COOPERATIVE NETWORKING AND RELATED ISSUES: STABILITY, ENERGY HARVESTING, AND NEIGHBOR DISCOVERY

    Get PDF
    This dissertation deals with various newly emerging topics in the context of cooperative networking. The first part is about the cognitive radio. To guarantee the performance of high priority users, it is important to know the activity of the high priority communication system but the knowledge is usually imperfect due to randomness in the observed signal. In such a context, the stability property of cognitive radio systems in the presence of sensing errors is studied. General guidelines on controlling the operating point of the sensing device over its receiver operating characteristics are also given. We then consider the hybrid of different modes of operation for cognitive radio systems with time-varying connectivity. The random connectivity gives additional chances that can be utilized by the low priority communication system. The second part of this dissertation is about the random access. We are specifically interested in the scenario when the nodes are harvesting energy from the environment. For such a system, we accurately assess the effect of limited, but renewable, energy availability on the stability region. The effect of finite capacity batteries is also studied. We next consider the exploitation of diversity amongst users under random access framework. That is, each user adapts its transmission probability based on the local channel state information in a decentralized manner. The impact of imperfect channel state information on the stability region is investigated. Furthermore, it is compared to the class of stationary scheduling policies that make centralized decisions based on the channel state feedback. The backpressure policy for cross-layer control of wireless multi-hop networks is known to be throughput-optimal for i.i.d. arrivals. The third part of this dissertation is about the backpressure-based control for networks with time-correlated arrivals that may exhibit long-range dependency. It is shown that the original backpressure policy is still throughput-optimal but with increased average network delay. The case when the arrival rate vector is possibly outside the stability region is also studied by augmenting the backpressure policy with the flow control mechanism. Lastly, the problem of neighbor discovery in a wireless sensor network is dealt. We first introduce the realistic effect of physical layer considerations in the evaluation of the performance of logical discovery algorithms by incorporating physical layer parameters. Secondly, given the lack of knowledge of the number of neighbors along with the lack of knowledge of the individual signal parameters, we adopt the viewpoint of random set theory to the problem of detecting the transmitting neighbors. Random set theory is a generalization of standard probability theory by assigning sets, rather than values, to random outcomes and it has been applied to multi-user detection problem when the set of transmitters are unknown and dynamically changing

    Learning-aided Stochastic Network Optimization with Imperfect State Prediction

    Full text link
    We investigate the problem of stochastic network optimization in the presence of imperfect state prediction and non-stationarity. Based on a novel distribution-accuracy curve prediction model, we develop the predictive learning-aided control (PLC) algorithm, which jointly utilizes historic and predicted network state information for decision making. PLC is an online algorithm that requires zero a-prior system statistical information, and consists of three key components, namely sequential distribution estimation and change detection, dual learning, and online queue-based control. Specifically, we show that PLC simultaneously achieves good long-term performance, short-term queue size reduction, accurate change detection, and fast algorithm convergence. In particular, for stationary networks, PLC achieves a near-optimal [O(Ï”)[O(\epsilon), O(log⁥(1/Ï”)2)]O(\log(1/\epsilon)^2)] utility-delay tradeoff. For non-stationary networks, \plc{} obtains an [O(Ï”),O(log⁥2(1/Ï”)[O(\epsilon), O(\log^2(1/\epsilon) +min⁥(Ï”c/2−1,ew/Ï”))]+ \min(\epsilon^{c/2-1}, e_w/\epsilon))] utility-backlog tradeoff for distributions that last Θ(max⁥(ϔ−c,ew−2)Ï”1+a)\Theta(\frac{\max(\epsilon^{-c}, e_w^{-2})}{\epsilon^{1+a}}) time, where ewe_w is the prediction accuracy and a=Θ(1)>0a=\Theta(1)>0 is a constant (the Backpressue algorithm \cite{neelynowbook} requires an O(ϔ−2)O(\epsilon^{-2}) length for the same utility performance with a larger backlog). Moreover, PLC detects distribution change O(w)O(w) slots faster with high probability (ww is the prediction size) and achieves an O(min⁥(ϔ−1+c/2,ew/Ï”)+log⁥2(1/Ï”))O(\min(\epsilon^{-1+c/2}, e_w/\epsilon)+\log^2(1/\epsilon)) convergence time. Our results demonstrate that state prediction (even imperfect) can help (i) achieve faster detection and convergence, and (ii) obtain better utility-delay tradeoffs

    Quantifying the Cost of Learning in Queueing Systems

    Full text link
    Queueing systems are widely applicable stochastic models with use cases in communication networks, healthcare, service systems, etc. Although their optimal control has been extensively studied, most existing approaches assume perfect knowledge of system parameters. Of course, this assumption rarely holds in practice where there is parameter uncertainty, thus motivating a recent line of work on bandit learning for queueing systems. This nascent stream of research focuses on the asymptotic performance of the proposed algorithms. In this paper, we argue that an asymptotic metric, which focuses on late-stage performance, is insufficient to capture the intrinsic statistical complexity of learning in queueing systems which typically occurs in the early stage. Instead, we propose the Cost of Learning in Queueing (CLQ), a new metric that quantifies the maximum increase in time-averaged queue length caused by parameter uncertainty. We characterize the CLQ of a single-queue multi-server system, and then extend these results to multi-queue multi-server systems and networks of queues. In establishing our results, we propose a unified analysis framework for CLQ that bridges Lyapunov and bandit analysis, which could be of independent interest

    Self-Similarity in a multi-stage queueing ATM switch fabric

    Get PDF
    Recent studies of digital network traffic have shown that arrival processes in such an environment are more accurately modeled as a statistically self-similar process, rather than as a Poisson-based one. We present a simulation of a combination sharedoutput queueing ATM switch fabric, sourced by two models of self-similar input. The effect of self-similarity on the average queue length and cell loss probability for this multi-stage queue is examined for varying load, buffer size, and internal speedup. The results using two self-similar input models, Pareto-distributed interarrival times and a Poisson-Zeta ON-OFF model, are compared with each other and with results using Poisson interarrival times and an ON-OFF bursty traffic source with Ge ometrically distributed burst lengths. The results show that at a high utilization and at a high degree of self-similarity, switch performance improves slowly with increasing buffer size and speedup, as compared to the improvement using Poisson-based traffic

    Scheduling algorithms for throughput maximization in data networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 215-226).This thesis considers the performance implications of throughput optimal scheduling in physically and computationally constrained data networks. We study optical networks, packet switches, and wireless networks, each of which has an assortment of features and constraints that challenge the design decisions of network architects. In this work, each of these network settings are subsumed under a canonical model and scheduling framework. Tools of queueing analysis are used to evaluate network throughput properties, and demonstrate throughput optimality of scheduling and routing algorithms under stochastic traffic. Techniques of graph theory are used to study network topologies having desirable throughput properties. Combinatorial algorithms are proposed for efficient resource allocation. In the optical network setting, the key enabling technology is wavelength division multiplexing (WDM), which allows each optical fiber link to simultaneously carry a large number of independent data streams at high rate. To take advantage of this high data processing potential, engineers and physicists have developed numerous technologies, including wavelength converters, optical switches, and tunable transceivers.(cont.) While the functionality provided by these devices is of great importance in capitalizing upon the WDM resources, a major challenge exists in determining how to configure these devices to operate efficiently under time-varying data traffic. In the WDM setting, we make two main contributions. First, we develop throughput optimal joint WDM reconfiguration and electronic-layer routing algorithms, based on maxweight scheduling. To mitigate the service disruption associated with WDM reconfiguration, our algorithms make decisions at frame intervals. Second, we develop analytic tools to quantify the maximum throughput achievable in general network settings. Our approach is to characterize several geometric features of the maximum region of arrival rates that can be supported in the network. In the packet switch setting, we observe through numerical simulation the attractive throughput properties of a simple maximal weight scheduler. Subsequently, we consider small switches, and analytically demonstrate the attractive throughput properties achievable using maximal weight scheduling. We demonstrate that such throughput properties may not be sustained in larger switches.(cont.) In the wireless network setting, mesh networking is a promising technology for achieving connectivity in local and metropolitan area networks. Wireless access points and base stations adhering to the IEEE 802.11 wireless networking standard can be bought off the shelf at little cost, and can be configured to access the Internet in minutes. With ubiquitous low-cost Internet access perceived to be of tremendous societal value, such technology is naturally garnering strong interest. Enabling such wireless technology is thus of great importance. An important challenge in enabling mesh networks, and many other wireless network applications, results from the fact that wireless transmission is achieved by broadcasting signals through the air, which has the potential for interfering with other parts of the network. Furthermore, the scarcity of wireless transmission resources implies that link activation and packet routing should be effected using simple distributed algorithms. We make three main contributions in the wireless setting. First, we determine graph classes under which simple, distributed, maximal weight schedulers achieve throughput optimality.(cont.) Second, we use this acquired knowledge of graph classes to develop combinatorial algorithms, based on matroids, for allocating channels to wireless links, such that each channel can achieve maximum throughput using simple distributed schedulers. Third, we determine new conditions under which distributed algorithms for joint link activation and routing achieve throughput optimality.by Andrew Brzezinski.Ph.D

    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016

    Get PDF
    International audienceThis booklet contains the proceedings of the second European Conference in Queueing Theory (ECQT) that was held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT, Toulouse, France. ECQT is a biannual event where scientists and technicians in queueing theory and related areas get together to promote research, encourage interaction and exchange ideas. The spirit of the conference is to be a queueing event organized from within Europe, but open to participants from all over the world. The technical program of the 2016 edition consisted of 112 presentations organized in 29 sessions covering all trends in queueing theory, including the development of the theory, methodology advances, computational aspects and applications. Another exciting feature of ECQT2016 was the institution of the TakĂĄcs Award for outstanding PhD thesis on "Queueing Theory and its Applications"
    • 

    corecore