
Copyright

by

Sharayu Arun Moharir

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211336671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Dissertation Committee for Sharayu Arun Moharir
certifies that this is the approved version of the following dissertation:

Resource Allocation in

Large-Scale Multi-Server Systems

Committee:

Sanjay Shakkottai, Supervisor

Sujay Sanghavi, Co-Supervisor

François Baccelli

Gustavo de Veciana

John Hasenbein

Sriram Vishwanath

Resource Allocation in

Large-Scale Multi-Server Systems

by

Sharayu Arun Moharir, B.Tech., M.Tech.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2014

To my parents.

Acknowledgments

I would like to thank my advisors Sanjay Shakkottai and Sujay Sang-

havi for their invaluable guidance. Sanjay’s passion for research, teaching and

learning has been a constant source of inspiration. His care, keen interest in

my progress and encouragement motivated me to push my limits. In addition

to his depth of knowledge, I greatly admire his dedication towards his work

and I hope I have internalized at least some of it. Sujay’s clarity of thought

and his knack for asking the right questions helped me immensely every time

I was stuck in my research. I am extremely grateful to him for encouraging

me to broaden my horizons by exploring new research areas.

I would like to thank my dissertation committee – Prof. Sriram Vish-

wanath, Prof. Gustavo de Veciana, Prof. John Hasenbein and Prof. Francois

Baccelli for their valuable feedback on this dissertation. I would like to thank

Shreeshankar for sharing his insights when I started working on my first re-

search problem and Javad for collaborating with me on the second half of this

dissertation.

I would like to thank my friends in Austin – Abhik, Aneesh, Anish,

Avhishek, Deepjyoti, Guneet, Ioannis, Kumar, Praneeth, Priti, Priyamvada,

Ramya, Sarabjot, Siddhartha, Sindhu, Srinadh, Subhashini and Zrinka who

made my stay in Austin enjoyable.

v

I would not have reached this point in life without the unwavering

support of my family. I want to thank my parents for being a constant source

of strength, motivation and inspiration, my sister Manjiri for always being

there for me and my husband Atit for his love and support.

vi

Resource Allocation in

Large-Scale Multi-Server Systems

Publication No.

Sharayu Arun Moharir, Ph.D.

The University of Texas at Austin, 2014

Supervisors: Sanjay Shakkottai
Sujay Sanghavi

The focus of this dissertation is the task of resource allocation in multi-

server systems arising from two applications – multi-channel wireless com-

munication networks and large-scale content delivery networks. The unifying

theme behind all the problems studied in this dissertation is the large-scale

nature of the underlying networks, which necessitate the design of algorithms

which are simple/greedy and therefore scalable, and yet, have good perfor-

mance guarantees.

For the multi-channel multi-hop wireless communication networks we

consider, the goal is to design scalable routing and scheduling policies which

stabilize the system and perform well from a queue-length and end-to-end

delay perspective. We first focus on relay assisted downlink networks where it

is well understood that the BackPressure algorithm is stabilizing, but, its delay

performance can be poor. We propose an alternative algorithm - an iterative

vii

MaxWeight algorithm and show that it stabilizes the system and outperforms

the BackPressure algorithm. Next, we focus on wireless networks which serve

mobile users via a wide-area base-station and multiple densely deployed short-

range access nodes (e.g., small cells). We show that traditional algorithms

that forward each packet at most once, either to a single access node or a

mobile user, do not have good delay performance and propose an algorithm (a

distributed scheduler - DIST) and show that it can stabilize the system and

performs well from a queue-length/delay perspective.

In content delivery networks, each arriving job can only be served by

servers storing the requested content piece. Motivated by this, we consider

two settings. In the first setting, each job, on arrival, reveals a deadline and a

subset of servers that can serve it and the goal is to maximize the fraction of

jobs that are served before their deadlines. We propose an online load balanc-

ing algorithm which uses correlated randomness and prove its optimality. In

the second setting, we study content placement in a content delivery network

where a large number of servers, serve a correspondingly large volume of con-

tent requests arriving according to an unknown stochastic process. The main

takeaway from our results for this setting is that separating the estimation of

demands and the subsequent use of the estimations to design optimal content

placement policies (learn-and-optimize approach) is suboptimal. In addition,

we study two simple adaptive content replication policies and show that they

outperform all learning-based static storage policies.

viii

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiv

List of Figures xv

Chapter 1. Introduction 1

1.1 Contribution of the Thesis . 3

1.2 Structure of the Thesis . 7

Chapter 2. MaxWeight vs. BackPressure: Routing and Schedul-
ing in Multi-Channel Relay Networks 8

2.1 Introduction . 8

2.1.1 Related Work . 10

2.1.2 Contributions . 11

2.1.2.1 BackPressure Algorithm 12

2.1.2.2 SSG BackPressure Algorithm 12

2.1.2.3 SSG MaxWeight Algorithm 12

2.1.2.4 ILQF MaxWeight and ILQF BackPressure Algo-
rithms . 12

2.2 System Model: 2-Hop Downlink Communication Networks . . 13

2.3 Background: The SSG Scheduling Algorithm 18

2.4 Proposed Scheduling and Routing Algorithms for 2-Hop Down-
link Networks . 18

2.4.1 FD-w/oDL Model . 19

2.4.1.1 SSG BackPressure for FD-w/oDL 19

2.4.1.2 SSG MaxWeight for FD-w/oDL 19

ix

2.4.2 HD-wDL Model . 20

2.4.2.1 SSG BackPressure for HD-wDL Model 20

2.4.2.2 SSG MaxWeight for HD-wDL Model 21

2.5 Main Results and Discussion 21

2.5.1 Stability . 22

2.5.2 Performance Analysis 31

2.5.2.1 ILQF BackPressure for FD-w/oDL 32

2.5.2.2 ILQF MaxWeight for FD-w/oDL 33

2.6 Simulation Results . 35

2.7 Conclusions . 39

Chapter 3. Scheduling in Densified Networks:
Algorithms and Performance 40

3.1 Introduction . 40

3.1.1 Contributions . 42

3.1.2 Related Work . 43

3.2 System Model . 45

3.2.1 User Mobility . 46

3.2.2 User-AN Connectivity 48

3.2.2.1 Unpredictability of user-AN associations 48

3.2.2.2 User-AN associations in consecutive time-slots . 49

3.2.2.3 Concentration of users around an AN 50

3.2.3 Communication between Access Nodes 50

3.2.4 Interference between Access Nodes 50

3.2.5 Notation . 51

3.3 Main Results and Discussion 53

3.3.1 Algorithm: DIST . 53

3.3.2 Stability . 57

3.3.3 Performance . 62

3.3.3.1 Single Transmission Algorithms 62

3.3.3.2 DIST . 63

3.4 Proof Outlines . 65

3.4.1 Stability of DIST (Theorem 9) 65

x

3.4.2 Performance Analysis of ST Algorithms (Theorem 10) . 67

3.4.3 Performance Analysis of DIST (Theorem 11) 68

3.5 Simulation Results . 70

Chapter 4. Online Load Balancing Under Graph Constraints 76

4.1 Introduction . 76

4.1.1 Contributions . 78

4.1.2 Related Work . 79

4.1.2.1 Online Load Balancing with Hard Deadlines . . 79

4.1.2.2 Online Matching 80

4.2 System Model . 81

4.3 Main Results and Discussion 82

4.3.1 Simple Special Case . 82

4.3.2 Upper Bound . 85

4.3.3 Our Algorithm and its Performance 86

4.3.4 Performance of other Algorithms 94

4.4 Simulations . 96

4.5 Summary and Discussion . 96

Chapter 5. Serving Content with Unknown Demand:
the High-Dimensional Regime 100

5.1 Introduction . 100

5.1.1 Contributions . 102

5.1.2 Organization and Basic Notations 104

5.2 Setting and Model . 104

5.2.1 Server and Storage Model 104

5.2.2 Service Model . 105

5.2.3 Content Request Model 106

5.2.4 Time Scales of Change in Arrival Process 106

5.3 Main Results and Discussion 108

5.3.1 Separating Learning from Content Placement 108

5.3.2 Myopic Joint Learning and Placement 111

5.3.3 Genie-Aided Optimal Storage Policy 117

xi

5.4 Simulation Results . 123

5.5 Related Work . 129

5.6 Conclusions . 131

Chapter 6. On Adaptive Content Replication in Large-Scale
Content Delivery Networks 133

6.1 Introduction . 133

6.1.1 Contributions . 136

6.1.2 Related Work . 138

6.1.3 Basic Notation . 139

6.2 Setting and Model . 140

6.2.1 Catalog Dynamics . 140

6.2.2 Arrivals and Content Requests 141

6.2.3 Server and Storage . 142

6.2.4 Service and Content Fetching 143

6.3 Main Results and Discussion 143

6.3.1 Static Catalog (IRM) 143

6.3.2 Dynamic Catalog (SNM) 149

6.4 Simulation Results . 150

6.4.1 Static Catalog (IRM) 151

6.4.2 Dynamic Catalog (SNM) 153

6.5 Conclusions . 154

Chapter 7. Conclusions 156

Appendices 159

Appendix A. Proofs from Chapter 2 160

A.1 Large System Stability of Iterative Max Weight 160

A.1.1 FD-w/oDL . 160

A.1.2 HD-wDL . 177

A.2 Performance Analysis . 177

A.2.1 BackPressure . 178

A.2.2 SSG MaxWeight . 178

xii

A.2.3 ILQF BackPressure . 184

A.2.4 ILQF MaxWeight . 184

A.3 k-hop Stability . 185

Appendix B. Proofs from Chapter 3 190

B.1 Stability . 190

B.2 Performance . 199

Appendix C. Proofs from Chapter 4 206

C.1 Proof of Proposition 1 . 206

C.2 Proof of Theorem 12 . 206

C.3 Proof of Theorem 13 . 220

C.4 Alternative Algorithms: Proofs of Theorems 14 and 15 223

C.4.1 RANDOMIZED JSQ 223

C.4.2 RANDOMIZED P-JSQ 226

Appendix D. Proofs from Chapter 5 229

D.1 Proof of Theorem 16 . 229

D.2 Proof of Theorem 17 . 238

D.3 Proof of Theorem 18 . 238

D.4 Proof of Theorem 19 . 244

D.5 Proof of Theorem 20 . 245

D.6 Proof of Theorem 21 . 252

D.7 Proof of Theorem 22 . 253

Appendix E. Proofs from Chapter 6 255

E.1 Proof of Theorem 23 . 255

E.2 Proof of Theorem 24 . 255

E.3 Proof of Theorem 25 . 262

E.4 Proof of Theorem 26 . 265

Bibliography 276

Vita 292

xiii

List of Tables

5.1 The performance of the four policies as a function of the system size
(n) for fixed values of load λ̄ = 0.8 and β = 1.5. The values reported
are the mean and standard deviation (σ) of the fraction of jobs
served. Both adaptive policies (GENIE and MYOPIC) significantly
outperform the two learning-based static storage policies. 126

5.2 The performance of the four policies as a function of the Zipf pa-
rameter (β) for fixed values of system size n = 500 and load λ̄ = 0.9.
The values reported are the mean and standard deviation (σ) of the
fraction of jobs served. The MYOPIC policy outperforms the two
learning-based static storage policies for all values of β considered. 127

5.3 The performance of the four policies as a function of the load (λ̄)
for fixed values of system size n = 500 and β = 1.2. The values
reported are the mean and standard deviation (σ) of the fraction of
jobs served. The MYOPIC policy significantly outperforms the two
learning-based static storage policies for all loads considered. . . . 129

xiv

List of Figures

2.1 A relay network (Example 1) illustrating that MaxWeight algorithm
is not stabilizing. There are four links (l1, l2, l3, l4) with capacities
being (10, 1, 1, 10) packets/slot respectively. The source node is A
and the destination is D. 10

2.2 An illustrative example of a 2-hop relay network with 2 relays and
3 users. 13

2.3 End-to-end delay performance of BackPressure, SSG MaxWeight,
ILQF MaxWeight and ILQF BackPressure algorithms for a FD-
w/oDL system consisting of 50 users and channels with 2 relays
for load = 0.74 and ON-OFF channels with parameters 0.5 and 0.1
for the base-station to relay channels and relay to user channels
respectively. 36

2.4 End-to-end delay performance of SSG MaxWeight, ILQF MaxWeight
and ILQF BackPressure algorithms for a FD-w/oDL system con-
sisting of 50 users and channels with 2 relays for load = 0.74 and
ON-OFF channels with parameters 0.5 and 0.1 for the base-station
to relay channels and relay to user channels respectively. 38

3.1 A wireless network with a base-station, densely deployed ANs and
mobile users. The users more in and out of the coverage area of
the ANs due to mobility, but are always in the coverage area of the
base-station. BS/AN image courtesy [41]. 46

3.2 Association graph between the ANs and mobile users in the network
in Figure 3.1. Each AN is associated with all user that are currently
in its coverage range, represented by an edge between the AN and
the mobile user. 47

3.3 BackPressure v/s DIST: Delay Performance 71

3.4 DIST: Delay Performance for Different Loads 73

3.5 DIST: Delay Performance for Different User Mobility 74

3.6 DIST: Delay Performance for values of the parameter L (number of
time-slots the BS waits to let the ANs try and delivery packets to
the intended users before directly forwarding it to the user) 75

xv

4.1 System Model for Online Load Balancing: An illustration of a sys-
tem with 3 servers. Job 5 has a server subset {x, z} and a deadline
of 2 time-slots and the scheduling algorithm needs to decide whether
to send the job to server x or z or drop the job. 80

4.2 An illustration of our algorithm for the simple case of arrivals only
in time 1, with all deadlines being dmax = b = 2. Here the server set
is U = {x, y, z} and the job set is V = {1, 2, 3, 4, 5}. In the extended
graph, there are 2 copies of each server, so Ub = {x1, y1, z1, x2, y2, z2}.
Our algorithm picks a random permutation, i.e. ranking, πb of this
set Ub and fixes it, as shown on the left. Each vertex in set V is then
matched to the highest ranked available vertex in Ub; this results
in the matching on the extended graph, on the left. The figure on
the right shows the collapsing back from extended graph to a server
allocation; it shows the resulting allocation with max load of 2 on
each server. 84

4.3 INSERT RANKING: Time-line 87

4.4 An illustration of INSERT RANKING. Here the server set is U =
{x, y, z} and dmax = 2. Let all 3 incoming jobs have a deadline of
2 time-slots. The figure on the left is an illustration of INITIALIZE
and the figure on the right is an illustration of ONLINE ALLOCA-
TION for time-slot 1. 88

4.5 An illustration of SCHEDULE for time-slot 1. Server x serves job 2
since it was matched to x1, server y servers job 3, server z remains
idle. 89

4.6 An illustration of UPDATE STATE for time-slot 2. 91

4.7 INSERT RANKING on the matrix A in Section C.2 97

4.8 Comparison of INSERT RANKING and RANDOMIZED JSQ . . 98

4.9 Comparison of INSERT RANKING and RANDOMIZED P-JSQ . 99

5.1 Learning-Based Static Storage Policies – The interval T (n) is split
into the Learning and Storage phases. The length of time spent in
the Learning phase can be chosen optimally using the knowledge of
the value of T (n) and the Zipf parameter β. 109

5.2 MYOPIC – An adaptive storage policy which changes the content
stored on idle servers in a greedy manner to ensure that recently
requested content pieces are available on idle servers. 113

5.3 GENIE – An adaptive storage policy which has content popularity
statistics available for “free”. At time t, if the number of idle servers
is k(t), the k(t) most popular content-types are stored on exactly
one idle server each. 119

xvi

5.4 Plot of the mean values reported in Table 5.1 – performance of the
storage policies as a function of system size (n) for λ̄ = 0.8 and
β = 1.5. 128

5.5 The mean number of external fetches (content fetched from the back-
end server to place on a front-end server) by the two adaptive policies
as a function of system size (n) for λ̄ = 0.9 and β = 2 and 3. The
first plot shows the performance of both GENIE and MYOPIC. The
second plot focuses only on the performance of the MYOPIC storage
policy for clarity. 132

6.1 The SNM model [92] for the dynamics of content catalog and content
popularity (arrows show the arrival of new contents to the catalog). 135

6.2 An illustration of a CDN with a back-end server and three front-end
servers. User requests can be served both by the front-end servers
(at low cost) and the back-end server (at high cost). Content can be
replicated on the front-end servers by fetching it either from other
front-end servers (at low cost) or from the back-end server (at high
cost). 142

6.3 LRU-R – An LRU variant that replicates content among several
front-end servers. 146

6.4 The time interval (denoted by T (n)) is divided into two phases:
Phase 1 – Learning, and Phase 2 – Storage/Optimization; figure
adapted from Chapter 5. 147

6.5 The cost of content replication policies as a function of system size
(n) for λ̄ = 0.9, β = 2, Cf = Cb = Cm = 1. 152

6.6 The cost of content replication policies as a function of system size
(n) for λ̄ = 0.9, β = 2, Cf = 1, Cb = Cm = 10. 153

6.7 The cost of content replication policies as a function of system size
(n) for λ̄ = 0.9, β = 4, Cf = Cb = Cm = 1. 154

A.1 An illustrative example of a 3-hop feed-forward relay network with
2 layers of relays and 3 users. 186

D.1 Coupled Process . 247

xvii

Chapter 1

Introduction

The focus of this dissertation is the task of resource allocation in multi-

server systems arising from two applications – multi-channel wireless com-

munication networks and large-scale content delivery networks. The resource

allocation problems we consider are outwardly quite different, as they are mo-

tivated from widely differing applications – however they share significant un-

derlying similarities due to the large-scale nature of the underlying networks.

For the multi-channel downlink wireless networks we consider, e.g., OFDM-

based cellular systems, the number of orthogonal frequency channels as well as

the number of users in the system are large. In the large-scale distributed con-

tent delivery networks we focus on, both the number of servers and the number

of distinct contents in the catalog offered by the network are large. The large-

scale of these resource allocation problems necessitates algorithms which are

simple/greedy/distributed and thus scalable, yet, have rigorous performance

guarantees.

In addition, all resource allocation problems considered in this disserta-

tion have an underlying bipartite graph between servers and jobs which need

to be served, where an edge between a job and a server indicates that the server

1

is equipped to serve the corresponding job. For each application, we model

the underlying bipartite graph to capture the characteristics of the system and

propose resource allocation algorithms with provable performance guarantees.

For multi-channel wireless communication networks, we adopt a stochas-

tic modeling approach and consider the setting where the graph between jobs

and servers is a random process. Stochastic modeling is widely used in the

study of point-to-point data transmission in communications networks. In the

context of wireless communication networks, an edge between a job and a

server (frequency channel) means that the frequency channel can be used to

effectively transmit the job (packet) to its destination. To model fading, we

consider a time-slotted system where this graph can change across time-slots.

For content delivery networks like Netflix [75] and YouTube [109], a job

is a request for a particular content piece (to view/download). Each job has

a corresponding server subset equipped to serve that job, which is the set of

servers which have that particular content piece stored on them. Therefore,

in this context, an edge between a job and a server is equivalent to the server

storing the content piece being requested by the job. The classical stochastic

modeling approach is not suitable in the context of content delivery networks

because stochastic models often presuppose stationary statistics which are

hard to come by in a fast evolving setting (e.g. content farms like YouTube)

where the statistics of the job arrival process depend on the popularity of

various videos, which often changes with time. We consider two settings for

resource allocation in content delivery systems. In the first setting, the bipar-

2

tite graph between jobs and servers is adversarial, and in the second setting,

jobs arrive according to an unknown and time-varying stochastic process and

the task of resource allocation includes replicating content on servers (i.e., de-

signing the bipartite graph between jobs and servers) in addition to allocating

incoming requests to appropriate servers.

Next, we provide a brief summary of our work in each of the problems

we consider and then provide a road-map for the rest of the dissertation.

1.1 Contribution of the Thesis

In Chapter 2, we study routing and scheduling algorithms for relay-

assisted, multi-channel downlink wireless networks (e.g., OFDM-based cellular

systems with relays). Over such networks, while it is well understood that

the BackPressure algorithm is stabilizing (i.e., queue lengths do not become

arbitrarily large), its performance (e.g., delay, buffer usage) can be poor. In

this work, we study an alternative – the MaxWeight algorithm – variants

of which are known to have good performance in a single-hop setting. In a

general relay setting however, MaxWeight is not even stabilizing (and thus can

have very poor performance). We study an iterative MaxWeight algorithm for

routing and scheduling in downlink multi-channel relay networks. We show

that, surprisingly, the iterative MaxWeight algorithm can stabilize the system

in several large-scale instantiations of this setting (e.g., general arrivals with

full-duplex relays, bounded arrivals with half-duplex relays). Further, using

both many-channel large-deviations analysis and simulations, we show that

3

iterative MaxWeight outperforms the BackPressure algorithm from a queue-

length/delay perspective.

With increasing data demand, wireless networks are evolving to a hi-

erarchical architecture where coverage is provided by both wide-area base-

stations (BS) and dense deployments of short-range access nodes (AN) (e.g.,

small cells). The dense scale and mobility of users provide new challenges for

scheduling: (i) High flux in mobile-to-AN associations, where mobile nodes

quickly change associations with access nodes (time-scale of seconds) due to

their small footprint, and (ii) multi-point connectivity, where mobile nodes are

simultaneously connected to several access nodes at any time.

In Chapter 3, we study such a densified scenario with multi-channel

wireless links (e.g., multi-channel OFDM) between nodes (BS/AN/mobile).

We first show that traditional algorithms that forward each packet at most

once, either to a single access node or a mobile user, do not have good de-

lay performance. We argue that the fast association dynamics between access

nodes and mobile users necessitate a multi-point relaying strategy, where mul-

tiple access nodes have duplicate copies the data, and coordinate to deliver

data to the mobile user. Surprisingly, despite data replication and no coordi-

nation between ANs, we show that our algorithm (a distributed scheduler –

DIST) can approximately stabilize the system in large-scale instantiations of

this setting, and further, performs well from a queue-length/delay perspective

(shown via large deviation bounds).

In Chapter 4, we focus on content delivery networks where each arriving

4

job may only be served by one of a subset of servers. Such a graph constraint

can arise due to several reasons. One is locality of the data needed by a job;

for example, in content farms (e.g. in Netflix or YouTube) a video request

can only be served by a machine that possesses a copy. Motivated by this, we

consider a setting where each job, on arrival, reveals a deadline and a subset of

servers that can serve it;. The job needs to be immediately allocated to one of

these servers, and cannot be moved thereafter. Our objective is to maximize

the fraction of jobs that are served before their deadlines.

For this online load balancing problem, we prove an upper bound of

1− 1/e on the competitive ratio of non-preemptive online algorithms for sys-

tems with a large number of servers. We propose an algorithm - INSERT

RANKING - which achieves this upper bound. The algorithm makes deci-

sions in a correlated random way and it is inspired by the work of Karp, Vazi-

rani and Vazirani on online matching for bipartite graphs. We also show that

two more natural algorithms, based on independent randomness, are strictly

suboptimal, with a competitive ratio of 1/2.

In Chapter 5, we look at content placement in the high-dimensional

regime: there are n servers, and O(n) distinct types of content. Each server

can store and serve O(1) types at any given time. Demands for these content

types arrive, and have to be served in an online fashion; over time, there

are a total of O(n) of these demands. We consider the algorithmic task of

content placement: determining which types of content should be on which

server at any given time, in the setting where the demand statistics (i.e. the

5

relative popularity of each type of content) are not known a-priori, but have

to be inferred from the very demands we are trying to satisfy. This is the

high-dimensional regime because this scaling (everything being O(n)) prevents

consistent estimation of demand statistics; it models many modern settings

where large numbers of users, servers and videos/webpages interact in this

way.

We characterize the performance of any scheme that separates learning

and placement (i.e. which use a portion of the demands to gain some estimate

of the demand statistics, and then uses the same for the remaining demands),

showing it is order-wise strictly suboptimal. We then study a simple adaptive

scheme - which myopically attempts to store the most recently requested con-

tent on idle servers - and show it outperforms schemes that separate learning

and placement. Our results also generalize to the setting where the demand

statistics change with time. Overall, our results demonstrate that separat-

ing the estimation of demand, and the subsequent use of the same, is strictly

suboptimal.

In Chapter 6, we study content placement in a content delivery network

(CDN) where a large number of front-end servers, each with fixed storage and

service capacity, serve a correspondingly large volume of content requests.

The content placement optimization is driven by online learning, where the

requests themselves reveal the relative popularity of the content. Further,

content can be transferred in and out of the front-end servers, but by incurring

additional cost per transfer. We show that in order to minimize total cost over

6

time, a simple LRU-like adaptive scheme that myopically attempts to store

the most recently requested content on idle servers is asymptotically optimal

(asymptotic in scale of system). Further, we show that this adaptive scheme

strictly outperforms any learning-based static storage policy (i.e. any policy

that uses a portion of the demands to estimate the demand statistics, and

then uses this estimate for the optimal static content placement). Thus, our

results show that despite the per-transfer cost incurred by adaptive placement,

learning-based static storage policies are strictly sub-optimal.

1.2 Structure of the Thesis

We present our work in five chapters: Chapters 2 contains our work

on routing and scheduling algorithms for relay assisted, multi-channel wireless

networks; Chapter 3 presents our work on dense wireless networks with mobile

users; Chapter 4 focuses on routing jobs with hard deadlines in content delivery

networks in the adversarial setting; our work on content replication in the high-

dimensional regime is presented in Chapters 5 and 6. Each chapter motivates

the problem and describing the setting before presenting our results and proof

outlines. Details of the proofs have been deferred to the Appendices. We

conclude with a brief summary of the dissertation in Chapter 7.

7

Chapter 2

MaxWeight vs. BackPressure: Routing and

Scheduling in Multi-Channel Relay Networks

2.1 Introduction

We consider OFDM (Orthogonal Frequency Division Multiplexing) based

multichannel multihop downlink networks consisting of a base-station, relays

and users. OFDM based networks are widely being deployed in commercial

cellular networks (e.g., LTE [2]); looking forward, it is well recognized that

wireless relays are envisioned to be an integral part of the solution for next

generation cellular systems (e.g., LTE-Advanced [64]). The setting here – mul-

tichannel OFDM wireless networks – is the de-facto standard for 4G cellular

communications. These systems have several tens of parallel channels (e.g.,

WiMax over 20 MHz bandwidth has about 50 channels, with each channel

having 25 OFDM sub-carriers grouped together) [14, 15]. A key challenge

here is to design good routing and scheduling algorithms that provide good

user performance (e.g., small buffer usage, low delay, etc.) 1

The obvious candidate for scheduling and routing in this scenario is

1S. Moharir and S. Shakkottai. “MaxWeight vs. BackPressure: Routing and scheduling
in multi-channel relay networks.” In proceedings of IEEE INFOCOM, 2013. The coauthors
on the paper made equal contributions in obtaining these results.

8

the BackPressure algorithm [90], which routes and schedules packets based on

differential backlogs (i.e., queue-length differences from a one-hop downstream

node). This algorithm is known to be stabilizing; however, it is known that it

can have poor delay performance [107, 18, 88]. An alternative, which simply

looks at backlogs and not differential backlogs is the MaxWeight algorithm [91].

The MaxWeight algorithm assigns a weight of (queue-length × channel-rate),

and schedules a collection of links that maximizes the total weight (max-weight

independent set). This algorithm is however, not stabilizing in general, and

thus results in very poor performance. As a simple example, we study the 4-

node network in Figure 2.1, where the source node (A) needs to deliver packets

at rate 1.5 packets/slot to the destination (D). The only scheduling constraint

is that links l1 and l2 cannot be activated together. It is clear that with the

MaxWeight algorithm, the source node A always routes packets along link l1

(with capacity of 10 packets/slot) and does not utilize the lower path (see

figure) due to the scheduling constraint (because the weight of the link l1 is

always 10 times larger than the weight of l2). This results in the buffer at node

B becoming arbitrarily large (as the corresponding outgoing link can only sup-

port 1 packet/slot). This example seems to indicate that MaxWeight is not

a good candidate for relay network scheduling and routing. Surprisingly, we

show that the above intuition is not true in large-scale downlink networks. We

show that for large enough multi-channel downlink relay networks, MaxWeight

type algorithms do stabilize the system and have better buffer-usage perfor-

mance than the BackPressure algorithm. Such smaller buffer usage leads to a

9

A

B

C

D

10 1

1 10

l1

l2

l3

l4

Figure 2.1: A relay network (Example 1) illustrating that MaxWeight algorithm is
not stabilizing. There are four links (l1, l2, l3, l4) with capacities being (10, 1, 1, 10)
packets/slot respectively. The source node is A and the destination is D.

corresponding smaller packet delay. The intuition that leads to these results is

that in networks with a large number of channels (multiple OFDM channels),

(i) there is sufficient flexibility due to the degrees of freedom that the channels

provide that can compensate for routing inefficiencies in MaxWeight, and (ii)

by not considering downlink backlogs, upstream nodes with the MaxWeight

algorithm are more aggressive in using good channels to “push” packets closer

toward the destination, and thus resulting in better overall performance than

BackPressure.

2.1.1 Related Work

Performance with MaxWeight and BackPressure algorithms has been

studied in many settings over the last decade. With fixed routing (including

single-hop flows), delay and buffer-size performance has been studied for mean

delay [74, 29] and large buffer asymptotes [108, 96, 83, 87, 97]. Also, from

a network stability viewpoint for MaxWeight, work includes [47] where the

authors show that the network is stable if the routes are fixed, and nodes are

10

“decoupled” by means of “measuring” arrival rates [62].

In this work, we focus on properties (stability and queue-length/delay

performance) of variants of the BackPressure and MaxWeight algorithms for

networks which require dynamic routing.

With dynamic routing and BackPressure like algorithms, modifications

have been proposed to queue structures (e.g, shadow queue [18], virtual queues

[31], per-hop queues [107]) that empirically result in lower end-to-end delay.

Closer to our setting with multiple channels (but only single-hop downlink),

large deviation analysis provides buffer-size [14, 15, 16] or delay [85], [48] per-

formance bounds for iterative algorithms.

Our focus here is on downlink multi-hop networks – in this setting,

MaxWeight algorithms for routing have not been studied (either in single-

channel or multi-channel settings) as these algorithms are believed to be not

even stabilizing (let alone other performance measures).

2.1.2 Contributions

We propose four routing and scheduling algorithms called the Server

Side Greedy (SSG) BackPressure algorithm, the SSG MaxWeight algorithm,

the Iterative Longest Queue First (ILQF) BackPressure algorithm and the

ILQF MaxWeight algorithm in Section 2.4. We show the following:

11

2.1.2.1 BackPressure Algorithm

• We prove that the BackPressure algorithm does not have good small-

queue performance. We show that rate function of the maximum queue

length is zero for i.i.d. ON-OFF channels, i.i.d. Bernoulli arrivals, and

linear scaling of the number of relays.

2.1.2.2 SSG BackPressure Algorithm

• The algorithm is throughput optimal for the 2-hop networks we consider

under general arrival processes, and bounded channel processes.

2.1.2.3 SSG MaxWeight Algorithm

• For 2-hop downlink networks, for arrival rate vectors strictly in the in-

terior the stability region of the system that satisfy some additional

constraints, if the system scale is large enough, the algorithm keeps the

system stable (see Section 5.3 for specific details).

• For i.i.d. ON-OFF channels, i.i.d. Bernoulli arrivals and linear scaling

of the number of relays, we show that the maximum queue length rate

function is strictly positive (i.e., exponential decay in queue length tails).

2.1.2.4 ILQF MaxWeight and ILQF BackPressure Algorithms

• For i.i.d. ON-OFF channels, i.i.d. Bernoulli arrivals and linear scaling

of the number of relays, we show that the maximum queue length rate

function is strictly positive (i.e., exponential decay in queue length tails).

12

Basestation

Relays

Users

Figure 2.2: An illustrative example of a 2-hop relay network with 2 relays and 3
users.

We compare the lower bounds on the rate functions of the SSG MaxWeight

algorithm, the ILQF MaxWeight algorithm and the ILQF BackPressure algo-

rithm and compare their delay performance via simulations. In particular, the

bounds for the MaxWeight based algorithms are greater than the bounds for

the BackPressure based algorithm and our simulations verify these results.

We finally note that while we have stated and proved the results in the

context of 2-hop networks, the results can be easily extended to any k-hop

downlink network (i.e., multiple “layers” of relays). We skip the details to

keep notation manageable.

2.2 System Model: 2-Hop Downlink Communication
Networks

We consider a multiuser, multichannel 2-hop downlink communication

system. The system consists of a base-station (BS), R(n) relays and n users

13

and n channels, the base-station and the relays maintain n queues each, one

for each user in the system as shown in Figure 2.2.

Our results can be generalized to the case where the two quantities

(number of users and number of channels) are not equal, but scale linearly

with respect to each other. We consider the case when the two are equal to

keep the notation simple.

We study a discrete time queuing system. We build on the notation

used in [14, 15, 16]. All queue lengths below (i.e., at the BS and relays) are

measured at the end of a time-slot t, and arrivals occur at the beginning of

the time-slot.

• Qi = Queue number i at the base-station.

• Rri = Queue number i at relay r.

• Si = Channel number i.

• Qi(t) = The queue length of user i at the BS (measured at the end of

the time-slot).

• Q(t) = {Qi(t) : 1 ≤ i ≤ n}: The vector of queue lengths at the base-

station.

• Rri(t) = The queue length of user i at relay r (measured at the end of

the time-slot).

14

• R(t) = {Rri(t) : 1 ≤ r ≤ R(n), 1 ≤ i ≤ n}: The vector of queue lengths

at the relays.

• Ai(t) = The number of arriving packets to Qi at the base-station.

• A(t) = {Ai(t) : 1 ≤ i ≤ n}: The vector of the number of arriving packets

at the base-station at the beginning of time-slot t .

• Ari (t) = The number of arriving packets to Rri (measured at the begin-

ning of the time-slot).

• Xi,j(t) = The number of packets in Qi that can be transmitted by the

BS to user i on channel j in time-slot t.

• XB,r
i,j (t) = The number of packets in Qi that can be transmitted by the

BS to relay r on channel j in time-slot t.

• Xr
i,j(t) = The number of packets in Rri that can be transmitted by the

relay r to user i on channel j in time-slot t.

Note that arrivals to the base-station queues are external and the arrivals

to the relay queues are intermediate, i.e., packets sent from the base-station

to the relays. We design algorithms that assign channels to the base-station

and relay queues in every time-slot, and execute their allocation through the

variables Y B,r
i,j (t), Y r

i,j(t) and Yi,j(t) for 1 ≤ i ≤ n, 1 ≤ j ≤ n and 1 ≤ r ≤ R(n)

. These variables are defined as follows:

15

• Yi,j(t) is 1 if channel j is scheduled for transmission from Qi to user i in

time-slot t and 0 otherwise.

• Y B,r
i,j (t) is 1 if channel j is scheduled for transmission from Qi to Rri in

time-slot t and 0 otherwise.

• Y r
i,j(t) is 1 if channel j is scheduled to serve the queue for user i at relay

r in time-slot t and 0 otherwise.

The dynamics of the individual queues in the system is described below:

Qi(t) =

(
Qi(t− 1) + Ai(t)

−
n∑
j=1

R(n)∑
r=1

XB,r
i,j (t)Y B,r

i,j (t)−
n∑
j=1

Xi,j(t)Yi,j(t)

)+

,

Rri(t) =

(
Rri(t− 1) + Ari (t)−

n∑
j=1

Xr
i,j(t)Y

r
i,j(t)

)+

,

where

Ari (t) = the number of packets for user i received by relay

r at the beginning of time-slot t.

We consider the following Interference Models:

1. Full Duplex: In the full duplex model, each relay has two transceivers and

therefore, can receive and transmit on the same channels simultaneously.

2. Half Duplex: In the half duplex model, the relays can either receive or

transmit in a time-slot.

16

Using these two interference models, it is possible to construct multiple types

of Multihop relay networks. For instance:

1. Full Duplex without Direct Link (FD-w/oDL)

In this model, we assume that the relays are full duplex and there is no

direct communication link between the base-station and the users. We

assume that the interference graph for the relays is a complete graph,

i.e., only one of the relays can transmit on a particular channel in a give

slot.

2. Full Duplex with Direct Link (FD-wDL)

In this model, we assume that the relays are full duplex and there is a

direct communication link between the base-station and the users. We

assume that the interference graph for the relays is a complete graph.

3. Half Duplex with Direct Link (HD-wDL)

In this model, we assume that the relays are half duplex and there is a

direct communication link between the base-station and the users. We

assume that the interference graph for the relays is a complete graph.

For our results, the interference graph of the relays being a complete graph is

the most restrictive condition that can be imposed on interference among the

relays. We can show that the same results apply for less restrictive interference

constraints. However, we skip the details for brevity. In this chapter, we look

at the FD-w/oDL and HD-wDL Models in detail. The results and proofs for

FD-w/oDL similarly extend to the FD-wDL Model.

17

2.3 Background: The SSG Scheduling Algorithm

In this section we discuss the Server Side Greedy (SSG) algorithm pro-

posed in [15] which is known to have good delay performance for single hop

downlink networks.

The Server Side Greedy (SSG) algorithm was defined in [15] for a single hop

downlink system. This algorithm sequentially allocates channels to queues

within each time-slot. It first allocates channel S1 to the maximum weight

queue, i.e., the queue with largest (Qi(t)Xi,1(t)). It updates the queue length

based on the number of packets that are drained due to this allocation, and

proceeds sequentially to the next channel (and so on). The key point is that

even within a time-slot, queue lengths are updated during the allocation pro-

cess, and future channel allocations within the time-slot take the accumulated

queue length drains into account. For a formal definition of the SSG algo-

rithm (and proofs that this has quadratic complexity in n), please refer to

[15], Definition 3.

2.4 Proposed Scheduling and Routing Algorithms for
2-Hop Downlink Networks

The SSG algorithm discussed in Section 2.3 was designed for single hop

networks and therefore designed only for scheduling packets. In this section,

we build on the SSG algorithm to design scheduling and routing algorithms

for multihop downlink networks. We describe the algorithms in the context of

2-hop networks for simplicity, but, they can be extended to k-hop downlink

18

networks.

2.4.1 FD-w/oDL Model

Input:

• The queue lengths Qi(t−1) and Rri(t−1), for 1 ≤ i ≤ n, 1 ≤ r ≤ R(n).

• The arrival vectors Ai(t) and Ari (t), for 1 ≤ i ≤ n, 1 ≤ r ≤ R(n).

• The channel realizations Xr
i,j(t) and XB,r

i,j (t) for 1 ≤ i ≤ n, 1 ≤ j ≤ n,

1 ≤ r ≤ R(n).

2.4.1.1 SSG BackPressure for FD-w/oDL

The allocation for relay queues is carried out first using the SSG rule

(tie breaking rule: highest priority is the smallest relay index followed by the

smallest user index). The updated relay queue lengths are used for allocation

of channels at the BS using the SSG rule with the weight of each link being the

backpressure-channel product of that link (tie breaking rule: highest priority

is the smallest relay index followed by the smallest user index at each relay).

2.4.1.2 SSG MaxWeight for FD-w/oDL

The allocation for relay queues is carried out first using the SSG rule

(tie breaking rule: highest priority is the smallest relay index followed by the

smallest user index). The allocation for the BS queues is also done using the

SSG rule with the weight of each link being the queue-length-channel product

19

of that link, breaking ties in a cyclic order as follows. We initialize the priority

order of the relays as {1, 2, .., R(n)}. In each round of the allocation process,

the relay that is allocated that particular channel is then removed from its

current position in the priority order and inserted at the last position to get

the new priority order.

2.4.2 HD-wDL Model

Input:

• The queue lengths Qi(t−1) and Rri(t−1), for 1 ≤ i ≤ n, 1 ≤ r ≤ R(n).

• The arrival vectors Ai(t) and Ari (t), for 1 ≤ i ≤ n, 1 ≤ r ≤ R(n).

• The channel realizations Xr
i,j(t), X

B,r
i,j (t) and Xi,j(t) for 1 ≤ i ≤ n,

1 ≤ j ≤ n, 1 ≤ r ≤ R(n).

2.4.2.1 SSG BackPressure for HD-wDL Model

Let

∆ξB(t− 1) = max
1≤i≤n,1≤r≤R(n)

(Qi(t− 1)−Rri(t− 1) + Ai(t)),

ξR(t− 1) = max
1≤i≤n,1≤r≤R(n)

(Rri(t− 1) + Ari (t)).

If ∆ξB(t− 1) > ξR(t− 1), the base-station queues transmit in slot t, else the

relay queues transmit in slot t. The allocation for relay queues is carried out

using the SSG rule (tie breaking rule: highest priority is the smallest relay

index followed by the smallest user index). The allocation for the BS queues is

20

done using the SSG rule with the weight of each link being the backpressure-

channel product of that link (tie breaking rule: highest priority is the smallest

relay index followed by the smallest user index).

2.4.2.2 SSG MaxWeight for HD-wDL Model

Initialize

Amax = max
1≤i≤n

Ai(0).

In each time-slot t, update

Amax = max

{
Amax, max

1≤i≤n
Ai(t)

}
.

Let

ξB(t− 1) = max
1≤i≤n

(Qi(t− 1) + Ai(t)),

ξR(t− 1) = max
1≤i≤n,1≤r≤R(n)

(Rri(t− 1) + Ari (t)).

If ξB(t − 1) > ξR(t − 1), the base-station queues transmit in slot t, else the

relay queues transmit in slot t. The allocation for relay queues is carried out

using the SSG rule (tie breaking rule: highest priority is the smallest relay

index followed by the smallest user index). The allocation for the BS queues

is also done using the SSG rule till all queues have queue length less than

ξB(t− 1)− Amax − 1 or we run out of channels to allocate.

2.5 Main Results and Discussion

We now state our main results, and discuss their implications.

21

2.5.1 Stability

Assumption 1: We use similar Assumptions to [29], [15], described

below for completeness.

1. The channel process:

• The channel state process is assumed to have a stationary distribu-

tion π = [π]i∈I , with πi > 0 for all i ∈ I where I is the collection of

possible channel states.

• Denote s[m] to be the channel state in time-slot m. We assume

that for any ε > 0, there exists an integer M0 > 0 such that for all

M ≥M0, all i ∈ I, and all k, we have

E

[∣∣∣∣πi − 1

M

k+M−1∑
m=k

1s[m]=i

∣∣∣∣] < ε.

• There exists Xmax > 0 such that

max
i,j,t

Xij(t) ≤ Xmax.

2. The arrival process:

• The arrival process to each node ni in the network is a stationary

process with mean λi.

• The arrival rates which lie in the interior of the system’s throughput

region.

22

• Given any ε > 0, we assume that there exists an integer M1 > 0

such that for all M ≥M1, and for all k, i,

E

[∣∣∣∣λi − 1

M

k+M−1∑
m=k

Ai(m)

∣∣∣∣] < ε.

• The second moment of the number of arrivals per time-slot is bounded.

For the following theorem, we consider the SSG BackPressure algorithm for

any of the models described so far (i.e., FD-w/oDL, FD-wDL, HD-wDL). This

theorem continues to hold for any multi-channel network with independent sets

based scheduling constraints (in this case, the SSG BackPressure algorithm

sequentially allocates max-weight independent sets).

Theorem 1 (Throughput Optimality of SSG BackPressure). Under Assump-

tion 1, the SSG BackPressure rule results mean-stable queues, i.e.,

lim sup
T→∞

1

T

T∑
t=1

√√√√ n∑
i=1

Q2
i (t) +

n∑
i=1

R(n)∑
r=1

R2
ri(t) <∞.

As the name suggests, this algorithm takes into account previous chan-

nel and user allocations (and the changes in queue lengths due to such allo-

cations) for each successive new channel allocation. The proof of this builds

on techniques in [15, 29]. This result shows that the SSG BackPressure al-

gorithm keeps the queues stable, and thus is a candidate for studying other

performance measures such as buffer usage or delay. Please refer to [72] for

23

the proof of this theorem.

Assumption 2: (FD-w/oDL: Stability)

• Assumption 2(a):

Arrivals and Bounded Channels

– We assume that A(t) (the vector of arrivals in a time-slot across

users) is an aperiodic, irreducible, finite state Markov chain (inde-

pendent of the channel process).

– We define λ =
1

n
E

[n∑
i=1

Ai(0)

]
. Then,

P

(n∑
i=1

Ai(t) ≥ n(λ+ δ)

)
≤ e−nk(δ),

where k(δ) > 0 is a function of δ and independent of n.

– Ai(t) ≤ k1n for all t and i and some constant k1.

– The channel processes are i.i.d. across time-slots.

– XB,r
i,j (t) ≤ Smax <∞.

– Xr
i,j(t) ≤ Smax <∞.

– For every i, j, r and t,

P (Xr
i,j(t) = Smax) = q(i, j, r) > 0.

• Assumption 2(b):

Consider the event E that there exists a set of channels J such that

24

|J | = nk2 for some constant k2 < 1 and XB,r
i,j < Smax for all j ∈ J and

1 ≤ r ≤ R(n). Then,

P (E) = o

(
1

n6

)
.

The event E as described above is equivalent to saying that in a given

time-slot, there exists a constant fraction of the channels which cannot

be used at Smax by the base-station. If the channels are i.i.d. Bernoulli

with parameter q across relays and time, we have that

P (E) = 2nH(k2)(1− q)nk2R(n) = o

(
1

n6

)
,

where H(k2) = −(k2 log(k2) + (1 − k2) log(1 − k2)). We can show that

another sufficient condition is the α mixing condition defined in [12].

The condition implies that even though the channel variables are not

independent, the correlation between them decays over space and time

and, α captures the rate at which correlation decays.

• Assumption 2(c):

Let I be a set of relays such that |I| ≥ δR(n), for some constant δ < 1.

Consider the event G that for a channel j and for every relay r ∈ I,

Xr
i,j(t) < Smax, ∀i. Then,

P (G) ≤ o

(
1

n4

)
.

If the channels are i.i.d. Bernoulli with parameter q across relays and

time, for δ = 0.5, we have that

P (G) ≤ (1− q)0.5R(n).

25

Therefore, for i.i.d. channels, we need R(n) > − 6

log(1− q)
log n. The

event G as described above is that given a set of relay which includes δ

fraction of all the R(n) relays, none of them can use a channel j at Smax

in a given time-slot.

• Assumption 2(d):

Let I be a set of relay queues such that that |I| = k3R(n) for some

constant k3 < 1 and let J be a set of channels such that |J | = 2k3R(n)
qmin

,

where

qmin = min
r,i,j,t

q(i, j, r, t) > 0.

Consider the eventW that for every relay in I there exist k3R(n) channels

in J such that Xr
i,j(t) = Smax. Since |J | = 2k3R(n)

qmin
, for every relay, the

expected number of channels in J such Xr
i,j(t) = Smax is at least 2k3R(n).

Therefore W is the event that for all relays, the number of channels which

have rate Smax is at least half of its expected value. Then,

P (W c) = o

(
1

n3

)
.

If the channels are i.i.d. Bernoulli with parameter q across relays and

time, we have that

P (W c) = k3R(n)e−
2k3R(n)

q
H(q

2
|q).

This assumption, we can show, is also satisfied by the α mixing condition

defined in [12] and discussed in Assumption 2(b).

26

Lemma 1. Under Assumption 2, if
1

n
E

[n∑
i=1

Ai(0)

]
= λ > Smax, no scheduling

algorithm can stabilize the system.

Therefore, λ ≤ Smax is a necessary condition for an arrival vector to lie in the

stability region of the system.

Theorem 2. Under Assumption 2, for arrival processes with λ < Smax, the

SSG MaxWeight algorithm stabilizes the FD-w/oDL system, i.e., the markov

chain {Q(t),R(t),A(t)} is positive recurrent for n > n0 where n0 is a function

of λ.

This is one of the key results of this chapter: For each possible arrival

rate vector with mean λ < Smax (so that it is strictly within the stability region

of the system), if the system scale is large enough, this result shows that the

SSG MaxWeight algorithm (that does not use downlink queue lengths) keeps

the system stable. As we discussed earlier in Example 1, this is not true in

general. The proof leverages the fact that the degrees of freedom resulting

from the large number of channels compensates for any possible routing errors

due to a lack of knowledge of downlink queues.

This result follows from channel diversity since under Assumption 2(a),

the system is stable even if only a finite number of users have non-zero arrival

rates.

As mentioned before, this result can be extended to k−hop networks.

Please refer to Appendix A for the details.

27

Assumption 3: (HD-wDL: Stability)

• Assumption 3(a):

Arrivals and Bounded Channels

– We assume that the arrival process is stationary, ergodic and i.i.d.

across time-slots. We define λ =
1

n
E

[n∑
i=1

Ai(0)

]
. Then,

P

(n∑
i=1

Ai(t) = n(λ+ δ)

)
≤ e−nk(δ).

– Ai(t) ≤ k1n
α for some α < 1, all t and i and some constant k1.

– The channel processes are i.i.d. across time-slots.

– XB,r
i,j (t) ≤ Smax <∞.

– Xr
i,j(t) ≤ Smax <∞.

– Xi,j(t) ≤ Smax <∞.

– For every i, j, r and t,

P (Xi,j(t) = Smax) = q(i, j, r) > 0.

• Assumption 3(b):

Let I be a set of users such that that |I| ≥ k2n for some k2 < 1. Consider

the event G that for a channel j and for every user i ∈ I, Xi,j(t) < Smax.

Then,

P (G) ≤ o

(
1

n3

)
.

28

If the channels are i.i.d. Bernoulli with parameter q across relays and

time, we have that

P (G) ≤ (1− q)k2n.

This assumption, we can show, is also satisfied if the α mixing condi-

tion defined in [12] and discussed in Assumption 2(b) holds true for the

channel variables.

• Assumption 3(c):

Let I be a set of users such that that |I| = k3n and let J be a set of

channels such that |J | = 2k3n
qmin

, where

qmin = min
i,j,t

q(i, j, t) > 0.

Consider the event W that for every user in I there exist k3n channels

in J such that Xi,j(t) = Smax. Then,

P (W c) = o

(
1

n2

)
.

If the channels are i.i.d. Bernoulli with parameter q across relays and

time, we have that

P (W c) = nk3e
− 2k3n

q
H(q

2
|q).

This assumption, we can show, is also satisfied if the α mixing condi-

tion defined in [12] and discussed in Assumption 2(b) holds true for the

channel variables.

29

Lemma 2. Under Assumption 3, if
1

n
E

[n∑
i=1

Ai(0)

]
= λ > Smax, no scheduling

algorithm can stabilize the system.

Therefore, λ ≤ Smax is a necessary condition for an arrival vector to lie in the

stability region of the system.

Theorem 3. Under Assumption 3, for any arrival process with mean λ <

Smax, the SSG MaxWeight algorithm stabilizes the HD-wDL system, i.e., the

markov chain {Q(t),R(t),A(t)} is positive recurrent for n > n0 where n0 is

a function of λ.

Theorems 2 and 3 together form one of the two key messages of this

chapter which is that even though MaxWeight type algorithms are not through-

put optimal for multihop networks in general, in the setting we consider i.e.

large-scale multi-channel downlink networks with relays, they stabilize the

system.

The proofs of Theorems 2 and 3 differ from the classical methods of

proving stability because of the coupling between the base-station and relay

queues. Please refer to Appendix A for the details of the proofs.

We note that the main difference between Assumptions 2 and 3 is

that Assumption 2 (FD-w/oDL) is satisfied by all arrival processes such that

the mean arrivals for each user is ≤ kn for any constant k (specifically, any

k < Smax works) whereas, Assumption 3 (HD-wDL) only allows arrival pro-

cess which have mean ≤ k′nα for any constant k′ and α < 1. In particular,

30

this implies that the SSG MaxWeight algorithm with Full Duplex relays can

support any point that lie within the interior of the stability region, for n

large enough2. This follows because the peak channel rate is Smax; thus, the

maximum rate per user that can be supported by any algorithm is no more

than Smaxn.

On the other-hand, for the Half Duplex system with a direct link, As-

sumption 3 restricts the per-user arrival process (both mean and peak) to

scale no more than ≤ k′nα. This implies that in this setting, we can provably

stabilize systems for which the arrival rates (across users) are more balanced,

specifically, no single user can use the entire capacity.

2.5.2 Performance Analysis

Assumption 4: (FD-w/oDL: Performance Analysis)

• Bernoulli Arrivals and ON-OFF Channels

– Ai(t) = Bernoulli(p) i.i.d. across users and time-slots.

– XB,r
i,j (t) = Bernoulli(q2) i.i.d. across channels and time-slots.

– Xr
i,j(t) = Bernoulli(q3) i.i.d. across channels and time-slots.

• Linearly Scaling Relays

R(n) = R̃n, R̃ > 0.

2Further, we can show that even with a Direct Link between the base-station and the
Users, the analogous result goes through.

31

Our proofs work for any value of R̃, however we focus on the more real-

istic case of R̃ < 1.

For the case of Bernoulli Arrivals and ON-OFF Channels, in addition to the

BackPressure and SSG MaxWeight algorithms we also analyze two other al-

gorithms derived from the Iterated Longest Queue First (ILQF) algorithm

introduced in [14] which is known to be buffer-usage rate-function optimal for

single hop networks (and thus is a good baseline for comparison).

This algorithm operates iteratively, where, in each iteration the algo-

rithm determines a maximum size matching between the collection of longest

queues and ON unallocated channels. After doing so, the queue lengths are

updated, and the matching process repeats. The complete description of the

algorithm is available in [14], Definition 3. We build on the ILQF algorithm

to design scheduling and routing algorithms for multihop downlink networks.

2.5.2.1 ILQF BackPressure for FD-w/oDL

The allocation for relay queues is carried out first using the ILQF rule

(tie breaking rule: highest priority is the smallest relay index followed by the

smallest user index). The updated relay queue lengths are used for allocation

of channels at the BS using the ILQF rule with the weight of each link being

the backpressure of that link (tie breaking rule: highest priority is the smallest

relay index followed by the smallest user index at each relay).

32

2.5.2.2 ILQF MaxWeight for FD-w/oDL

The allocation for relay queues is carried out first using the ILQF rule

(tie breaking rule: highest priority is the smallest relay index followed by the

smallest user index). The allocation for the BS queues is also done using the

ILQF rule with the weight of each link being the queue length of that link

(tie breaking rule: highest priority is the smallest relay index followed by the

smallest user index at each relay).

We now analyze the performance of algorithms of the 4 algorithms for the

FD-w/oDL system for the restricted class of arrival and channel processes

characterized in Assumption 4. The performance metric we are interested in

is the small buffer overflow probability which is the probability that the max-

imum queue length in the system (both at the base-station and the relays) is

greater than a positive integer b. Formally, for each of these algorithms, we

are interested in computing c(b) where

c(b) =
1

b+ 1
min

{
lim inf
n→∞

−1

n
logP

(
max
i,r

Rri(0) > b

)
,

lim inf
n→∞

−1

n
logP

(
max
1≤i≤n

Qi(0) > b

)}
,

for any fixed non-negative integer b.

Theorem 4. Under Assumption 4, for the BackPressure algorithm,

c(b)(BP) = 0.

33

This theorem shows that even though the BackPressure algorithm is

throughput optimal, it performs poorly when it comes to keeping the queue

lengths small. This empirically holds even in the non-asymptotic region as

seen in Figure 2.3.

Theorem 5. Under Assumption 4, for the SSG MaxWeight algorithm, for

any ε ∈ (0, 1− p) and

δ ∈
(

0,
q3(1− p− ε)

2− q3

)
,

c(b)(SMW) ≥ min

(
H
(
p|p+ ε

)
, δ log

1

1− q3

,
2δH

(
q3| q32

)
q3

)
.

This is the second key result of this chapter. This theorem shows

that for the setting that we consider in Assumption 4, the SSG MaxWeight

algorithm not only stabilizes the system for n large enough, but also performs

well when it comes to keeping the queue lengths small.

Theorem 6. Under Assumption 4, for the ILQF MaxWeight algorithm,

c(b)(IMW) ≥ min

(
R̃ log

1

1− q2

,
1

2
log

1

1− q3

)
.

Theorem 7. Under Assumption 4, for the ILQF BackPressure algorithm,

c(IBP)(b) ≥ min

(
1

d 2
R̃
e

log
1

1− q2

,
1

d 2
R̃
e+ 1

log
1

1− q3

)
.

Since

⌈
2

R̃

⌉
≥ 2

R̃
>

1

R̃
and

⌈
2

R̃

⌉
+ 1 ≥ 2 for all positive values of R̃,

we observe from Theorems 6 and 7 that we get better bounds on the rate

34

function for the ILQF MaxWeight algorithm than the ILQF BackPressure

algorithm. The intuition for the improvement is clear: by not considering

downlink backlogs, upstream nodes with the ILQF MaxWeight algorithm are

more aggressive in using good channels to “push” packets closer toward the

destination, and thus we expect, will result in a better performance than ILQF

BackPressure. We further observe that the bound for the SSG MaxWeight

algorithm in Theorem 5 is independent of R̃. Therefore for small enough values

of R̃, i.e. for a small number of relays, we get better bounds on the performance

of the SSG MaxWeight algorithm than the ILQF BackPressure algorithm.

However, formally since these are bounds, we compare their relative delay

performance through simulations in Section 2.6, which verify the intuition

from the bounds.

To prove Theorems 5, 6 and 7 we use technical results on Markov Chain

coupling from [16]; however, our algorithm performance analysis substantially

differs from [16] as we need to deal with two hops (and can generalize to any

finite number of hops), thus introducing coupled queues across hops. This

entails a different proof technique.

The good performance of the iterative algorithms comes from the in-

terplay between the large number of channels as well as users.

2.6 Simulation Results

We compare the end-to-end delay performance of four algorithms (Back-

Pressure, SSG MaxWeight, ILQF MaxWeight and ILQF BackPressure) for a

35

0 10 20 30 40 50 60 70 80
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Delay D (timeslots)

lo
g

P
(D

el
ay

>
D

)

ILQF MaxWeight

ILQF BackPressure

BackPressure

SSG MaxWeight

Figure 2.3: End-to-end delay performance of BackPressure, SSG MaxWeight, ILQF
MaxWeight and ILQF BackPressure algorithms for a FD-w/oDL system consisting
of 50 users and channels with 2 relays for load = 0.74 and ON-OFF channels with
parameters 0.5 and 0.1 for the base-station to relay channels and relay to user
channels respectively.

36

FD-w/oDL system. The end-to-end delay of a packet is defined as the number

of time-slots it spends in the system before reaching the intended user. This

includes the time-slot at the beginning of which the packet arrives at the base-

station. We consider end-to-end delay as the metric in the simulations because

delay is an important metric for real-time application such as VoIP or video

streaming. It is well known that delay is closely related to the queue-length

at the base-station and the relays where the packets are temporarily stored on

their way to the intended users. Therefore, we expect that algorithms which

have good buffer-usage/queue-length performance, also have good end-to-end

delay performance.

For this particular experiment, we assume that the system has 50 users,

50 channels and 2 relays. In addition, we assume that p = 0.74, q2 = 0.5,

q3 = 0.1. We ran the system for 10000 time-slots. Figure 2.3 shows the delay

performance of all 4 algorithms and Figure 2.4 is the same plot, but zoomed in

to get a closer look at the difference in the performance of the three iterative

algorithms. We see that the iterative algorithms perform much better than

the non-iterative versions. The SSG MaxWeight algorithm seems to be doing

better than ILQF BackPressure confirming our intuition that upstream nodes

are more aggressive in the SSG MaxWeight algorithm because of the lack of

downlink queue length information, leading to better delay performance. This

result also validates the difference in the bounds obtained in Theorems 5, 6

and 7.

37

0 2 4 6 8 10 12 14
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Delay D (timeslots)

lo
g

P
(D

el
ay

>
D

)

ILQF MaxWeight

ILQF BackPressure

SSG MaxWeight

Figure 2.4: End-to-end delay performance of SSG MaxWeight, ILQF MaxWeight
and ILQF BackPressure algorithms for a FD-w/oDL system consisting of 50 users
and channels with 2 relays for load = 0.74 and ON-OFF channels with parame-
ters 0.5 and 0.1 for the base-station to relay channels and relay to user channels
respectively.

38

2.7 Conclusions

We proved that variants of the MaxWeight algorithm are stabilizing

for large scale relay networks under appropriate models. We compared the

performance of Iterative MaxWeight algorithms and Iterative BackPressure

algorithm and found that the Iterative MaxWeight algorithms have better

performance. Given that the complexity of these algorithms are not significant

(low-degree polynomial, please see [15] for discussion on the complexity of

SSG-like algorithms), they can be considered for implementation in practical

settings.

39

Chapter 3

Scheduling in Densified Networks:

Algorithms and Performance

3.1 Introduction

The wireless industry is undergoing a sea change in cellular deploy-

ment. From a well-planned macro-cellular setting, the network is evolving to

a hierarchical setting with cellular base-stations provide macro coverage (foot-

print of 1 km or more) and a dense deployment of access nodes (e.g., small

cells [86] or femto cells [8, 7]) whose coverage range may be as little as 50 –

100 meters, provides short-range coverage. This combination – macro + dense

short-range coverage – popularly referred to as network densification, leads to

new challenges in network resource allocation. 1

First, the access nodes’ small footprints imply that mobile nodes asso-

ciate and disassociate with them at a much higher rate than previously seen. A

car moving at just 30 mph results in hand-offs between ANs at the time-scale

of seconds. This will likely worsen with emerging technologies for 5G systems

1S. Moharir, S. Krishnasamy, and S. Shakkottai. “Scheduling in Densified Networks:
Algorithms and Performance.” In proceedings of the Annual Conference on Communica-
tion, Control and Computing (Allerton), 2014. The coauthors on the paper made equal
contributions in obtaining these results.

40

such as millimeter wave (mmWave) Broadband [79], where the radio prop-

agation environment results in highly non-isotropic and direction-dependent

short-range coverage2. Thus, to ensure universal coverage, operators have no

recourse but to provide a very dense deployment of ANs (especially in loca-

tions with high data demand). This leads to second challenge: mobile nodes

have the opportunity to associate with several possible ANs at any given time

(however, this set changes rapidly over time due to mobility and coverage

directionality).

In this chapter, we argue that operating these dense networks in a tra-

ditional manner, where mobile nodes associate with one AN at any time, and

then hands-off to a new one as the environment/location changes, can be inef-

ficient. Instead, we study an approach where data packets are replicated at a

collection of ANs whose footprints most-likely cover the mobile node, and these

ANs deliver packets to the mobile user by making decisions in a decentralized

manner using local information. We communicate directly between the base-

station and the mobile node only as a last resort when the ANs are unable to

reach the mobile node (e.g., due to uncertainty in tracking the mobile node,

poor location, poor channel rates due to fading). We propose a formal model

to capture this setting and analytically show the performance benefits.

Coordination in wireless communication has been studied in various

2For instance, in a mmWave Broadband system, the human body completely blocks
radio propagation [55, 81]. Thus even slight movement (e.g., rotation of the human with the
phone) can completely block the mmWave access node from communicating with a mobile
node, thus leading to association changes that can occur within fractions of a second.

41

contexts like Distributed/Virtual MIMO [78], [76], Network Coding [57], [54]

etc. Importantly, these techniques require coordination at the packet or time-

slot level. As discussed in [39], backhaul delays could be much larger than

the duration of a time-slot; further with densification, heterogeneity in back-

haul delays will likely worsen. Thus, the key differentiating aspect from the

above literature is that we consider the setting with delayed or sloppy coor-

dination among the various access nodes. In our setting, access nodes do not

have current knowledge of nearby nodes’ instantaneous states, or indeed, even

knowledge of which mobile nodes are connected to them.

3.1.1 Contributions

We study scheduling algorithms for networks with a base-station (BS)

and multiple densified access nodes (AN) and multiple mobile users. We as-

sume that the ANs are dense enough to support multi-point connectivity, i.e.,

each user can associate with multiple ANs at any given time. We propose

an algorithm (DIST) for scheduling and evaluate its performance as detailed

below.

1. Algorithm DIST: We propose a distributed algorithm called DIST

where the BS and the ANs make their scheduling decisions indepen-

dently, based only on local channel and queue-length information. Un-

der the DIST algorithm, the BS forwards each packet to an AN that is

currently connected to the intended user. If an AN cannot forward a

received packet to the corresponding user because the user is no longer

42

connected to it, unlike traditional algorithms, under the DIST algorithm,

the AN forwards copies of packets to multiple ANs around it. In addi-

tion, if the ANs fail to deliver a packet to the user within a fixed number

of time-slots, it is forwarded directly from the BS to the mobile user.

2. Stability: Under general arrival and bounded channel processes, we

show that if the system scale is large enough, the DIST algorithm keeps

the system stable (i.e., Markovian assumptions imply positive recurrence

of the queues).

3. Performance: We have two performance results: (i) We first show that

traditional algorithms like the BackPressure algorithm [90] in which the

base-station forwards each packet at most once, either to a single access

node or a mobile user, do not have good delay performance for mobile

users, i.e., the delay rate functions are zero. (ii) For the proposed DIST

algorithm, we show that for bounded i.i.d. arrivals and channels, the

maximum queue-length rate function is strictly positive and therefore,

the queue-length tails decay exponentially. Further, via simulations, we

show that the DIST algorithm significantly outperforms the BackPres-

sure algorithm in terms of the delay performance.

3.1.2 Related Work

Since the work by Tassiulas and Ephremides [90], there has been great

interest in queue-length based scheduling in wireless networks (see [32] for a

survey). In the many users/channels context (as in this chapter), there has

43

been recent activity to characterize stability, queue-length and delay perfor-

mance, with and without relays (however without user mobility) [14, 15, 16,

85, 71, 46]. A key insight in these works has been the use of iterative alloca-

tions, where queues are updated to account for (partial) channel allocations

even within a time-slot.

This chapter focuses on the benefits of data replication and multi-point

connectivity in a mobile cellular setting (i.e., multiple access nodes maintaining

active communications with a mobile user). Such access has had a long history,

starting from CDMA soft-handoff (to enable make-before-break voice connec-

tions) [98, 104]. More recently, in the setting of COordinated Multi-Point

(COMP) [63], there has been much work at the physical layer to develop co-

operative communication strategies between a collection of base-stations and

a mobile user. This is especially useful in densified settings, with increased op-

portunities (many base-stations/access points for coordination) and challenges

(more complex interference management). These issues have been studied in

various ways including simulations [20], field trials [44, 11], and information-

theoretic techniques [33] (see [63] for a survey). In this chapter, we focus on

network level attributes – queue-lengths and delays – and show that even local

scheduling algorithms that replicate data can significantly outperform more

traditional scheduling algorithms.

Finally, as discussed in the introduction, coordination in wireless net-

works has a rich history and has been studied in various contexts like Network

Coding, Multi-homing, virtual/distributed MIMO etc. See [113] for a discus-

44

sion of challenges arising at different layers of the network protocol stack as

a result of coordination in wireless communication networks. In this chapter,

we propose an algorithm which uses only local information, thus obviating the

need for coordination between different ANs.

3.2 System Model

We consider a two-tiered downlink communication system with a base-

station, a large number of ANs and mobile users as shown in Figure 3.1.

We study a multi-channel (e.g. OFDM) setting with a large number of or-

thogonal channels that can be used for communication simultaneously. This

multi-channel setting, but without user mobility, was the focus in Chapter

2. However, the fact that users are mobile and that the network is densified

implies that the set of ANs that a mobile node is associated with is not time-

invariant; further, a classical time-scale decomposition assumption between

mobile-AN association and channel scheduling cannot be easily justified.

From a channel (average) rate perspective, our setting is one where the

BS-AN, AN-AN and the AN-user links have higher data-rates than the BS-

user links. Again, this is a natural setting to consider because the ANs are

expected to be mounted in more suitable locations, as well as have superior

hardware in terms of the number of antennas, as compared to the mobile users.

Moreover, the ANs that a user is associated with are typically much closer to

the user than the central BS.

Formally, the system consists of a base-station and M(n) ANs, where

45

Base-station

AN 1

AN 2

AN 3

AN 4 AN 6

AN 7

AN 8

Mobile Users

Trajectory of User AN 5

Figure 3.1: A wireless network with a base-station, densely deployed ANs and
mobile users. The users more in and out of the coverage area of the ANs due to
mobility, but are always in the coverage area of the base-station. BS/AN image
courtesy [41].

n is the number of users in the system. We assume that the ANs have two RF

chains, one to communicate with the BS and the other to communicate with

the users and other ANs. As recommended in [7], the BS-AN communication

happens at a different spectrum than the BS-user and AN-user communica-

tion. To keep the notation simple, we assume that the number of orthogonal

frequency channels for BS-AN communication and AN-user communication

are n each. This setting was also considered in Chapter 2. Our results can

easily be extended for other linear scalings.

3.2.1 User Mobility

We use a general notion of mobility which allows both fast moving users

that move in every time-slot as well as users which move rarely. Formally, we

46

AN 1 AN 2 AN 3 AN 4 AN 5 AN 6 AN 7 AN 8

Figure 3.2: Association graph between the ANs and mobile users in the network
in Figure 3.1. Each AN is associated with all user that are currently in its coverage
range, represented by an edge between the AN and the mobile user.

assume that the probability that a user moves from its current position between

two consecutive time-slots is Ω(1/poly(n)) (at least of the order of 1/poly(n)).

This assumption allows the expected time spent at a location to be anything

between one and a polynomial function of n. For example, the probability that

a user moves between two consecutive time-slots can be a constant independent

of n as is the case for the Levy-walk process, which is known to be a good model

for human mobility in various outdoor settings including college campuses and

theme parks [82]. Other popular models, for instance, (discretized versions of)

the Random Waypoint Mobility model (RWM) [49] and its variants that have

been shown to be more appropriate for user mobility in cellular networks [61],

also satifsy this condition.

47

3.2.2 User-AN Connectivity

Since we consider a setting where the ANs are densely deployed, the

user is very likely to be connected to multiple ANs. However, we also include

the possibility that, in some time-slots, the system fails to obtain the location

information of a user. This could happen for various reasons: (i) when a

user goes out of the coverage area of the ANs, (ii) when the user is within

the communication range of some ANs, but fails to communicate its position

to those ANs, or (iii) when a user tracking/position learning algorithm fails.

Specifically, we assume that, at the beginning of each time-slot, the location

of the user is known with probability at least 1−ε(n), i.i.d across users. When

the user location is known, it is connected to at least C(n) ANs. The density

of the ANs in the network can be non-uniform, and therefore, C(n) imposes a

lower bound on it. In this chapter we work in the setting where C(n) is at least

O(log n). We also assume that the base-station can always communicate with

all users albeit at lower (average) rates than the ANs. Figure 3.2 illustrates

the user-AN association graph for the system shown in Figure 3.1.

3.2.2.1 Unpredictability of user-AN associations

Since the users are mobile, the set of ANs a user is connected to can

change between two consecutive time-slots. Let Mu(t) be the set of ANs that

user u is connected to in time-slot t. We assume that,

- Between two consecutive time-slots, the probability that a connected

mobile user, u moves to a new location such that it is no longer associated

48

with a previously connected AN, m is not negligible. Formally, for every

t and m ∈ Mu(t− 1),

P (m /∈ Mu(t)) ≥ µ1(n),

where µ1(n) = Ω(1/poly(n)).

- Further, the motion of the mobile user cannot be predicted with very

high accuracy, i.e., for every t and m /∈ Mu(t− 1),

P (m ∈ Mu(t)) ≤ 1− µ2(n),

where µ2(n) = Ω(1/poly(n)).

These two conditions are fairly general and are satisfied both by users moving

at a very fast time-scale (every time-slot) to users that move rarely (poly(n)

time-slots in expectation). These conditions are also satisfied by the Levy walk

process and the RWM model.

3.2.2.2 User-AN associations in consecutive time-slots

We consider the setting where the mobility of users is such that there is

some overlap between the ANs a user is connected to in two consecutive time-

slots. This imposes a restriction on the maximum velocity of the mobile users.

Formally, we assume that, for a user u connected to the ANs in time-slots t

and t+ 1, |Mu(t) ∩Mu(t+ 1)| = Ω(log n).

49

3.2.2.3 Concentration of users around an AN

In dense networks where each AN has a small footprint, it is unlikely

that a large number of users will be connected to any one particular AN.

Therefore, we can assume that, with high probability, not more than a constant

fraction of the total number of users are connected to a particular AN at the

same time. Specifically, if Um(t) is the set of users connected to AN m in

time-slot t, then

P

(
max

1≤m≤M(n)
|Um(t)| > nν

)
≤ e−bn,

for a positive constant ν < 1 − β and a constant b > 0. This condition is

satisfied, for example, if the users are executing a lazy random walk on the

network of ANs independent of other users in the system.

3.2.3 Communication between Access Nodes

We consider the setting where each AN can communicate with O(log n)

other ANs located close to it. We assume that the set of ANs that a given

AN m can communicate with is large enough so that even if a mobile user

connected to AN m in time-slot t moves in the next two time-slots (t+ 1 and

t+ 2), AN m can communicate with at least one AN in Mu(t+ 2).

3.2.4 Interference between Access Nodes

Although the dense deployment of ANs enables multi-point connectiv-

ity, it can cause interference at the mobile user due to simultaneous transmis-

sions on the same channel. Let Im be the set of ANs which interfere with an

50

AN m, i.e., no AN in Im can successfully transmit on the same channel as m.

We assume that the interference set for every AN satisfies the following: For

all m,

|Im| ≤ nβ,

for some constant β < 1. Note that this condition is quite general, and allows

for interference sets that grow polynomially in the network size. As a point of

reference, spatial stochastic models (where ANs are randomly scattered over

the plane), and connectivity as suggested in the Gupta-Kumar model [40] have

interference sets that scale only logarithmically in network size, and thus is

allowed by our model.

3.2.5 Notation

We add to the notation previously used Chapter 2 and [14, 15, 16] to incorpo-

rate mobility of users which leads to time-varying user-AN associations. There

are n queues at the base-station and ANs (one per user). Our system evolves

in discrete time {t = 0, 1, 2, . . .}, where arrivals happen at the beginning of

time-slots, and queues are updated at the end of a time-slot.

- Qi, Rmi = Queue of mobile user i at the BS and at AN m respectively.

- Qi(t) = BS queue-length of mobile user i at the end of time-slot t.

- Q(t) = {Qi(t) : 1 ≤ i ≤ n}: BS queue-length vector (across all mobile

users)

51

- Ai(t), A
m
i (t) = Number of packet arrivals for mobile user i at the BS and

AN m respectively at the beginning of time-slot t.

- A(t) = {Ai(t) : 1 ≤ i ≤ n}: Arrival vector (across all mobile users).

- Mi(t) = The set of ANs connected to mobile user i in time-slot t.

- C(n) = mini:Mi(t) 6=φ |Mi(t)| is the minimum number of ANs connected to

mobile users whose locations are known.

- Um(t) = The set of mobile users connected to AN m in time-slot t.

- Xi,j(t) = Channel rate (number of packets) for the j-th channel from the

BS to mobile user i.

- XB,m
j (t) = Channel rate for the j-th channel from the BS to AN m.

- Xm
i,j(t) = Channel rate for the j-th channel from AN m to mobile user i.

- X l,m
j (t) = Channel rate for the j-th channel from AN l to AN m.

In each time-slot, channels are allocated to service appropriate queues; this is

captured via the decision variables Y B,m
i,j (t), Y m

i,j (t), Yi,j(t) and Y l,m
j (t) for users

1 ≤ i ≤ n, channels 1 ≤ j ≤ n and ANs 1 ≤ m, l ≤M(n) (each of the variables

takes the value ‘1’ if it corresponds to an allocation, and ‘0’ otherwise).

Finally, Ti,j(t) corresponds to the number of packets transmitted from

user i’s queue at the base-station on channel j.

52

3.3 Main Results and Discussion

3.3.1 Algorithm: DIST

In a system implementing this algorithm, the ANs do not cache packets

for more than a fixed number of time-slots (say L). Any packet which arrives

to an AN at the beginning of time-slot t is deleted by the AN at the end of

time-slot t+L−1. The base-station stores all packets which have not reached

their destination (user).

For each packet p ∈ Ai(t) we introduce an indicator variable Zp which is 1 if

the packet reaches the user i by the end of time-slot t+ L. The queue-length

evolution is now given by:

Qi(t) =

(
Qi(t− 1) + Fi(t)−

n∑
j=1

Xi,j(t)Yi,j(t)

)+

,

where

Fi(t) = Ai(t− L− 1)−
∣∣∣∣ ∑
p∈Ai(t−L−1)

Zp

∣∣∣∣.
are the packets which arrived at the BS at the beginning of time-slot t − L,

but, could not be sent to user i by the end of time-slot t− 1.

We now describe the DIST algorithm (both at the BS and AN).

Base-Station Algorithm: The base-station algorithm proceeds in an iter-

ative manner (see [15] for a detailed discussion of iterative algorithms), allo-

cating one channel at a time. Queue-lengths are updated after each round of

allocation. Channel k is allocated in iteration k.

53

1: Forward New Arrivals to ANs

Find {i∗,m∗} ∈ argmax
1≤i≤n,m∈Mi(t)

A
(k−1)
i (t)XB,m

k (t).

where A
(k−1)
i (t) is the updated (accounting for packets scheduled for

transmission on channels from 1 to k− 1) number of arrivals to user i in

time-slot t and Mi(t) is the set of ANs that user i is currently connected

to. Packets for user i∗ are scheduled for transmission from the base-

station to the AN m∗ on channel k.

2: Direct Forwarding to Users

If channel k is not used by the base-station to forward new arrivals to

the ANs, search for the queue index

i∗ ∈ argmax
1≤i≤n

Q
(k−1)
i (t− 1)Xi,k(t),

breaking ties in the favor of the smaller user index. Allocate channel k to

transmit Xi∗,k(t) from the queue for user i∗ at the base-station directly

to user i∗.

3: Update Queue-lengths

Update all queue-lengths before allocating the next channel.

Remarks. The salient features of DIST (at the Base-station level) are:

i. Step 1 – Local Information + Greedy: Unlike the BackPressure algo-

rithm, the DIST algorithm does not use differential backlogs to make its

routing decisions and therefore does not try to balance the load at the

54

ANs. Instead, the algorithm tries to push packets to the ANs in a greedy

manner whenever it sees high channel rates.

ii. Step 2 – Direct Forwarding over Free Channels: Unused channels (i.e.,

unused by BS-to-AN transmissions) are used by the base-station to route

packets which are queued at the base-station directly to the users. These

packets may have previously been successfully received by one or more

ANs, but which failed to forward it to the intended user. The base-

station transmits these packets directly to the users.

Access Node Algorithm: We now describe how each AN carries out the

task of channel allocation.

For each AN m, we define two sets:

- Vm := the set of ANs that AN m can communicate with.

- Dm(t) := {u : m ∈ Mu(t − 1) \Mu(t)} be the set of users which were

connected to AN m in the previous time-slot, but are not connected to

AN m in this time-slot.

Remarks. Before we formally describe the algorithm, the key features of DIST

(at the AN level) are:

i. Local Information: Each AN makes its decisions using local queue-length

and channel information (channel rates to from m to ANs in Vm and users

connected to AN m).

55

ii. Forwarding Strategy: For users that are connected to the AN, the AN

forwards packets directly to the users. Packets for users that were con-

nected to the AN in the previous time-slot, but are no longer connected

to the AN in the current time-slot (users in the set Dm(t)), are forwarded

to neighboring ANs (ANs in the set Vm).

iii. Channel Randomization: Each AN chooses the channel it transmits on

uniformly at random from the set of channels which have the highest

channel rate. This can lead to collisions, but, since we work in the

large scale multi-channel setting, the expected number of collisions are

a vanishing fraction of the supportable load.

Formally, each AN implements the following steps:

1: Initialize J = {1, 2, ...n} and B
l(0)
u (t) = Amu (t) for u ∈ Dm(t) and l ∈ Vm.

2: Forward Packets to Connected Users

If maxi∈Um(t) A
m(k−1)
i = 0, k = 1 and goto step 4. Else,

{i∗, j∗} ∈ argmax
i∈Um(t),j∈J

A
m(k−1)
i Xm

i,j(t),

breaking ties uniformly at random. Allocate channel j∗ to serve the

queue for user i∗ and update J = J \ j∗.

3: A
m(k)
i∗ = (A

m(k−1)
i∗ −Xm

i∗,j∗(t))
+, k = k + 1, and goto Step 2.

56

4: Forward Packets to Neighboring ANs

{l∗, u∗, j∗} ∈ argmax
l∈Vm,u∈Dm(t),j∈J

Bl(k−1)
u Xm,l

j (t),

breaking ties uniformly at random. Allocate channel j∗ to forward pack-

ets for user u∗ ∈ Dm(t) to AN l∗ and update J = J \ j∗.

5: B
l∗(k−1)
u∗ = (B

l∗(k−1)
u∗ −Xm,l∗

j∗ (t))+, k = k + 1, and goto Step 4.

3.3.2 Stability

The DIST algorithm allows the base-station to retransmit packets which

have already been received by one or more ANs. Retransmission can lead to

the instability of queues in the system, but we show that under some reason-

able assumptions on the channel and arrival processes, the DIST algorithm

stabilizes the queues in the system. These assumptions are analogous to those

in Chapter 2 (see also [29, 15]), with the natural additions to account for user

mobility.

Assumption (a.1). (Bounded Channel Processes)

- The channel processes are i.i.d. across time-slots (and independent of

the arrival process).

- XB,m
i,j (t) ≤ Cmax <∞.

- Xm
i,j(t) ≤ Cmax <∞.

- Xm,l ≤ Cmax <∞.

57

- Xi,j(t) ≤ Cd
max < Cmax <∞.

- For every j and user i in time-slot t,

P (Xi,j(t) = Cd
max) ≥ q

(Cdmax)
1 > 0.

- For every j, t and user i connected to AN m in time-slot t,

P (Xm
i,j(t) = Cmax) ≥ q

(Cmax)
2 > 0.

- For every j, t and every AN l which can communicate with AN m,

P (Xm,l
j (t) = Cmax) ≥ q

(Cmax)
3 > 0.

Assumption (a.2). (Arrival Process)

- We assume that A(t) (arrival vector per time-slot) is an aperiodic, irre-

ducible, finite state Discrete Time Markov Chain.

- Ai(t) ≤ κ(n) such that κ(n)ε(n) = o(1) and κ(n)nνnβ = o(nα) for some

α < 1.

- We define the load λ =
1

n
E

[n∑
i=1

⌈
Ai(0)

Cmax

⌉]
. Then,

P

(n∑
i=1

⌈
Ai(0)

Cmax

⌉
= n(λ+ δ)

)
= o

(
1

n

)
,

for any δ > 0.

58

Recall that ε(n) is the probability that a user cannot be located by

the ANs in a time-slot; thus requiring the BS to use a (lower rate) channel to

directly transmit packets to the mobile. Clearly, as ε(n) increases, κ(n) has to

decrease to maintain stability of the system. The assumption κ(n)ε(n) = o(1)

quantitatively captures this effect. For example if ε(n) = 1/
√
n, users can

have up to o(
√
n) arrivals in a time-slot.

Recall that w.h.p., the number of users connected to an AN in a time-

slot is less than nν and the size of the interference set for each AN is at most

nβ. Therefore, κ(n) has to be small enough to ensure that using n channels, it

is possible for each AN to forward all incoming packets to the corresponding

users or other ANs without coordinating with other ANs, yet the number of

collisions in each time-slot is a vanishing fraction of the total load on the

system.

Assumption (a.3). (Base-station to AN Channel Process)

Consider the event F1 that for channel j, XB,m
j < Cmax for all ANs user i is

connected to in time-slot t. This is equivalent to saying that in time-slot t,

channel j cannot be used at rate Cmax by the base-station to forward packets

for user i to the ANs. Then,

P (F1) = o

(
1

n2

)
.

Assumption (a.4). (AN to Users Channel Process)

For an AN m and user i connected to AN m, consider the event F2 that there

exist at least n
q

(Cmax)
2

2
channels such that Xm

i,j(t) = Cmax for each channel.

59

Then,

P (F c
2) = o

(
1

n3

)
.

Assumption (a.5). (AN to AN Channel Process)

For an AN m which can communicate with AN l, consider the event F3 that

there exist at least n
q

(Cmax)
3

2
channels such that Xm,l

j (t) = Cmax for each chan-

nel. Then,

P (F c
3) = o

(
1

n3

)
.

Assumption (a.6). (Base-station to Users Channel Process)

• Let I be a set of users such that that |I| ≥ kn, for some constant k < 1.

Consider the event F4 that for a channel j and for every user i ∈ I,

Xi,j(t) < 1, ∀i. Then,

P (F4) = o

(
1

n3

)
.

• Let I be a set of user such that that |I| = kn for some constant k < 1

and let J be a set of channels such that |J | = 2kn

q
(Cdmax)
1

, where

Consider the event F5 that for every relay in I there exist kn channels

in J such that Xi,j(t) = 1. Then,

P (F c
5) = o

(
1

n3

)
.

For instance, these assumptions (a.3 – a.6) are satisfied by i.i.d. Bernoulli(q)

channels, or more generally, by correlated (across users) channels that have a

spatial correlation decay property (modeled via the α-mixing condition [12]).

60

Theorem 8. If the load λ > 1, no algorithm can stabilize the queues (i.e.,

render the queue to be positive recurrent).

Theorem 9. Under Assumption (a), for a given load λ < 1, there exists

n0(λ) such that for all n > n0(λ), the Markov Chain corresponding to the

queue-lengths at the base-station and access nodes is positive recurrent.

Thus, for n large enough, the DIST algorithm stabilizes the system for

all loads λ < 1. Further, this is tight in the sense that beyond λ = 1, we

cannot stabilize the queues by any means. This result is interesting because

user mobility and collisions at the second hop (AN-user links) lead to retrans-

missions of those packets by the base-station and yet in the large-scale setting,

the DIST algorithm keeps the system stable.

The proof leverages the fact that as the system scale increases, even

if a user moves, at least 1 AN that the user is currently connected to has a

copy of all the packets which arrived at the base-station less than L time-slots

before the currently time-slot. Therefore, even if the user changes its position,

it can receive packets from the ANs it is currently connected to. Moreover, as

the number of channels increases, there are sufficient degrees of freedom in the

system to ensure that the number of collisions is a vanishing fraction of the

supportable load. Therefore, for a given load, as the system scale increases,

there is sufficient additional capacity in the system to retransmit packets which

are lost due to collisions and directly forward packets from the base-station to

those users whose location information is not known. Therefore, we conclude

61

that, in large scale systems, the benefits of multi-point connectivity can be

achieved without the overhead of coordination.

3.3.3 Performance

3.3.3.1 Single Transmission Algorithms

We first characterize the performance of a class which we refer to as

Single Transmission algorithms. An algorithm belongs to this class if it satisfies

the following two conditions:

i. Each packet is transmitted successfully by the base-station at most once

i.e. once the intended receiver (AN/user) of a packet receives it success-

fully, the base-station deletes that packet from its queue.

ii. Each AN forwards a received packet only to the corresponding user.

This class of algorithms includes the BackPressure algorithm [90] which is

known to be throughput optimal for multihop systems. Iterative versions

of the BackPressure algorithm and the MaxWeight algorithm were proposed

for multi-channel systems in Chapter 2 and were shown to have good buffer-

usage or delay performance for system in which users are not mobile. These

algorithms too belong to the ST class of algorithms. The next theorem char-

acterizes the performance of algorithms belonging to the ST class for mobile

users.

Theorem 10. For a mobile user in a system implementing an ST algorithm,

62

the delay for a packet that is routed to an AN by the base-station is such that

d := lim sup
n→∞

−1

n
logP (Delay > b) = 0,

for any b <∞.

We thus conclude that traditional algorithms like BackPressure/MaxWeight

[90] do not have good delay performance for mobile users.

3.3.3.2 DIST

We study the buffer overflow probability for the largest queue at the

base-station:

r := lim inf
n→∞

1

b+ 1

−1

n
logP

(
max
1≤i≤n

Qi(0) > b

)
.

This value of r is a bound on the rate of decay of the longest queue (large

deviations rate function). Note that the queues at the access nodes delete

packets within a small number of time-slots; thus stability or performance of

these access node queues is not the focus here.

If an algorithm results in a positive value of r, then we have that (ne-

glecting constants outside the exponent)

P

(
max
1≤i≤n

Qi(0) > b

)
≈ e−rn.

Therefore, the probability that the system has any backlogged packets goes to

zero very quickly which means that all packets that enter the system as served

almost immediately, thus leading to low delay.

63

We analyze the performance of DIST for a restricted set of arrival and channel

processes.

Assumption (b). (Multi-level Bounded Arrivals and Channels)

- Ai(t) = k w.p. pk for 0 ≤ k ≤ K and 0 otherwise

- XB,m
i,j (t) = c w.p. q

(c)
1 for 0 ≤ c ≤ Cmax and 0 otherwise.

- Xm
i,j(t) = c w.p. q

(c)
2 for 0 ≤ c ≤ Cmax if user i is connected to AN m

and 0 otherwise.

- Xm,l
j (t) = c w.p. q

(c)
3 for 0 ≤ c ≤ Cmax if AM m can communicate with

AN l and 0 otherwise.

- Xi,j(t) = 1 w.p. q4 and 0 otherwise.

- ε(n) = o(1).

The arrival and channel processes are i.i.d. across users, ANs and time-slots.

In addition we assume that C(n) ≥ 2 log n.

Theorem 11. Under Assumption (b), for the DIST algorithm, for any integer

b ≥ 0,

r = lim inf
n→∞

−1

n
logP

(
max
1≤i≤n

Qi(0) > b

)
> 0.

From this theorem we conclude that under Assumption (b), using multi-

point connectivity, good buffer-usage performance can be achieved without the

overhead of multi-point coordination.

64

Like the proof of Theorem 9, this proof too leverages the fact that as

the system scale increases, multi-point connectivity and the large number of

channels ensure that the number of collisions is small and direct retransmission

of packets from the base-station to users ensures that no packets stays in the

system for too long.

3.4 Proof Outlines

In this section, we provide proof outlines for some of the key theorems.

3.4.1 Stability of DIST (Theorem 9)

Stability of multihop systems has been studied in literature in numerous

settings, Chapter 2 being closest to the setting in the chapter. In Chapter 2,

stability of a static multihop system (no user mobility) for an iterative version

of the MaxWeight algorithm was proved in a sequential manner by first showing

the stability of base-station queues followed by showing that the relay queues

are also stable. The reason why such a decoupling is possible in Chapter 2

is that the MaxWeight algorithm is an ST algorithm and therefore, once a

packet is forwarded by the base-station to a relay/user, it is deleted from the

queue at the base-station. The queue process at the base-station is therefore

independent of the packet transmissions at the second hop (relay-user links).

However, for the DIST algorithm, every packet in the system which has not

reached its final destination (user) is queued the base-station even if it has been

forwarded to the ANs. This couples the queue processes at the base-station

65

with the channel allocation at the second hop (AN-user links).

Therefore, unlike Chapter 2, where stability was proved in a sequential

manner, we have to analyze the entire system at once which requires a different

proof structure. Moreover in our setting, since all packets which have not

reached their destination (user) are queued at the base-station, it suffices to

show that the base-station queues are stable in order to show stability of the

system.

Apart from this key difference, the analysis of DIST has three other

new aspects.

1. Dealing with missing user location information: Unlike settings con-

sidered previously, we deal with users whose location is sometimes un-

known. We show that there is sufficient unused capacity for DIST to

directly forward packets to such users (see also (3) below).

2. Decentralized nature of DIST: The ANs forward packets received to

connected users and scheduling decisions are made in a distributed man-

ner. This can lead to two bad events: (i) there are packets which no AN

forwards to a user, and (ii) due to collisions, packets are not received

successfully by the users. We show that for the DIST algorithm, the

number of such bad events in the second hop (AN-user links) is o(n)

with probability ≥ 1− o(e−n).

3. Splitting packets at the BS into new and old packets: The base-station

forwards new arrivals to the ANs and old packets (packets that arrived

66

more than L time-slots before the current time-slot) directly to the users.

We show that all new arrivals for users whose location is known are

forwarded to the ANs by the BS in a given time-slot with probability

(≥ 1−o(1/n)). We then show that there is sufficient additional capacity

in the system (channels unused by the BS-AN links) to ensure that all

packets that arrived L slots before the current time-slot t, and which

could not be forwarded by the ANs either due to collisions due to the

decentralized nature of DIST or because the location of those users was

not known can be sent directly from the base-station to the users in

time-slot t.

Using these properties of the DIST algorithm, we show that on average,

the base-station queues can serve more packets than they receive in a time-slot

(accounting for both new arrivals and old packets that re-enter the base-station

queues because the ANs fail to forward them to the users). We then use the

standard Foster’s Lyapunov technique for Markov Chains (with a quadratic

Lyapunov function) to show stability. In other words, for a given load λ, there

exists a constant n0 such that the DIST algorithm ensures that the base-station

queues in a system with n > n0 channels are positive recurrent.

3.4.2 Performance Analysis of ST Algorithms (Theorem 10)

1. We consider a packet p for a mobile user u which is sent to AN m by

the base-station in time-slot t. Let F be the event that the user never

connects to m in time-slots t + 1 to t + b. By the assumptions made in

67

Section 3.2,

P (F) ≥ min{µ1, µ2}.µb−1
2

Since µ1, µ2 = Ω(1/poly(n)), we have that P (F) = Ω(1/poly(n)).

2. Conditioned on F , the packet cannot reach the user u before the end of

time-slot t+ b. Therefore we conclude that,

d = lim sup
n→∞

(
− 1

n
logP (delay > b)

)
= 0.

3.4.3 Performance Analysis of DIST (Theorem 11)

We use Markov Chain coupling results in [16] to prove this theorem.

Unlike in [16] where the coupling results were introduced, or in Chapter 2 where

multihop static networks were studied using similar coupling arguments, the

analysis of the DIST algorithm for the setting in this chapter is more challeng-

ing because of user mobility, missing user location information, collisions at

the second hop (AN-user links) and most importantly, due to coupling between

the base-station queues and transmissions on the AN-user links as discussed in

the proof outline for Theorem 9. Instead of sequentially looking at base-station

queues followed by relay queues as in Chapter 2, we characterize the buffer-

usage at the base-station queues since all packets which have not reached their

final destination are queued at the base-station.

Our key step is the construction of a new random variable Y (n)(t) which

dominates the maximum queue-length process at the base-station in our sys-

tem. Y (n)(t) is a Markov Chain which increases by at most a constant with

68

a very small probability (e−rn, for some constant r > 0) and decreases by ‘1’

with constant probability. This construction enables us to use coupling results

from [16] to lead to the desired result.

The first step in the construction is to show that for the base-station

queues, the probability that the maximum queue-length increases in a slot is

small (≤ e−nr). We do this via the following steps:

1. Number of Collisions is Small: From the proof of Theorem 2 (stability

of DIST), we know that the number of bad events (collisions and packets

not being forwarded by ANs) in the second hop (AN-user links) is o(n)

with probability ≥ 1− o(e−n).

2. Most new arrivals reach users in L time-slots: We show that all new ar-

rivals to the base-station for users whose location is known are forwarded

to the ANs in a given time-slot with high probability (≥ 1 − e−nr) and

by (1), we know that all but o(n) of them are forwarded to the users or

ANs connected to that user in the next two time-slots.

3. Direct Transmission of Old Packets: We show that there is sufficient

additional capacity in the system (channels not used by the BS-AN links

for new packets) so that all packets which could not be forwarded by

the ANs to the users by L time-slots after their arrival into the system

can be sent directly from the base-station to the users in time-slot t with

high probability (≥ 1− e−nr).

69

The above steps ensure that the maximum queue-length does not increase

(with exponentially high probability). When combined with long-term stabil-

ity arguments as in Lemma 8, [15], it can be shown that within a finite number

of time-steps, the maximum BS queue-length (in the dominating system) de-

creases by a fixed amount with constant probability. Finally, by explicitly

analyzing the dominating system, we obtain the desired bounds on the decay

rate of the maximum base-station queue-length.

3.5 Simulation Results

We compare the delay performances of the DIST algorithm and the

BackPressure algorithm and also study the effect of various system parameters

on the delay performance of DIST via simulations. We choose the BackPres-

sure algorithm as a benchmark because it is known to be throughput-optimal

for multihop networks.

We consider a system consisting of a base-station, 50 users, 50 channels

and 50 ANs and run it for 104 time-slots. We assume that the ANs lie on a line.

The mobility of users is a lazy random walk on this line. Unless specified, each

user is assumed to be connected to the three nearest ANs. The BS-AN channels

and the AN-User channels take the value 0, 1 and 2 with probabilities 0.2, 0.3

and 0.5 resp and the BS-User channels take the value 1 and with probabilities

0.8 and 0 otherwise, i.i.d. across users, ANs and time-slots. We assume that

ε(n) = 0.01. The following plots show delays for arrivals across time-slots and

users (the arrival process is symmetric).

70

Figure 3.3 compares the performance of DIST with L = 5 and the

BackPressure algorithm. In this plot, the parameter Mobility is defined to be

the probability that a user moves between two consecutive time-slots. The

load on the system in this plot is 0.7. There is a significant difference in the

performance of the two algorithms.

0 100 200 300 400 500 600

10
−4

10
−3

10
−2

10
−1

10
0

d (time−slots)

P
(D

el
ay

 ≥
 d

)

DIST, Mobility = 0.07
BP, Mobility = 0.07
DIST, Mobility = 0.21
BP, Mobility = 0.21

Figure 3.3: BackPressure v/s DIST: Delay Performance

Figure 3.4 summarizes the performance of DIST with L = 5 for three

71

different loads. Since L = 5, if a packet does not reach its destination (intended

user) in 5 time-slots, the base-station tries to forward it to the mobile user

directly. Such packets reach the user with a delay of at least L + 1. From

Figure 3.4, we see that most packets reach their destination in L + 1 (=6)

time-slots. As expected, packet delays increase with load, but, compared to

the performance of the BackPressure algorithm in 3.3, the delay performance

of DIST is significantly better even for higher loads.

Figure 3.5 compares the performance of DIST with L = 5 for different

values Mobility (the probability that a user moves between two consecutive

time-slots) and load = 0.7. The delay performance worsens as the mobility of

users in the system increases, but, remains comparable even when the prob-

ability a user moves between two consecutive time-slots triples. We conclude

that the delay performance of the DIST algorithm is quite robust to user

mobility.

Figure 3.6 compares the performance of DIST for load = 0.7 and Mo-

bility = 0.1 for different values of the parameter L which is the number of

time-slots the BS waits to let the ANs try and delivery packets to the in-

tended users. If a packet does not reach the intended user via an AN within L

time-slots after its arrival, the BS directly sends it to the user. As can be seen

in Figure 3.6, most of the packets reach their final destination within L + 1

slots after their arrival.

72

0 5 10 15 20 25
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

d (time−slots)

P
(D

el
ay

 ≥
 d

)

Load = 0.60
Load = 0.68
Load = 0.75

Figure 3.4: DIST: Delay Performance for Different Loads

73

2 3 4 5 6 7 8 9 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

d (time−slots)

P
(D

el
ay

 ≥
 d

)

Mobility = 0.07
Mobility = 0.14
Mobility = 0.21

Figure 3.5: DIST: Delay Performance for Different User Mobility

74

2 4 6 8 10 12 14 16 18
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

d (time−slots)

P
(D

el
ay

 ≥
 d

)

L = 5
L = 10
L = 15

Figure 3.6: DIST: Delay Performance for values of the parameter L (number of
time-slots the BS waits to let the ANs try and delivery packets to the intended
users before directly forwarding it to the user)

75

Chapter 4

Online Load Balancing Under Graph

Constraints

4.1 Introduction

We look at the problem of load-balancing among servers in the setting

where each job can only be served by a restricted subset of the servers. Such

a constraint arises in several settings, including in content farms and spatially

distributed cloud servers. In content farms like Netflix [75] and YouTube [109],

videos are replicated only among a subset of the servers; thus a request for a

specific video can be served only by the corresponding subset. As another ex-

ample, web portals that provide a collection of services (e.g., Google providing

Email, Maps, Video, Storage and News services) might not have all services

replicated on every server. This naturally leads to an association between

each request and a subset of servers, based on the request type. Further, the

content requests typically have a short fuse, and requests need to be served in

(near) real-time. 1

1S. Moharir, S. Sanghavi, and S. Shakkottai. “Online load balancing under graph con-
straints.” In proceedings of the ACM SIGMETRICS/international conference on Measure-
ment and modeling of computer systems. ACM, 2013. The coauthors on the paper made
equal contributions in obtaining these results.

76

The above discussion motivates the problem in this chapter: We con-

sider online load balancing of jobs with deadlines on non-identical servers (i.e.,

jobs have “hard” server preferences). In other words, each job has a deadline

and can be served by only a (job-specific) subset of the servers, and these

preferences are revealed only when the job enters the multi-server queuing

system.

Our objective is to design online algorithms which maximize the frac-

tion of jobs that are served before their deadlines. In this work, the perfor-

mance of an online algorithm is compared with the performance of a non-causal

scheduler that has information of all future arrivals. We assume that the on-

line algorithm has no knowledge of the statistics of the job arrival process. We

characterize the performance of an online algorithm by its competitive ratio

which is the ratio of the expected number of jobs served by the online algo-

rithm to the number of jobs served by the optimal offline algorithm, minimized

over all input sequences.

We visualize the system as a bipartite graph between servers and jobs,

where an edge between a job and a server indicates that that particular job

can be served by that particular server. The task of allocating jobs to servers

is equivalent to the task of finding a generalized matching in the bipartite

graph where a generalized matching is a matching where one server could be

matched to multiple jobs but one job is matched to at most one server.

77

4.1.1 Contributions

1. Upper Bound: We show an upper (i.e. outer) bound of 1− 1/e on the

competitive ratio of any randomized load balancing algorithm (Theorem

12).

2. Algorithm and its Performance: Our main contribution is the IN-

SERT RANKING algorithm. If multiple servers can serve a job before

its deadline elapses, INSERT RANKING breaks ties in a randomized

manner and the tie breaking policy is correlated across jobs arriving in a

time-slot and also across multiple time-slots. We show a lower bound (i.e.

achievable) of 1 − 1/e on the competitive ratio of INSERT RANKING

(Theorem 13). This proves the optimality of INSERT RANKING.

3. Other Algorithms:

We analyze the performance of two intuitive randomized algorithms

which do not use correlation in tie-breaking. One is a join the shortest

queue algorithm which breaks ties uniformly at random independent of

past choices, and the second algorithm is biased towards joining shorter

queues and breaks ties in a random manner, independent of past choices.

We show an upper (i.e. outer) bound of 1/2 on the competitive ratio of

both algorithms and show that INSERT RANKING strictly outperforms

them, highlighting the importance of correlated randomization (Theorem

14 and Theorem 15).

78

4.1.2 Related Work

4.1.2.1 Online Load Balancing with Hard Deadlines

There is a vast amount of literature on load balancing. We focus on

load balancing in the adversarial setting and similar to our setting of jobs with

hard deadlines.

Online admission control in the hard deadline model when there is a

single server that services a sequence of jobs in a non-preemptive manner has

been studied in [36]. Load balancing jobs with hard deadlines for systems

with m identical machines has been studied in [26] for jobs with identical

processing time. In [26], the goal is to minimize the total number of jobs

dropped from the system. The key results are an optimal 3/2 competitive

online algorithm for m = 2 and lower bounds on deterministic algorithms

for the general case. The case of m = 2 has also been studied in [37]. The

scheduling problem for jobs with equal processing times has been studied in

[21] where the goal is to schedule jobs on a single-processor in a non-preemptive

manner to maximize the number of completed jobs. Load balancing for batch

arrivals of jobs with equal processing times has been considered in [10]. The

competitiveness of online deadline scheduling problems where jobs are non-

preemptive and the goal is to maximize the sum of the length of jobs completed

before their deadlines has been analyzed in [60]. Online preemptive scheduling

problem for jobs with deadlines has been studied in [19]. Closer to our setting

of trying to maximize the number of jobs completed before their deadlines

where all jobs need a service of one time-slot, [28] looks at load balancing

79

Algorithm

({x,z},2) x

y

z

5

Servers

Figure 4.1: System Model for Online Load Balancing: An illustration of a system
with 3 servers. Job 5 has a server subset {x, z} and a deadline of 2 time-slots and
the scheduling algorithm needs to decide whether to send the job to server x or z
or drop the job.

these jobs on m identical machines and show a lower bound of e/(e − 1) for

large values of m. Scheduling jobs with deadlines for wireless networks has

been studied in [42, 45, 84, 80, 27, 73].

4.1.2.2 Online Matching

The problem of online matching in bipartite graphs has been studied in

[53], where the authors introduced the idea of using correlated randomness for

online matching. Various extensions to weighted graphs and the application of

online weighted bipartite matching to ad-words has been studied in [67, 3, 35].

The problem of Online b−Matching has been studied in [50]. Closer to our

setting, load balancing for bipartite graphs has been studied in [69] in the case

where there are no departures from the system and no deadlines.

80

4.2 System Model

We consider a multi-server discrete time queueing system. We assume

that jobs come into the system at the beginning of each slot. If there are

multiple arrivals in a slot, they are ordered. Each job can only be served by a

subset of the servers; this subset is revealed only when a job arrives. Each job

takes 1 time slot, on any of the servers that can serve it. Furthermore, every

job p has a deadline dp associated with it; this is the maximum number of slots

it can wait, after arrival. There exists a finite maximum dmax <∞ such that

dp ≤ dmax for all p. See Figure 4.1 for an illustration of the system model.

Our task is to allocate jobs to servers so as to maximize the number

served by their deadline. Any job, once allocated, cannot be revoked / moved

to another choice. Thus, a job p will not be served if, at the time of its

arrival, all the servers it can be allocated to already have more than dp jobs in

them. We consider algorithm design in the competitive ratio (aka worst-case

/ adversarial) setting, where the algorithm has no knowledge of any aspect of

the arrivals – i.e. it does not know how many packets arrive at each time, and

what the deadline and server-subset of each one is. We will allow for both

deterministic and randomized algorithms.

We measure the performance of any online allocation algorithm alg in

terms of its competitive ratio ρ, where

ρ(alg) = inf
t>0

(
min
A∈At

(
E[Salg(A)]

Sopt(A)

))
.

where At is the set of all arrival processes such that there are no arrivals

81

after time-slot t, E[Salg(A)] is the expected number of jobs served within their

deadline by the (possibly randomized) algorithm and Sopt(A) is the number

of jobs served within their deadline by the offline optimal algorithm, which is

the “genie” algorithm that knows the entire sequence a-priori.

4.3 Main Results and Discussion

In this section, we state and discuss our main results.

4.3.1 Simple Special Case

Before formally describing the algorithm in the next subsection, we

provide intuition and illustration by considering a simple arrival process where

all jobs arrive at the beginning of time-slot 1 and no further arrivals occur.

In addition, we assume that all jobs have a deadline of b where b := dmax

and are revealed to the system sequentially. The scheduling algorithm has to

assign a job to a server before the next job arrives, thus making this an online

scheduling problem.

Since all jobs have a deadline of b, to serve all jobs that are queued at

a server before their deadlines, we need to ensure that no server is allocated

more than b jobs2.

Consider now a convenient representation of the problem, as an ex-

tended bipartite graph (Ub, V, E), defined as follows: for each server u ∈ U ,

2This problem is equivalent to online b−Matching in bipartite graphs, also studied in
[50].

82

we now make b copies, to obtain the vertex set Ub that is one partition of the

graph; thus |Ub| = b|U |. The other partition is just V , the set of jobs. Recall

that each job can only be served by a subset of the servers. Correspondingly,

let edge (u, v) ∈ E if and only if u is a copy of a server that can serve v. An

example of this representation, and the algorithm is in Figure 4.2.

The advantage of the extended graph representation is that we have now

converted the online allocation problem into one of simple online matching (i.e.

one job to one (copy of) a server) on the extended graph. In particular, recall

that in our system model, the vertices in V arrive in arbitrary order, and need

to be allocated on arrival. This is exactly the same as finding a matching node

u ∈ Ub in the extended graph; the fact that each server has at most b copies

ensures the maximum loading is never exceeded.

With this setting, our algorithm first chooses a permutation πb of Ub

uniformly at random from all possible permutations. This permutation, which

we call the ranking, is chosen at the beginning and fixed thereafter. Note that

if (u, v) ∈ E, v has an edge to all copies of u in πb. As each vertex in V is

revealed sequentially, it is matched to the highest ranked unmatched vertex in

πb that it has an edge to.

Note: every vertex in v chooses its vertex according to the same rank-

ing; indeed once this ranking is picked, the rest of the algorithm is determin-

istic. This is what we mean when we say choices are made in a correlated

random way; the fixing of a single ranking governs the choices of all jobs.

83

x

y

z

12

3

45

x2

x1

1

2

3

4

5

z2

y1

y2

z1

{x,y}

{x,z}

{y}

{z}

{z}

Jobs
Server

Copies

Figure 4.2: An illustration of our algorithm for the simple case of arrivals only in
time 1, with all deadlines being dmax = b = 2. Here the server set is U = {x, y, z}
and the job set is V = {1, 2, 3, 4, 5}. In the extended graph, there are 2 copies of each
server, so Ub = {x1, y1, z1, x2, y2, z2}. Our algorithm picks a random permutation,
i.e. ranking, πb of this set Ub and fixes it, as shown on the left. Each vertex in
set V is then matched to the highest ranked available vertex in Ub; this results in
the matching on the extended graph, on the left. The figure on the right shows the
collapsing back from extended graph to a server allocation; it shows the resulting
allocation with max load of 2 on each server.

84

The following proposition characterizes the performance of the algo-

rithm in terms of fraction of jobs served, for this simple special case.

Proposition 1. For any set of arrivals in accordance with the special case

described above – i.e. all jobs arrive in some order in time slot 1 with deadlines

b = dmax – let V ∗ be the number of jobs that can be served by the offline optimal

“genie” algorithm. Then the number of jobs served by our algorithm is at least

V ∗∑
i=1

(
1 +

1

V ∗

)−i
.

As V ∗ → ∞, the competitive ratio – i.e. the above quantity divided by V ∗ –

becomes 1− 1

e
.

Note that, as mentioned, this immediately implies the same competitive

ratio for the graph-theoretic problem of online b-matching, resolving an open

issue described in [50].

4.3.2 Upper Bound

We now consider again the general case, where arrivals occur over time,

and deadlines are completely arbitrary (but bounded by dmax). In this section

we present an upper bound on the competitive ratio of any (possibly ran-

domized) online allocation algorithm; in fact we prove a stronger result, that

this worst case can be achieved even by sequences with homogenous deadlines,

where every job has a deadline equal to dmax, for any dmax.

The upper bound serves the dual purpose of showing the optimality

85

of our algorithm, and the gap to optimality of other (more intuitive) online

allocation algorithms.

Theorem 12. As the number of servers n → ∞, the competitive ratio ρ, of

any online load balancing algorithm for jobs with strict deadlines is ≤ 1− 1

e
.

Note that the competitive ratio is defined by a minimum over arrival

sequences. The above is stronger because it says the minimum even over the

restricted set – with homogenous deadlines – is no better, no matter what the

value of this homogenous deadline.

4.3.3 Our Algorithm and its Performance

The algorithm consists of two parts: a dispatcher and a scheduler. The

dispatcher decides which server will serve a job in an online manner and a

scheduler decides which job in its queue is served by a server in a given time-

slot.

Conventional wisdom dictates that each job should be dispatched to

one of the servers which can serve it and has the smallest queue, however, we

show that the performance of the naive join the shortest queue algorithm is

suboptimal (Theorem 14).

We now describe, first in words and then formally, our online algorithm

INSERT RANKING. In each time-slot, the algorithm implements a series of

steps as shown in Figure 4.3.

Let S be the set of servers. Recall that in every time slot, we have a

86

sequence of jobs arriving; each job p reveals a subset of servers Sp ⊆ S that

can serve it, a deadline dp, and has to be allocated in an online manner.

Update

 State

Arrivals,

online allocation,

insert jobs

in queues

Server decides

which jobs

to serve

Remove

served jobs

from queues

t = 2t = 1

t A B C D

Update

 State

A

Figure 4.3: INSERT RANKING: Time-line

87

In the first time-slot,

A. INITIALIZE: Generate dmax labeled copies of each server with labels 1,

2, .. dmax. Let s
(j)
i denote the copy of si ∈ S labeled j. Each labeled

server copy s
(j)
i has a value V

(j)
i associated with it, chosen independently

according to the uniform distribution on [0, 1]. Refer to Figure 4.4 for

an illustrative example.

x2

x1

z2

y1

y2

z1

Server

Copies

0.1

0.15

0.3

0.43

0.6

0.62

x2

x1

1

2

3

z2

y1

y2

z1

{x,y}

{x,z}

{y}

Jobs
Server

Copies

V ~ uniform(0,1)

Figure 4.4: An illustration of INSERT RANKING. Here the server set is U =
{x, y, z} and dmax = 2. Let all 3 incoming jobs have a deadline of 2 time-slots. The
figure on the left is an illustration of INITIALIZE and the figure on the right is an
illustration of ONLINE ALLOCATION for time-slot 1.

B. ONLINE ALLOCATION: All jobs arriving in time-slot 1 are matched

to server copies in an online manner as follows: For each incoming job,

1. create the neighborhood of a job p, defined as all server copies of

88

x

y

z

12

3

x2

x1

1

2

3

z2

y1

y2

z1

Jobs
Server

Copies

Queues

Figure 4.5: An illustration of SCHEDULE for time-slot 1. Server x serves job 2
since it was matched to x1, server y servers job 3, server z remains idle.

each si in its server subset with label less than dp (the label j of

a server copy indicates that a job assigned to that server copy has

to be served before the end of time-slot j. Therefore, each job p

defined by its server subset and deadline, {Sp, dp} arriving at time

1 can be served by each s ∈ Sp in time-slots 1, .., dp),

2. match each incoming job to that unmatched server copy in its neigh-

borhood which has the lowest value V .

Refer to Figure 4.4 for an illustrative example.

C. SCHEDULE: At the end of job allocation for time-slot 1, all matched

jobs are inserted in the queues of the corresponding servers. Each server

si ∈ S serves that job in its queue which was matched to the copy of

89

si with the smallest label. Refer to Figure 4.5 for an illustrative example.

In every subsequent time-slot t (> 1),

A. UPDATE STATE:

1. Remove all matched server copies.

2. Remove all server copies labeled t− 1.

3. Add one new copy of each server with label t + dmax to the set

of unmatched servers. Each new server copy S
(t+dmax)
i has a value

V
(t+dmax)
i associated with it, chosen independently according to the

uniform distribution on [0, 1].

4. If the label j of the server copy matched to the job served by a

server in the previous slot (t−1) is greater than t−1, add s
(j)
i back

to the set of unmatched server copies.

Refer to Figure 4.6 for an illustrative example.

B. ONLINE ALLOCATION: All jobs arriving in time-slot t are matched to

server copies in an online manner as follows: the neighborhood of a job

p is defined as all server copies of each si in its server subset with label

less than t+dp−1 and each incoming job is matched to that unmatched

server copy in its neighborhood which has the lowest value V .

90

x2

x1

z2

y1

y2

z1

z2

y1

z1

z2

z3

y3

x3

z2

z3

y3

x3

y2

A.1 A.2 A.3 A.4

0.3

0.43

0.6

0.6

0.15

0.38

0.4

0.1

0.6

Figure 4.6: An illustration of UPDATE STATE for time-slot 2.

C. SCHEDULE: At the end of job allocation for time-slot t, all matched

jobs are inserted in the queues of the corresponding servers. Each server

si ∈ S serves that job in its queue which was matched to the copy of si

with the smallest label.

A more formal definition of the algorithm is presented in Algorithm 1.

91

Algorithm 1 INSERT RANKING

1: INITIALIZE: t = 1, {s(j)
i : j = t, .., t + dmax − 1 and si ∈ S} and a real

number V
(j)
i for each s

(j)
i chosen uniformly from [0, 1].

ONLINE ALLOCATION:
2: for arriving job p = {Sp, dp} in time-slot t, do
3: make neighborhood:

N(p) = {s(j)
i : si ∈ Sp and t ≤ j ≤ t+ dp − 1}.

4: match p to currently unmatched s ∈ N(p) that has the lowest V .
5: end for

SCHEDULE:
6: for each server si, do
7: add all jobs matched to copies of server i in time-slot t to the queue of

server si.
8: serve currently queued job which was matched to the lowest labeled copy

of server si.
9: end for

UPDATE STATE:
10: t = t+ 1.
11: for each server si, do
12: remove all matched copies of si.
13: remove s

(t−1)
i .

14: add s
(t+dmax)
i , choose a real number V

(t+dmax)
i uniformly from [0, 1].

15: if si served job p in time-slot t− 1 and p was matched to s
(j)
i such that

j > t− 1, add s
(j)
i back.

16: end for
17: Goto 2.

Comments:

1. INSERT RANKING makes its random choice in a correlated way. The

correlated randomness is implemented via the choice of values V for

server copies. Once these values are chosen, the relative priority between

two server copies is correlated across jobs in a given slot, and also across

92

time.

2. INSERT RANKING is NOT a join the shortest queue algorithm. How-

ever, it is weighted towards joining shorter queues. We will see in the fol-

lowing subsection that it outperforms natural shortest-queue algorithms.

3. Servers implementing INSERT RANKING are work conserving.

4. Before allocating jobs that arrive in time-slot t, all server copies with

labels ≤ t− 1 are removed from the set of unmatched server copies.

5. From the previous comment, it follows that at any given time, there are

at most ndmax unmatched server copies, therefore, the storage require-

ment of INSERT RANKING is O(n).

We now prove a lower bound on the competitive ratio of INSERT RANKING.

Theorem 13. Considering all arrivals up to time t, let V ∗(t) be the number

of jobs that can be served by the optimal offline algorithm. As V ∗(t)→∞, the

number of jobs served by INSERT RANKING is ≥ V ∗(t)
(
1 − 1

e

)
. Therefore,

as V ∗(t)→∞, the competitive ratio of INSERT RANKING is ≥ 1− 1
e
.

From Theorem 12 and 13, we conclude that INSERT RANKING is an

asymptotically optimal load balancing algorithm.

93

4.3.4 Performance of other Algorithms

We now analyze the performance of two intuitive randomized algo-

rithms which do not employ correlation in the randomness across jobs. The

first obvious candidate algorithm is a join the shortest queue (JSQ) algorithm

in which ties are broken in an uniformly random manner. We refer to this al-

gorithm as RANDOMIZED Join the Shortest Queue (RANDOMIZED JSQ).

RANDOMIZED JSQ allocates each incoming job to the currently least loaded

server (server with the shorted queue) breaking ties uniformly at random in-

dependent of past choices. A formal definition of the algorithm is presented

in Algorithm 2.

Algorithm 2 RANDOMIZED JSQ

1: Initialize all QUEUE-LENGTHS Qi to 0.
2: for each t do
3: for arriving job p in time-slot t with server set Sp and deadline dp do
4: Qmin = minsi∈Sp Qi.
5: if Qmin < dp then
6: SHORTEST QUEUES = {si : si ∈ Sp, Qi = Qmin}.
7: Allocate p to server sj ∈ SHORTEST QUEUES breaking ties uni-

formly at random independent of all past decisions.
8: Update QUEUE-LENGTHS.
9: end if

10: end for
11: Each server serves that job in its queue which has the nearest deadline.

Update Qi to (Qi − 1)+ for each i.
12: end for

Theorem 14. As the number of servers, n → ∞, the competitive ratio of

RANDOMIZED JSQ is ≤ 1

2
.

94

We thus conclude that INSERT RANKING strictly outperforms RAN-

DOMIZED JSQ.

INSERT RANKING is not a join the shortest queue algorithm, but, it

is biased towards joining shorter queues. To compare it to an algorithm which

is similarly biased towards joining shorter queues, but makes its decisions in

an uncorrelated manner we propose another algorithm which we refer to as

the RANDOMIZED PROBABILISTIC-Join the Shortest Queue (RANDOM-

IZED P-JSQ) algorithm. RANDOMIZED P-JSQ allocates each incoming job

p with deadline dp to server si with probability proportional to (dp − Qi)
+

independent of past choices. A formal definition of the algorithm is presented

in Algorithm 3.

Algorithm 3 RANDOMIZED P-JSQ

1: Initialize all QUEUE-LENGTHS Qi to 0.
2: for each t do
3: for arriving job p in time-slot t with server set Sp and deadline dp do
4: if maxsj(dp −Qj) > 0 then

5: Allocate p to server sj ∈ Sp w.p.
(dp −Qj)

+∑
si∈Sp(dp −Qi)+

independent of

all past decisions.
6: Update QUEUE-LENGTHS.
7: end if
8: end for
9: Each server serves that job in its queue which has the nearest deadline.

Update Qi to (Qi − 1)+ for each i.
10: end for

Theorem 15. As the number of servers, n → ∞, the competitive ratio of

RANDOMIZED P-JSQ is ≤ 1

2
.

95

From Theorem 15, we see that INSERT RANKING strictly outperforms

RANDOMIZED P-JSQ and we conclude that correlated randomness is key in

the good performance of INSERT RANKING.

4.4 Simulations

Since all our results are in the limiting case of the number of servers,

n→∞, we presenting simulation results for finite values of n. Figure 4.7 shows

the performance of INSERT RANKING for the arrival sequence described in

Section C.2. Figure 4.8 compares the performance of INSERT RANKING

and RANDOMIZED JSQ for the arrival sequence described in Section C.4.1.

Figure 4.9 compares the performance of INSERT RANKING and RANDOM-

IZED P-JSQ for the arrival sequence described in Section C.4.2. In all the

plots, we plot the average value of the fraction of jobs served, averaged over

1000 instances of the algorithms.

4.5 Summary and Discussion

We study online load balancing under graph constraints in the adver-

sarial setting. First, we design “bad” arrival patterns and use them to upper

bound the performance any online load balancing algorithm. Next, we pro-

pose an algorithm called INSERT RANKING which uses correlated random-

ness for load balancing, and prove that it an optimal online load balancing

algorithm. The main message of this chapter is that correlated randomness is

important, because we show that INSERT RANKING outperforms algorithms

96

0 50 100 150 200 250 300
0.63

0.635

0.64

0.645

0.65

0.655

0.66

Number of Servers

F
ra

ct
io

n
of

 J
ob

s
S

er
ve

d

Deadline = 2
Deadline = 3
Deadline = 4

Figure 4.7: INSERT RANKING on the matrix A in Section C.2

which make (the more natural) un-correlated/independent random choices for

load balancing.

Graph constrained load balancing problems are of interest for content

farms where every content piece cannot be stored on every server. It would

also be interesting to look at joint problem of predicting/inferring popularity,

placing popular items on servers in content farms, and serving the resulting

demand.

97

0 50 100 150 200 250 300
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

Number of Servers

F
ra

ct
io

n
of

 J
ob

s
S

er
ve

d

RANDOMIZED JSQ
INSERT RANKING

Figure 4.8: Comparison of INSERT RANKING and RANDOMIZED JSQ

98

0 50 100 150 200 250 300
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

Number of Servers

F
ra

ct
io

n
of

 J
ob

s
S

er
ve

d

RANDOMIZED P−JSQ
INSERT RANKING

Figure 4.9: Comparison of INSERT RANKING and RANDOMIZED P-JSQ

99

Chapter 5

Serving Content with Unknown Demand:

the High-Dimensional Regime

5.1 Introduction

Ever increasing volumes of multimedia content is now requested and

delivered over the Internet.1 Content delivery systems (e.g., YouTube [109]),

consisting of a large collection of servers (each with limited storage/service

capability), process and service these requests. Naturally, the storage and

content replication strategy (i.e., what content should be stored on each of

these servers) forms an important part of the service and storage architecture.

Two trends have emerged in such settings of large-scale distributed con-

tent delivery systems. First, there has been a sharp rise in not just the volume

of data, but indeed in the number of content-types (e.g., number of distinct

YouTube videos) that are delivered to users [109]. Second, the popularity and

demand for most of this content is uneven and ephemeral ; in many cases, a

particular content-type (e.g., a specific video clip) becomes popular for a small

1S. Moharir, J. Ghaderi, S. Sanghavi, and S. Shakkottai. “Serving content with unknown
demand: the high-dimensional regime.” In proceedings of the ACM international conference
on Measurement and modeling of computer systems (SIGMETRICS 2014). The coauthors
on the paper had equal contributions in obtaining these results.

100

interval of time after which the demand disappears; further a large fraction of

the content-types languish in the shadows with almost no demand [34, 5].

To understand the effect of these trends, we study a stylized model for

the content placement and delivery in large-scale distributed content delivery

systems. The system consists of n servers, each with constant storage and

service capacities, and αn content-types (α is some constant number). We

consider the scaling where the system size n tends to infinity. The requests

for the content-types arrive dynamically over time and need to be served in

an online manner by the free servers storing the corresponding contents. The

requests that are “deferred” (i.e., cannot be immediately served by a free

server with requested content-type) incur a high cost. To ensure reliability,

we assume that there are alternate server resources (e.g., a central server with

large enough backup storage and service capacity, or additional servers that

can be freed up on-demand) that can serve such deferred requests.

The performance of any content placement strategy crucially depends

on the popularity distribution of the content. Empirical studies in many ser-

vices such as YouTube, Peer-to-Peer (P2P) VoD systems, various large video

streaming systems, and web caching, [34, 17, 110, 43, 95] have shown that ac-

cess for different content-types is very inhomogeneous and typically matches

well with power-law (Zipf-like) distributions, i.e., the request rate for the i-th

most popular content-type is proportional to i−β, for some parameter β > 0.

For the performance analysis, we assume that the content-types have a pop-

ularity that is governed by some power-law distribution with unknown β and

101

further this distribution changes over time.

Our objective is to provide efficient content placement strategies that

minimize the number of requests deferred. It is natural to expect that content

placement strategies in which more popular content-types are replicated more

will have a good performance. However, there is still a lot of flexibility in

designing such strategies and the extent of replication of each content-type

has to be determined. Moreover, the requests arrive dynamically over time

and popularities of different content-types might vary significantly over time;

thus the content placement strategy needs to be online and robust.

The fact that the number of contents is very large and their popularities

are time-varying creates two new challenges that are not present in traditional

queueing systems. First, it is imperative to measure the performance of content

replication strategies over the time scale in which changes in popularities occur.

In particular, the steady-state metrics typically used in queueing systems are

not a right measure of performance in this context. Second, the number of

content-types is enormous and learning the popularities of all content-types

over the time scale of interest is infeasible. This is in contrast with traditional

multi-class multi-server systems where the number of demand classes does not

scale with the number of servers (low-dimensional setting) and thus learning

the demand rates can be done in a time duration that does not scale with the

system size.

102

5.1.1 Contributions

The main contributions of our work can be summarized as follows.

Modeling Contribution: We recognize that we are in the high-

dimensional regime with unknown demand, that it is fundamentally different

from the low-dimensional setting (finite number of content-types) and propose

a model that captures this difference.

Analytical Contributions: In Section 5.3.1, we show that in this

high-dimensional setting where the demand statistics are not known a-priori,

the “learn-and-optimize” approach, i.e., learning the demand statistics from

requests and then locally caching content on servers using the estimated statis-

tics, is strictly sub-optimal, even when using high-dimensional estimators such

as the Good-Turing estimator [66] (Theorem 16). This is in contrast to the

conventional low-dimensional setting where the “learn-and-optimize” approach

is asymptotically optimal.

In addition, in Section 5.3.2, we study an adaptive content replica-

tion strategy which myopically attempts to cache the most recently requested

content-types on idle servers. Our key result is that even this simple adaptive

strategy strictly outperforms any content placement strategy based on the

“learn-and-optimize” approach (Theorem 18). Our results also generalize to

the setting where the demand statistics change with time (Theorems 17 and

19).

Overall, our results demonstrate that separating the estimation of de-

103

mands and the subsequent use of the estimations to design optimal content

placement policies is deprecated in the high-dimensional setting.

5.1.2 Organization and Basic Notations

The rest of this chapter is organized as follows. We describe our system

model and setting in Section 5.2. The main results are presented in Section

5.3. Our simulation results are discussed in Section 6.4. The proofs of our

results are discussed in the Appendix. Section 5.5 gives an overview of related

works. We finally end the chapter with conclusions.

Some of the basic notations are as follows. Given two functions f and

g, we write f = O(g) if lim supn→∞ |f(n)/g(n)| < ∞. f = Ω(g) if g = O(f).

If both f = O(g) and f = Ω(g), then f = Θ(g). Similarly, f = o(g) if

lim supn→∞ |f(n)/g(n)| = 0, and f = ω(g) if g = o(f). The term w.h.p.

means with high probability as n→∞.

5.2 Setting and Model

In this section, we consider a stylized model for large scale distributed

content systems that captures two emerging trends, namely, a large number

of content types, and uneven and time-varying demands.

5.2.1 Server and Storage Model

The system consists of n front-end servers, each of which can hold one

content piece, and serve one user, at any time. In addition, there is a back-

104

end server that stores the entire catalog of m content-types (one copy of each

content-type, e.g., a copy of each YouTube video). The contents can be copied

from the back-end server and placed on the front-end servers.

Since we are interested in the scaling performance, as n,m → ∞, for

clarity we assume that there are n servers and each server can store 1 content

and can serve 1 request at any time. If instead of one content, each front-end

server can store at most d > 1 content pieces (d is a constant) and serve at

most d requests at each time, the performance can be bounded from above by

the performance of a system with dn servers with a storage of 1 each, and from

below by that of another system with n servers with a storage of 1 each. Thus

asymptotically in a scaling-sense, the system is still equivalent to a system of

n servers where each server can store 1 content and can serve 1 content request

at any time.

5.2.2 Service Model

When a request for a content arrives, it is routed to an idle (front-end)

server which has the corresponding content-type stored on it, if possible. We

assume that the service time of each request is exponentially distributed with

mean 1. The requests have to be served in an online manner; further service is

non-preemptive, i.e., once a request is assigned to a server, its service cannot

be interrupted and also cannot be re-routed to another server. Requests that

cannot be served (no free server with requested content-type) incur a high cost

(e.g., need to be served by the back-end server, or content needs to be fetched

105

from the back-end server and loaded on to a new server). As discussed before,

we refer to such requests as deferred requests. The goal is to design content

placement policies such that the number of requests deferred is minimized.

5.2.3 Content Request Model

There are m content-types (e.g., m distinct YouTube videos). We con-

sider the setting where the number of content-types m is very large and scales

linearly with the system size n, i.e., m = αn for some constant α > 1. We

assume that requests for each content arrive according to a Poisson process

and request rates (popularities) follow a Zipf distribution. Formally, we make

the following assumptions on the arrival process.

Assumption (i). (Arrival and Content Request Process)

- The arrival process for each content-type i is a Poisson process with rate

λi.

- The load on the system at any time is λ̄ < 1, where λ̄ =

∑m
i=1 λi
n

.

- Without loss of generality, content-types are indexed in the order of

popularity. The request rate for content-type i is λi = nλ̄pi where pi ∝

i−β for some β > 0. This is the Zipf distribution with parameter β.

We have used the Zipf distribution to model the popularity distribu-

tion of various contents because empirical studies in many content delivery

systems have shown that the distribution of popularities matches well with

such distributions, see e.g., [34], [17], [110], [43], [95].

106

5.2.4 Time Scales of Change in Arrival Process

A key trend discussed earlier is the time-varying nature of popularities

in content delivery systems [34, 5]. For example, the empirical study in [34]

(based on 25 millions transactions on YouTube) shows that daily top 100 list

of videos frequently changes. To understand the effect of this trend on the

performance of content placement strategies, we consider the following two

change models.

Block Change Model: In this model, we assume that the popularity of var-

ious content-types remains constant for some duration of time T (n), and then

changes to some other arbitrarily chosen distribution that satisfies Assumption

(i). Thus T (n) reflects the time-scale over which changes in popularities oc-

cur. Under this model, we characterize the performance of content placement

strategies over such a time-scale T (n).

Continuous Change Model: Under this model, we assume that each content-

type has a Poisson clock at some constant rate ν > 0. Whenever the clock of

content-type i ticks, content-type i exchanges its popularity with some other

content-type j, chosen uniformly at random. Note that the average time over

which the popularity distribution “completely” changes is comparable to that

of the Block Change Model; however, here the change occurs incrementally

and continuously. Note that this model ensures that the content-type popu-

larity always has the Zipf distribution. Under this model, we characterize the

107

performance of content placement strategies over constant intervals of time.

5.3 Main Results and Discussion

In this section, we state and discuss our main results. The proofs are

provided in the Appendix.

5.3.1 Separating Learning from Content Placement

In this section, we analyze the performance of storage policies which

separate the task of learning and that of content placement as follows. Con-

sider time intervals of length T (n). The operation of the policy in each time

interval is divided into two phases:

Phase 1. Learning: Over this interval of time, use the demands from the

arrivals (see Figure 5.1) to estimate the content-type popularity statistics.

Phase 2. Storage: Using the estimated popularity of various content-types,

determine which content-types are to be replicated and stored on each server.

The storage is fixed for the remaining time interval. The content-types not

requested even once in the learning phase are treated equally in the storage

phase. In other words, the popularity of all unseen content-types in the learn-

ing phase is assumed to be the same.

Further, we allow the interval of time for the Learning phase poten-

108

Phase 1

(Learn)

Phase 2

(Static Storage)

0 T(n)
time

Chosen Optimally

Figure 5.1: Learning-Based Static Storage Policies – The interval T (n) is split into
the Learning and Storage phases. The length of time spent in the Learning phase
can be chosen optimally using the knowledge of the value of T (n) and the Zipf
parameter β.

tially to be chosen optimally using knowledge of T (n) (the interval over which

statistics remain stationary) and β (the Zipf parameter for content-types pop-

ularity).

This is a natural class of policies to consider because it is obvious that

popular content-types should be stored on more servers than the less popular

content-types. Therefore, knowing the arrival rates can help in the design of

better storage policies. Moreover, for the content-types which are not seen in

the learning phase, the storage policy has no information about their relative

popularity. It is therefore natural to treat them as if they are equally popular.

The replication and storage in Phase 2 (Storage) can be performed by

any static policy that relies on the knowledge (estimate) of arrival rates, e.g.,

the proportional placement policy [58] where the number of copies of each

content-type is proportional to its arrival rate, or the storage policy of [59]

which was shown to be approximately optimal in the steady state.

109

We now analyze the performance of learning-based static storage poli-

cies under the Block Change Model defined in Section 5.2.4 where the statistics

remain invariant over the time intervals of length T (n). The performance met-

ric of interest is the number of requests deferred by any policy belonging to

class of learning-based static storage policies in the interval of interest. We

assume that at the beginning of this interval, the storage policy has no in-

formation about the relative popularity of various content-types. Therefore,

we start with an initial loading where each content-type is placed on exactly

one server. This loading is not changed during Phase 1 (the learning phase)

at the end of which, the content-type on idle servers is changed as per the

new storage policy. As mentioned before, this storage is not changed for the

remaining duration in the interval of interest.

The following theorem provides a lower bound on the number of re-

quests deferred by any learning-based static storage policy for the Block Change

Model.

Theorem 16. Under Assumption (i) and the Block Change Model defined in

Section 5.2.4, for β > 1, if T (n) = Ω(1), the expected number of requests de-

ferred by any learning-based static storage policy is Ω
(

min{(nT (n))
1

2−1/β , n}
)
.

We therefore conclude that even if the division of the interval of interest

into Phase 1 (Learning) and Phase 2 (Storage) is done in the optimal manner,

no learning-based static storage policy can defer fewer than Ω
(
(nT (n))

1
2−1/β

)
jobs in the interval of interest. Therefore, Theorem 16 provides a fundamental

110

lower bound on the number of jobs deferred by any policy which separates

learning and storage. It is worth pointing out that this result holds even when

the time-scale of change in statistics is quite slow. Thus, even when T (n), the

time-scale over which statistics remains invariant, goes to infinity and the time

duration of the two phases (Learning, Storage) is chosen optimally based on

β, T (n), Ω
(

min{(nT (n))
1

2−1/β , n}
)

requests are still deferred.

The next theorem provides a lower bound on the number of requests

deferred by any learning-based static storage policy for the Continuous Change

Model. As before, we assume that at the beginning of this interval, the storage

policy has no information about content popularity and therefore, we start

with an initial loading where each content-type is placed on exactly one server.

Theorem 17. Under Assumption (i) and the Continuous Change Model de-

fined in Section 5.2.4, for β > 1, if T (n) = Ω(1), the expected number of

requests deferred by any learning-based static storage policy is

Ω
(

min{(nT (n))
1

2−1/β , n}
)
.

Next, we explore adaptive storage policies which perform the task of

learning and storage simultaneously.

5.3.2 Myopic Joint Learning and Placement

We next study a natural adaptive storage policy called MYOPIC. In

an adaptive storage policy, depending on the requests that arrive and depart,

the content-type stored on a server can be changed when the server is idle

111

while other servers of the system might be busy serving requests. Therefore,

adaptive policies perform the tasks of learning and placement jointly. Many

variants of such adaptive policies have been studied for decades in the context

of cache management (e.g. LRU, LRU-MIN [102]).

Let Ci refer to the ith content-type, 1 ≤ i ≤ m. The MYOPIC policy

works as follows: When a request for content-type Ci arrives, it is assigned to

a server if possible, or deferred otherwise. Recall that a deferred request is a

request for which on arrival, no currently idle server can serve it and thus its

service invokes a backup mechanism such as a back-end server which can serve

it at a high cost. After the assigment/defer decision is made, if there are no

currently idle servers with content-type Ci, MYOPIC replaces the content-type

of one of the idle servers with Ci. This idle server is chosen as follows:

- If there is a content-type Cj stored on more than one currently idle

server, the content-type of one of those servers is replaced with Ci,

- Else, place Ci on that currently idle server whose content-type has been

requested least recently among the content-types on the currently idle

servers.

For a formal definition of MYOPIC, refer to Figure 5.2.

Remark 1. Some key properties of MYOPIC are:

1. The content-types on servers can be potentially changed only when there

is an arrival.

112

1: On arrival (request for Ci) do,
2: Allocate request to an idle server if possible.
3: if no other idle server has a copy of Ci, then
4: if ∃j: Cj stored on > 1 idle servers, then
5: replace Cj with Ci on any one of them.
6: else
7: find Cj: least recently requested on idle servers,

replace Cj with Ci.
8: end if
9: end if

Figure 5.2: MYOPIC – An adaptive storage policy which changes the content
stored on idle servers in a greedy manner to ensure that recently requested content
pieces are available on idle servers.

2. The content-type of at most one idle server is changed after each arrival.

However, for many popular content-types, it is likely that there is already

an idle server with the content-type, in which case there is no content-

type change.

3. To implement MYOPIC, the system needs to keep track of the time at

which the recent most request of each content-type was made.

The following theorem provides an upper bound on the number of re-

quests deferred by MYOPIC for the Block Change Model defined in Section

5.2.4.

Theorem 18. Under Assumption (i) and the Block Change Model defined

in Section 5.2.4, over any time interval T (n) such that T (n) = o(nβ−1), the

number of requests deferred by MYOPIC is O((nT (n))1/β) w.h.p.

113

We now compare this upper bound with the lower bound on the number

of requests deferred by any learning-based static storage policy obtained in

Theorem 16.

Corollary 1. Under Assumption (i), the Block Change Model defined in Sec-

tion 5.2.4, and for β > 1, over any time interval T (n) such that T (n) = Ω(1)

and T (n) = o(nβ−1), the expected number of requests deferred by any learning-

based static storage policy is Ω
(

min{(nT (n))
1

2−1/β , n}
)

and the number of re-

quests deferred by the MYOPIC policy is O
(
(nT (n))

1
β
)

w.h.p.

For β > 1, 1
2−1/β

> 1
β

and for T (n) = o(nβ−1), (nT (n))
1
β = o(n)

. Therefore, from Corollary 1, we conclude that MYOPIC outperforms all

learning-based static storage policies. Note that:

i. Corollary 1 holds even when the interval of interest T (n) grows to infinity

(scaling polynomially in n), or correspondingly, even when the content-

type popularity changes very slowly with time.

ii. Even if the partitioning of the (T (n)) into a Learning phase and a Static

Storage phase is done in an optimal manner with the help of some side in-

formation (β, T (n)), the MYOPIC algorithm outperforms any learning-

based static storage policy.

iii. Since we consider the high-dimensional setting, the learning problem at

hand is a large-alphabet learning problem. It is well known that standard

estimation techniques like using the empirical values as estimates of the

114

true statistics is suboptimal in this setting. Many learning algorithm

like the classical Good-Turing estimator [66] and other linear estimators

[94] have been proposed, and shown to have good performance for the

problem of large-alphabet learning. From Corollary 1, we conclude that,

even if the learning-based storage policy uses the best possible large-

alphabet estimator, it cannot match the performance of the MYOPIC

policy.

Therefore, in the high-dimensional setting we consider, separating the

task of estimation of the demand statistics, and the subsequent use of the

same to design a static storage policy, is strictly suboptimal. This is the key

message of this chapter.

Theorem 18 characterizes the performance of MYOPIC under the Block

Change Model, where the statistics of the arrival process do not change in

interval of interest. To gain further insight into robustness of MYOPIC against

changes in the arrival process, we now analyze the performance of MYOPIC

when the arrival process can change in the interval of interest according to the

Continuous Change Model defined in Section 5.2.4.

Recall that under the Continuous Change Model, on average, we ex-

pect Θ(n) shuffles in the popularity of various content-types in an interval of

constant duration. For the Block Change Model, if T (n) = Θ(1), the entire

popularity distribution can change at the end of the block, which is equivalent

115

to n shuffles. Therefore, for both the change models, the expected number

of changes to the popularity distribution in an interval of constant duration

is of the same order. However, these changes occur constantly but slowly in

the Continuous Change Model as opposed to a one-shot change in the Block

Change Model.

Theorem 19. Under Assumption (i), and the Continuous Change Model de-

fined in Section 5.2.4, the number of requests deferred by the MYOPIC storage

policy in any interval of constant duration is O(n1/β) w.h.p.

In view of Theorem 18, if the arrival rates do not vary in an interval of

constant duration, under the MYOPIC storage policy, the number of requests

deferred in that interval is O(n1/β) w.h.p. Theorem 19 implies that the number

of requests deferred in a constant duration interval is of the same order even

if the arrival rates change according to the Continuous Change Model. This

shows that the performance of the MYOPIC policy is robust to changes in the

popularity statistics.

We now compare the upper bound obtained in Theorem 19 for the

Continuous Change Model with the lower bound on the performance of any

learning-based static storage policy obtained in Theorem 17.

Corollary 2. Under Assumption (i), the Continuous Change Model defined

in Section 5.2.4, and for β > 1, over any time interval of constant duration,

the expected number of requests deferred by any learning-based static storage

116

policy is Ω
(
n

1
2−1/β

)
and the number of requests deferred by the MYOPIC policy

is O(n
1
β) w.h.p.

Thus, even for the Continuous Change Model, MYOPIC outperforms

all Learning-based static policies. Compared to the Block Change Model,

Learning-based static policies are “unsuitable” for the Continuous Change

Model due to the following reasons:

- Content popularity can change while the system is in the learning phase.

This makes the task of estimating content popularity more difficult.

- Once storage is optimized for the estimated content popularity (at the

end of Phase 1), it is not changed in Phase 2. However, content pop-

ularities will change (by a small amount) almost instantaneously after

the learning period, thus making the storage suboptimal even if content

popularity was estimated accurately in Phase 1.

5.3.3 Genie-Aided Optimal Storage Policy

In this section, our objective is to study the setting where the demand

statistics are available “for free”. For the Block Change Model with known

popularity statistics, we show that a simple adaptive policy is optimal in the

class of all policies which know popularity statistics of various content-types.

We denote the class of such policies as A and refer to the optimal policy as

the GENIE policy.

117

Let the content-types be indexed from i = 1 to m and let Ci be the ith

content-type. Without loss of generality, we assume that the content-types

are indexed in the order of popularity, i.e, λi ≥ λi+1 for all i ≥ 1. Let k(t)

denote the number of idle servers at time t.

The key idea of the GENIE storage policy is to ensure that at any time

t, if the number of idle servers is k(t), the k(t) most popular content-types

are stored on exactly one idle server each. The GENIE storage policy can be

implemented as follows. Recall Ci is the ith most popular content-type. At

time t,

- If there is a request for content-type Ci with i < k(t−), then allocate the

request to the corresponding idle server. Further, replace the content-

type on server storing Ck(t−) with content-type Ci.

- If there is a request for content-type Ci with i > k(t−), defer this request.

There is no storage update.

- If there is a request for content-type Ci with i = k(t−), then allocate the

request to the corresponding idle server. There is no storage update.

- If a server becomes idle (due to a departure), replace its content-type

with Ck(t−)+1.

For a formal definition, please refer to Figure 5.3.

118

1: Initialize: Number of idle-servers := k = n.
2: while true do
3: if new request (for Ci) routed to a server, then
4: if i 6= k, then
5: replace content-type of idle server storing Ck with Ci
6: end if
7: k ← k − 1
8: end if
9: if departure, then

10: replace content-type of new idle server with Ck+1

11: k ← k + 1
12: end if
13: end while

Figure 5.3: GENIE – An adaptive storage policy which has content popularity
statistics available for “free”. At time t, if the number of idle servers is k(t), the
k(t) most popular content-types are stored on exactly one idle server each.

Remark 2. The implementation of GENIE requires replacing the content-type

of at most one server on each arrival and departure.

To characterize the performance of GENIE, we assume that the sys-

tem starts from the empty state (all servers are idle) at time t = 0. The

performance metric for any policy A is D(A)(t), defined as the number of re-

quests deferred by time t under the adaptive storage policy A. We say that

an adaptive storage policy O is optimal if

D(O)(t) ≤st D(A)(t), (5.1)

for any storage policy A ∈ A and any time t ≥ 0. Where Equation 5.1 implies

that,

P(D(O)(t) > x) ≤ P(D(A)(t) > x),

119

for all x ≥ 0 and t ≥ 0.

Theorem 20. If the arrival process to the content-type delivery system is

Poisson and the service times are exponential random variables with mean 1,

for the Block Change Model defined in Section 5.2.4, let D(A)(t) be the number

of requests deferred by time t under the adaptive storage policy A ∈ A. Then,

we have that,

D(GENIE)(t) ≤st D(A)(t),

for any storage policy A ∈ A and any time t ≥ 0.

Note that this theorem holds even if the λis are not distributed accord-

ing to the Zipf distribution. We thus conclude that GENIE is the optimal stor-

age policy in the class of all storage policies which at time t, have no additional

knowledge of the future arrivals except the values of λi for all content-types

and the arrivals and departures in [0, t). Next, we compute a lower bound on

the performance of GENIE.

Theorem 21. Under Assumption (i), for β > 1, the Block Change Model

defined in Section 5.2.4 and if the interval of interest is of constant length, the

expected number of requests deferred by GENIE is Ω(n2−β).

From Theorems 18 and 21 we see that there is a gap in the performance

of the MYOPIC policy and the GENIE policy (which has additional knowledge

of the content-type popularity statistics). Since for the GENIE policy, learning

120

the statistics of the arrival process comes for “free”, this gap provides an

upper bound on the cost of serving content-type with unknown demands. We

compare the performance of the all the policies considered so far in the next

section via simulations.

As discussed before, the key property of the GENIE storage policy is

that at time t, if there are k(t) idle servers, the policy ensures that exactly

one copy of the k(t) most popular contents is stored on the idle servers. In

Figure 5.3, we describe how to preserve this property at all times, in the setting

where content popularity remains constant in the interval of interest. If content

popularity is time-varying, as in the case of the Continous Change Model, to

maintain this property, the policy needs to have instantaneous knowledge of

any change in content popularity. Moreover, contents stored on idle servers

might need to be changed at the instant of change in content popularity to

ensure that the idle servers store the currently most popular contents at all

times.

Since the MYOPIC and GENIE policies are adaptive policies, contents

stored on the front-end servers are changed dynamically. Such content changes

can be classified into two types: internal fetches and external fetches. An

internal fetch occurs when a content is available on at least one front-end server

and the storage policy needs to place a copy of this content on an idle front-

end server. In such cases, we assume that the new copy is fetched internally

from one of the local (front-end) servers storing this content. An external

fetch occurs when the content is currently not stored on any of the front-end

121

servers (busy/idle) and hence the copy needs to be fetched externally from

the back-end server. The external fetches incur a much higher cost compared

to the internal fetches as data transfer from outside is subject to high delay

and/or bandwidth consumption. The next theorem provides bounds on the

number of external fetches performed to implement the MYOPIC and GENIE

policies under the Block Change Model. Since the comparison depends on the

initial storage of servers at the beginning of the block, we consider the worst

initial case for the MYOPIC policy which is an empty system.

Theorem 22. Let V P ∗(T) be the number of external fetches made while imple-

menting the storage policy P ∗ in the time-interval (0, T). Under Assumption

1, for β > 1, the Block Change Model and assuming we start from an empty

system, for T = O(1),

(i) V (MYOPIC)(T) = O(nT)1/β w.h.p.

(ii) V (GENIE)(T) = Ω{min{n, nT}} w.h.p.

Thus the MYOPIC policy incurs fewer external fetches compared to the

GENIE policy. This is not surprising as the GENIE storage policy is designed

with the objective of minimizing the number of deferred requests, and hence

it is more aggressive in changing the contents stored on servers in order to

minimize the probability that the next request is deferred.

122

5.4 Simulation Results

We compare the performance of the MYOPIC policy with the perfor-

mance of the GENIE policy and the following two learning-based static storage

policies:

- The “Empirical + Static Storage” policy uses the empirical popularity

statistics of content types in the learning phase as estimates of the the

true popularity statistics. At the end of the learning phase, the number

of servers on which a content is stored is proportional to its estimated

popularity.

- The “Good Turing + Static Storage” policy uses the Good-Turing es-

timator [66] to compute an estimate of the missing mass at the end of

the learning phase. The missing mass is defined as total probability

mass of the content types that were not requested in the learning phase.

Recall that we assume that learning-based static storage policies treat

all the missing content-types equally, i.e., all missing content-types are

estimated to be equally popular.

Let M0 be the total probability mass of the content types that were not

requested in the learning phase and S1 be the set of content types which

were requested exactly once in the learning phase. The Good-Turing

estimator of the missing mass (M̂0) is given by

M̂0 =
|S1|

number of samples
.

123

See [66] for details.

Let Ni be the number of times content i was requested in the learning

phase and Cmissing be the set of content-types not requested in the learn-

ing phase. The “Good Turing + Static Storage” policy computes an

estimate of the content-popularity as follows:

i: If Ni = 0, pi =
M̂0

|Cmissing|
.

ii: If Ni > 0, pi = (1− M̂0)
Ni

number of samples
.

At the end of the learning phase, the number of servers on which a

content is stored is proportional to its estimated popularity.

We simulate the content distribution system for arrival and service

process which satisfy Assumption (i) to compare the performance of the four

policies mentioned above and also understand how their performance depends

on various parameters like system size (n), load (λ̄) and Zipf parameter (β).

In Tables 5.1, 5.2 and 5.3, we report the mean and variance of the fraction of

jobs served by the policies over a duration of 5 s (T (n) = 5).

For each set of system parameters, we repeat the simulations between

1000 to 10000 times for each policy in order to ensure that the standard devia-

tion of the quantity of interest (fraction of jobs served) is small and comparable.

For the two adaptive policies (GENIE and MYOPIC), the results are averaged

over 1000 iterations and for the learning-based policies (“Empirical + Static

Storage” and “Good-Turing + Static Storage”), the results are averaged over

124

10000 iterations. In addition, the results for the learning-based policies are

reported for empirically optimized values for the fraction of time spent by the

policy in learning the distribution.

In Table 5.1, we compare the performance of the policies for different

values of system size (n). For the results reported in Table 5.1, the “Empir-

ical + Static Storage” policy learns for 0.1 s and the “Good Turing + Static

Storage” policy learns for 0.7 s. The performance of all four policies improves

as the system size increases and the adaptive policies significantly outperform

the two learning-based static storage policies. Figure 5.4 is a plot of the mean

values reported in Table 5.1.

In Table 5.2, we compare the performance of the policies for different

values of Zipf parameter β. For the results reported in Table 5.2, the duration

of the learning phase for both learning based policies is fixed such that the

expected number of arrivals in that duration is 100. The performance of all

four policies improves as the value of the Zipf parameter β increases, however,

the MYOPIC policy outperforms both learning-based static storage policies

for all values of β considered.

In Table 5.3, we compare the performance of the policies for different

values of load λ̄. For the results reported in Table 5.3, the duration of the

learning phase for both learning based policies is fixed such that the expected

number of arrivals in that duration is 100. The performance of all four poli-

cies deteriorates as the load increases, however, for all loads considered, the

MYOPIC policies outperforms the two learning-based static storage policies.

125

Policy n Mean σ

GENIE 200 0.9577 0.0081
400 0.9698 0.0045
600 0.9752 0.0034
800 0.9788 0.0030

1000 0.9814 0.0025
MYOPIC 200 0.8995 0.0258

400 0.9260 0.0167
600 0.9380 0.0132
800 0.9481 0.0101

1000 0.9532 0.0080
Empirical + Static Storage 200 0.6292 0.0662

400 0.6918 0.0443
600 0.7246 0.0353
800 0.7464 0.0304

1000 0.7622 0.0268
Good Turing + Static Storage 200 0.6875 0.0274

400 0.7249 0.0180
600 0.7443 0.0140
800 0.7566 0.0118

1000 0.7651 0.0104

Table 5.1: The performance of the four policies as a function of the system size
(n) for fixed values of load λ̄ = 0.8 and β = 1.5. The values reported are the
mean and standard deviation (σ) of the fraction of jobs served. Both adaptive
policies (GENIE and MYOPIC) significantly outperform the two learning-based
static storage policies.

126

Policy β Mean σ

GENIE 2 0.9939 0.0026
3 0.9996 0.0015
4 0.9998 0.0011
5 0.9998 0.0012
6 0.9998 0.0011

MYOPIC 2 0.9778 0.0078
3 0.9960 0.0033
4 0.9982 0.0026
5 0.9990 0.0018
6 0.9993 0.0013

Empirical + Static Storage 2 0.8594 0.0194
3 0.9228 0.0155
4 0.9397 0.0119
5 0.9453 0.0095
6 0.9495 0.0073

Good Turing + Static Storage 2 0.8436 0.0235
3 0.9198 0.0154
4 0.9378 0.0124
5 0.9456 0.0094
6 0.9491 0.0072

Table 5.2: The performance of the four policies as a function of the Zipf parameter
(β) for fixed values of system size n = 500 and load λ̄ = 0.9. The values reported are
the mean and standard deviation (σ) of the fraction of jobs served. The MYOPIC
policy outperforms the two learning-based static storage policies for all values of β
considered.

127

200 300 400 500 600 700 800 900 1000

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

n

F
ra

ct
io

n
of

 J
ob

s
S

er
ve

d

GENIE
MYOPIC
Good Turing + Static Storage
Empirical + Static Storage

Figure 5.4: Plot of the mean values reported in Table 5.1 – performance of the
storage policies as a function of system size (n) for λ̄ = 0.8 and β = 1.5.

In Figure 5.5, we plot the mean value (with error bars of 3×std. dev.)

of the number of external fetches made by the MYOPIC and GENIE storage

policies for different values of n and β for a load of 0.9 averaged over 10000

iterations. As expected, the GENIE storage policy makes more external fetches

than the MYOPIC policy.

128

Policy λ̄ Mean σ

GENIE 0.500 0.9892 0.0025
0.725 0.9788 0.0013
0.950 0.9531 0.0017

MYOPIC 0.500 0.9605 0.0113
0.725 0.9484 0.0105
0.950 0.8973 0.0221

Empirical + Static Storage 0.500 0.7756 0.0222
0.725 0.7705 0.0238
0.950 0.7352 0.0235

Good Turing + Static Storage 0.500 0.7849 0.0230
0.725 0.7589 0.0249
0.950 0.6869 0.0348

Table 5.3: The performance of the four policies as a function of the load (λ̄) for
fixed values of system size n = 500 and β = 1.2. The values reported are the mean
and standard deviation (σ) of the fraction of jobs served. The MYOPIC policy
significantly outperforms the two learning-based static storage policies for all loads
considered.

5.5 Related Work

Our model of content delivery systems shares several features with re-

cent models and analyses for content placement and request scheduling in

multi-server queueing systems [58, 93, 59, 99]. All these works either assume

known demand statistics, or a low-dimensional regime (thus permiting “easy”

learning). Our study is different in its focus on unknown, high-dimensional

and time-varying demand statistics, thus making it difficult to consistently

estimate statistics. Our setting also shares some aspects of estimating large

alphabet distributions with only limited samples, with early contributions from

Good and Turing [38], to recent variants of such estimators [66, 94].

129

Our work is also related to the rich body of work on the content replica-

tion strategies in peer-to-peer networks, e.g., [89, 52, 65, 51, 105, 112, 23, 111].

Replication is used in various contexts: [89] utilizes it in a setting with large

storage limits, [52, 65] use it to decrease the time taken to locate specific con-

tent, and [112, 23, 111] use it to increase bandwidth in the setting of video

streaming. However, the common assumption is that the number of content-

types does not scale with the number of peers, and that a request can be served

in parallel by multiple servers (and with increased network bandwidth as the

number of peers with a specific content-type increases) which is fundamentally

different from our setting.

Finally, our work is also related to the vast literature on content re-

placement algorithms in server/web cache management. As discussed in [100],

parameters of the content (e.g., how large is the content, when was it last

requested) are used to derive a cost, which in-turn, is used to replace content.

Examples of algorithms that have a cost-based interpretation include the Least

Recently Used (LRU) policy, the Least Frequently Used (LFU) policy, and the

Max-Size policy [101]. We refer to [100] for a survey of web caching schemes.

There is a huge amount of work on the performance of replication strategies

in single-cache systems; however the analysis of adaptive caching schemes in

distributed cache systems under stochastic models of arrivals and departures

is very limited.

130

5.6 Conclusions

In this chapter, we considered the high dimensional setting where the

number of servers, the number of content-types, and the number of requests

to be served over any time interval all scale as O(n); further the demand

statistics are not known a-priori. This setting is motivated by the enormity of

the contents and their time-varying popularity which prevent the consistent

estimation of demands.

The main message of this work is that in such settings, separating the

estimation of demands and the subsequent use of the estimations to design op-

timal content placement policies (“learn-and-optimize” approach) is order-wise

suboptimal. This is in contrast to the low dimensional setting, where the ex-

istence of a constant bound on the number of content-types allows asymptotic

optimality of a learn-and-optimize approach.

131

100 150 200 250 300 350 400 450 500
0

1000

2000

3000

n

N
um

be
r

of
 E

xt
er

na
l F

et
ch

es

GENIE, β = 2

MYOPIC , β = 2

GENIE, β = 3

MYOPIC , β = 3

100 150 200 250 300 350 400 450 500
0

20

40

60

n

N
um

be
r

of
 E

xt
er

na
l F

et
ch

es

MYOPIC , β = 2

MYOPIC , β = 3

Figure 5.5: The mean number of external fetches (content fetched from the back-
end server to place on a front-end server) by the two adaptive policies as a function
of system size (n) for λ̄ = 0.9 and β = 2 and 3. The first plot shows the performance
of both GENIE and MYOPIC. The second plot focuses only on the performance of
the MYOPIC storage policy for clarity.

132

Chapter 6

On Adaptive Content Replication in

Large-Scale Content Delivery Networks

6.1 Introduction

Content Delivery Networks (CDNs) account for ever increasing frac-

tions of network traffic (predicted to be more than 50% by 2018 [22]). At

a high level, a CDN architecture is simple – it consists of (i) one or more

“back-end” servers (or a cloud of servers) that have the entire content catalog,

(ii) a large collection of front-end servers, each having a limited subset of the

content, and (iii) a “director/scheduler” that matches Internet user content

requests to appropriate front-end servers. The front-end servers each have lim-

ited capacity and storage – however, they can serve user content requests at a

lower cost (compared to the back-end servers) due to their geographic/network

proximity the users. The key motivation behind using such network architec-

tures is that serving requests through the front-end servers will effectively

mitigate the traffic load on the network backbone, thus reducing the network

bandwidth consumption. Naturally the content replication strategy (i.e., how

many copies of each content should be stored on the front-end servers) forms

an important part of the architecture.

133

Such content caching/replication systems have a rich literature (see

Section 6.1.2). However, as noted in Chapter 5, recent usage patterns indicate

that two important aspects need to be factored into algorithm design and

performance analysis:

(i) A large increase in both the number of content requests and content-

types, and with new content being constantly added to the catalog (e.g.

YouTube draws around a billion viewers per month, and 100 hours of

new video uploaded per minute [109]).

(ii) These videos are nowhere close to being equally popular. Indeed a wealth

of studies in literature [17, 110, 43, 95] suggest that the popularity is

heavy-tailed (Zipf’s law/distribution [114]), and that it changes often

with time [34, 92].

Traditionally, the Independent Reference Model (IRM) has been used

for modeling content request rates in CDNs [24, 34, 17, 110, 43, 95]. Under

IRM, the content catalog has a fixed set of contents, and requests for various

contents in the catalog arrive according to a generalized Zipf’s law. However,

as noted in [92], IRM is not always suitable to model content popularity in

CDNs, as it fails to capture the dynamics of the content catalog as well as the

temporal changes in content popularity. To deal with the shortcoming of IRM,

we use the Shot-Noise Model (SNM), proposed in [92] and validated using real

traffic traces in [92] and [77]. Under SNM, each content is characterized by

134

time

Content
Request

Rate

life-span

λ1

λ2

λ3

λ4

Figure 6.1: The SNM model [92] for the dynamics of content catalog and content
popularity (arrows show the arrival of new contents to the catalog).

three parameters: (1) the time of arrival of the content into the catalog, (2) its

life-span which is the length of the time interval after which the demand for

the content effectively disappears, and (3) its popularity during its life-span

(see Figure 6.1) according to a Zipf-like distribution.

The CDN setting we consider – large volumes of content, large volumes

of content-types and time-varying popularity – is termed the high-dimensional

setting in Chapter 5 because this setting does not permit a “good estimation”

of demand statistics. This is unlike a traditional (low-dimensional) multi-

server queueing system, where a small fraction of time can be allocated for

learning demand or popularity statistics, and the rest of the time can be used

for content delivery based on static optimization of content placement. The

model we consider here is similar to that in Chapter 5 – it consists of a back-end

server which stores the entire content catalog, which is assisted by n front-end

servers with limited storage and service capabilities. Catalog contents can

135

be replicated on front-end servers by fetching them either from the back-end

server or from the other front-end servers if possible. For instance, if an incom-

ing request cannot be served by the front-end servers because the requested

content-type is not available on any idle front-end server, the requested con-

tent can be fetched and replicated on an idle front-end server which can then

serve the request.

However, two crucial differences distinguish this work from Chapter

5. First, the CDN incurs a cost for each content fetch. In our model, the

cost of fetches from the back-end server is typically much higher than local

fetches among the front-end servers since a fetch from the back-end server

increases the load on the network backbone. Second, we use a more realistic

dynamic content update model (the SNM model [92]) as opposed to an IRM-

like model used in Chapter 5. As we will see, these more realistic features have

important analytical and qualitative implications. Analytically, we convert

the continuous time shot noise model (SNM) to a sequence of random-length

blocks of time, where each block of time has the property that k-most popular

files remain unchanged (for an appropriate choice of k). Our analysis stitches

the ‘local-analysis’ within each block over time. Qualitatively, we are now able

to show, not just the gains due to adaptation, but indeed prove asymptotic

optimality in the presence of fetching costs.

6.1.1 Contributions

Our main contributions are:

136

• We study a simple content replication policy – Least Recently Used with

Replication (LRU-R) – a variant of the popular LRU algorithm that

maintains multiple copies (replicates) of popular content on front-end

servers. We show that for both IRM and SNM, this simple strategy is

asymptotically optimal in the sense that it minimizes the total replica-

tion cost as the system size n → ∞, thus showing that the LRU-like

adaptive policy is robust to the dynamic changes in popularity and con-

tent catalog.

• Next we compare LRU-R with strategies that first estimate content

(relative) popularities, and then use this information to statically op-

timize replication (i.e., how many copies of each content type). We show

that such static strategies are order-wise suboptimal. Specifically, even

though the adaptive policy comes with an associated cost per each con-

tent adaptation (unlike Chapter 5 with “free” adaptation), LRU-R still

has a strictly lower overall cost.

• Finally, using simulations, we show that LRU-R indeed outperforms

static-storage policies (as indeed the theory predicts). More interestingly,

with the shot-noise model for content updates and arrivals, the LRU-R

policy outperforms other popular variants such as the LFU (Least Fre-

quently Used) algorithm. This is because a critical problem in caching/

replication is to detect when a content type becomes unpopular (i.e., de-

mand drops off) and hence, stop making copies and flush it from front-

end servers. The LRU-R algorithm shines in this, and detects the end of

137

the life-span of a content faster than a LFU-like policy (the fast detec-

tion of the end of life-span is also important in the asymptotic optimality

proofs for LRU-R).

6.1.2 Related Work

Most related to our work is Chapter 5 which studies replication strate-

gies that maximize the number of requests served by front-end servers under

IRM (fixed catalog) [24]. However Chapter 5 ignores the replication cost,

i.e., assumes that frequent updates in the storage of servers can be made for

“free”. The cost-based model considered in this chapter, in conjunction with

the dynamic catalog (SNM), is a more practical model of CDNs.

Related content replication problems have been studied in the queuing

literature [58, 93, 59, 99]; the key difference is that these studies implicitly as-

sume that the popularity statistics can be learned easily (either known a-priori

or the number of content types is fixed, and hence can be easily learned). Our

setting of time-varying and scaling catalog size distinguish from this literature.

Specifically, the high-level intuition in traditional settings – popularity statis-

tics can be ‘easily’ learned by observing demand requests – no longer holds in

our case.

Two other areas of work we refer to are those of web-caching [100] and

peer-to-peer networks [89, 52, 65, 51, 105, 112, 23, 111]. However, the peer-

to-peer models and issues are different from our setting (most importantly

the bandwidth multiplier that arises from multiple peers serving the same

138

content). Further, as before, our scaling setting is fundamentally different

(number of content types scaling up with load) from the web-caching and

peer-to-peer literature. Next in the VoD setting, [9] proposes an optimization-

based approach (learn the popularity and use a Mixed Integer Program for

replication) that captures various costs (e.g., storage, bandwidth, placement)

in detail.

Finally, the SNM model [92] has been used recently in [77] and [6] to

study the performance of LRU for a single-cache system under non-stationary

traffic. The stochastic models and analysis of request arrival and service con-

sidered in our work for the multi-server CDN are quite different from single-

cache systems.

6.1.3 Basic Notation

Exp(x) denotes an exponential random variable with parameter x.

Poisson(x) denotes a Poisson random variable with parameter x. Given two

real-valued random variables A and B, A ≤st B indicates stochastic domi-

nance, i.e., P (A ≥ x) ≤ P (B ≥ x) for all x. For any functions f(·) and g(·), we

define {f = O(g), f = o(g)} if the limit lim supn→∞ |f(n)/g(n)| is {<∞,= 0}.

Similarly, we let {f = Ω(g), f = ω(g)} if the relation g = {O(f), o(f)} is sat-

isfied. When f = O(g) and f = Ω(g), we say that f = Θ(g). Finally, we use

w.h.p. to indicate ‘with high probability’ as n→∞.

139

6.2 Setting and Model

In this section, we describe the model for content requests, storage,

service, and the associated costs.

6.2.1 Catalog Dynamics

We consider the setting where contents arrive (e.g. are uploaded on

Youtube) according to a Poisson process. As discussed in the introduction,

in our setting, each content has a life-span, i.e., the interval after its arrival

during which there is non-zero demand for the video. Once the life-span of a

video elapses, the video is no longer requested by the users, i.e., the demand

for the content disappears. This model has been validated for CDNs in [77]

using trace-based simulations using data from the Orange network. Formally,

we make the following assumptions on the catalog dynamics.

Assumptions (Catalog Arrival Process). a) The life-span of a content is ex-

ponentially distributed with mean 1
γ1
nc, where c ≥ 0 and γ1 > 0 are

arbitrary constants.

b) Contents arrive (added to the catalog) according to a Poisson process

with rate γ2n
1−c, where γ2 > 0 is some arbitrary constant.

Note that for any value of exponent c ≥ 0, the expected number of

active contents (i.e., content whose life-span has not elapsed) in the system at

each time is O(n). The exponent c captures how fast the set of active contents

of the catalog changes, with smaller values of c corresponding to faster changes.

140

6.2.2 Arrivals and Content Requests

Content demand in CDNs has been observed to be heavy-tailed (Zipf’s

law) [34, 17, 110, 43, 95]. In addition, it has been observed in [4] that the large

number of contents can be classified into a relatively small number of classes

where all contents in a class have similar demand characteristics. We consider

the following setting to capture these characteristics.

We assume that the contents in the catalog belong to a set of classes

I, with nα classes for some non-negative constant α < 1. Each class i ∈ I

is characterized by a unique request arrival rate λi. Further the classes are

indexed according to their order of popularity, i.e., λ1 > λ2 > · · · > λnα .

Each arriving catalog content picks one class from I independently,

uniformly at random. Each content in class i has a request arrival rate of λi

during its life-span.

Assumptions (Request Arrival Processes). a) Requests for content j in class

i ∈ I arrive as a Poisson process with rate λi. The class rates are de-

scribed by the Zipf law with some parameter β > 2, i.e., λi ∝ 1/iβ,

i ∈ I.

b)
∑

i∈I λi =
γ1

γ2

λ̄nα for some number λ̄ ∈ (0, 1).

Remark 3. Under Assumptions 6.2.1 and 6.2.2, the total expected request

arrival rate at any time will be λ̄n. Hence λ̄ captures the effective load on the

system.

141

End-users Front-end Servers

Service at
low Cost

Service at

high Cost Back-end Server

Content fetch
at low cost

Content fetch
at high cost

Figure 6.2: An illustration of a CDN with a back-end server and three front-end
servers. User requests can be served both by the front-end servers (at low cost)
and the back-end server (at high cost). Content can be replicated on the front-end
servers by fetching it either from other front-end servers (at low cost) or from the
back-end server (at high cost).

6.2.3 Server and Storage

We use the same server and storage model as in Chapter 5. The CDN

(see Figure 6.2) consists of a back-end server which stores the entire catalog of

contents and n front-end servers which can store one content piece each. Each

front-end server can serve only one request at a time. The key difference is the

cost model, wherein we now have a cost for each fetch (see the next section).

142

6.2.4 Service and Content Fetching

The service time is assumed to be Exp(1) (i.e., exponentially distributed,

with mean time normalized to unity). When a request for a content arrives,

it can be served in three ways:

(i) By an idle front-end server with the specific content-type requested;

(ii) By an idle front-end server that does not have the specific content-type. In

this case, the specific content is fetched either from another front-end server or

the back-end server (if no front-end server has this content), placed on the idle

front-end server which then serves the request. The cost of fetching a content

from the back-end server and a front-end server is Cb and Cf respectively, with

Cf ≤ Cb;

(iii) By the back-end server, which serves it at the highest cost Cm, with

Cf ≤ Cb ≤ Cm. We assume that the back-end server has sufficient capacity to

serve all the request that are routed to it.

6.3 Main Results and Discussion

We present and discuss the main results.

6.3.1 Static Catalog (IRM)

Before discussing our results for SNM where the content catalog is both

large as well as time-varying (due to arrival of new content and time-varying

content popularity), we provide intuition by first considering IRM where the

catalog is large but static, i.e., the set of contents in the catalog as well as their

143

popularity does not change with time. This is also closely related to the Block

Change Model (but with additional fetching costs) in Chapter 5 from which we

borrow the notation below. Specifically we make the following assumptions:

Assumptions (Static Catalog). a) The content catalog has n contents.

b) Requests for each content j arrive according to a Poisson process with

rate λj and {λj} follows the Zipf’s law with parameter β > 2, i.e.,

λj = λ̄n
j−β

z(β)
, where z(β) =

n∑
j=1

j−β and λ̄ ∈ (0, 1).

d) The service time for each request is Exp(1).

e) The request rates remain unchanged for a time interval of length T (n).

Definition 1. Given a time interval [0, T (n)], let

- U(T (n)) be the number of unique contents requested in [0, T (n)],

- Xj(t) be the number of requests for the content j being served at time

t ∈ [0, T (n)],

- Zj(T (n)) = maxt∈[0,T (n)] Xj(t),

- Z(T (n)) =
∑n

j=1 Zj(T (n)),

- CΨ(T (n)) be the cost of the content replication policy Ψ to serve the

requests over the time interval [0, T (n)].

144

Our first theorem provides a lower bound on the cost of the optimal

content replication policy (OPT) which knows the entire sample path, i.e., it

knows the arrival sequence as well as service times of all the future requests.

Theorem 23. Given a time interval [0, T (n)], the cost of the optimal replica-

tion policy OPT is at least

COPT(T (n)) ≥ CfZ(T (n)) + (Cb − Cf)U(T (n)).

Note that this result is not asymptotic and holds for any value of n and

T (n).

Next, we study a variant of the Least Recently Used (LRU) algorithm

– an algorithm (with many variants) having a long history [102, 100]. These

algorithms typically have been for cache-hit-ratio maximization in a setting

with finite storage and unlimited service capacity. Our adaptive policy – LRU-

Replicate (LRU-R) – described in Figure 6.3, replicates content on multiple

servers. Thus, LRU-R can be interpreted as an extension of LRU to a multi-

server system, each with limited storage and service capacity.

Theorem 24. Under Assumption 6.3.1, if T (n) = O(n), starting from an

empty system, given any δ ∈ (0, 1 − λ̄), there exists a large enough Nδ such

that for all n ≥ Nδ,

- CLRU-R(T (n)) = COPT(T (n)),

- CLRU-R(T (n)) ≤ Cf (1− δ)n+ (Cb − Cf)U(T (n)),

145

1: When a request for content j arrives do,
2: if no idle front-end server, then
3: forward request to back-end server.
4: else
5: if an idle server has content j, then
6: forward request to that server.
7: else
8: fetch content j locally from a front-end server storing content j if

available; otherwise fetch it from back-end server.
9: among idle servers, replace the content that was least recently re-

quested with content j and serve request.
10: end if
11: end if

Figure 6.3: LRU-R – An LRU variant that replicates content among several front-
end servers.

with probability greater than 1− 1
n

.

We thus conclude that as the system size (n) goes to infinity, the per-

formance of the LRU-R policy is the same as that of the optimal storage policy

(OPT) with high probability. This result is surprising because the LRU-R pol-

icy is a simple adaptive (and online) policy which has no knowledge of content

popularity (or the sample path) and yet in the high-dimensional setting con-

sidered here, it has the same performance as the optimal policy which knows

the entire sample path.

Next, we characterize the performance of learning-based static storage

policies. This class, introduced in Chapter 5, serves as a benchmark to com-

pare with adaptive policies. In a low-dimensional setting (where the number

of content types do not scale), it is easy to argue that static policies incur

146

vanishingly small cost for learning popularities (basically, the learning cost is

amortized over time); thus, static policies have traditionally been used in many

queueing settings for characterizing stabilizing policies. A static policy has two

parts – a learning part and a storage/optimization part. Given an interval of

time T (n), the policy divides this into two sub-intervals – Phase 1 and Phase

2 (see Figure 6.4). In Phase 1, the policy empirically estimates popularities

based on the request seen over this time sub-interval. At the beginning of

Phase 2, the policy statically chooses which content and how many of each is

loaded on the front-end servers, and this loading remains static over the rest

of this time sub-interval. The choice of the lengths of the two sub-intervals

can depend on system parameters such as T (n) and the Zipf distribution. In

Section 6.4, we will consider different types of learning algorithms (specifi-

cally, those designed for a high-dimensional regime). Note that the algorithms

studied in [58, 59, 9] are in this class.

0 T(n)

Phase 1
(Learning)

Phase 2
(Static Storage)

time

Figure 6.4: The time interval (denoted by T (n)) is divided into two phases: Phase
1 – Learning, and Phase 2 – Storage/Optimization; figure adapted from Chapter 5.

The next theorem provides a lower bound on the cost of any learning-

based static storage policy (CLearning) for our setting where unlike Chapter 5,

147

the CDN incurs a cost per content fetch.

Theorem 25. Under Assumption 6.3.1, starting from an empty system,

E [CLearning(T (n))] ≥ max (min (Cmn,Γ1(T (n))) ,Γ2(T (n))) ,

where

Γ1(T (n)) = E [Copt(T (n))] + (Cm − Cf)Ω(nT (n))
1

2−1/β ,

Γ2(T (n)) = CmΩ(nT (n))
1

2−1/β .

Next we compare the performance of LRU-R with the performance of

learning-based static storage policies.

Corollary 3. Let r = 1 − 1/β ∈ (1/2, 1). Under Assumption 6.3.1, starting

from an empty system,

Case 1: T (n) = Ω(1) and T (n) = O(nr):

E [CLearning(T (n))] = E [Copt(T (n))]

+(Cm − Cf)Ω(nT (n))
1

1+r ,

CLRU-R(T (n)) = Copt(T (n)), w.h.p.

Case 2: T (n) = ω(nr) and T (n) = O(n):

E [CLearning(T (n))] = ω(n),

CLRU-R(T (n)) = Copt(T (n)) = O(n), w.h.p.

148

Thus Corollary 3 indicates that learning-based static storage policies

are sub-optimal. In particular, when T (n) scales faster than nr, r ∈ (0.5, 1)

(Case 2), such policies are order-wise suboptimal. In Chapter 5, where stor-

age could be adapted for free (no content fetching cost), the sub-optimality

of learning-based static storage policies could be attributed to the fact that

adaptive policies have more flexibility than learning-based static storage poli-

cies at no extra cost. However, in our setting, even though content adaptation

comes with an associated cost, learning-based static storage policies are still

suboptimal.

We now shift our focus to the Shot Noise Model (SNM) where the

catalog size increases with time.

6.3.2 Dynamic Catalog (SNM)

Recall the SNM model described in Section 6.2, where new content

types are added to the catalog dynamically over time. In the static catalog

(IRM model), the content popularity was fixed and the policy needed to keep

enough copies of various contents on the front-end servers, whereas here the

arrival of new content types and expiration of the life-spans of active contents

can potentially change the entire popularity ordering of the active contents.

In this setting, the contents stored on the front-end servers need to be mod-

ified when new popular contents arrive into the catalog in order to serve the

requests; however, the learning-based static storage does not allow such modi-

fications, thus yielding an even worse cost than the one under IRM. Again our

149

goal is to design an efficient replication policy with minimum adaptation cost.

Motivated by the fact that the LRU-R policy performed well for the static

catalog, we continue to evaluate the performance of the LRU-R policy for the

dynamic setting of SNM.

Theorem 26. Under Assumptions 6.2.1 and 6.2.2, if 3α− 2 + 2c > 0, α(β −

1) > 0 and T (n) = o(nε) where ε = min
{
β−1
2β+1

(3α−2+2c), α(β−1)
}

, starting

from an empty system,

CLRU-R(T (n))

COPT(T (n))
→ 1, w.h.p. as n→∞.

It is easy to see from the SNM model that the time-scale of changes

in the popularity (as a result of expiration of a life-span or arrival of a new

content) is O(nc−1). To make a connection between the results in this section,

let c ≤ 2 which means measuring the cost over the same O(n) time-scale as in

Theorem 24. Then, for any β > 2, by choosing α close enough to 1, we can

ensure c − 1 < ε in Theorem 26. We thus conclude that the LRU-R content

placement policy is asymptotically optimal (in the sense of cost ratio) even

under the dynamic setting of SNM.

6.4 Simulation Results

In this section, we present simulation results for IRM as well as SNM.

150

6.4.1 Static Catalog (IRM)

We compare the performance of the LRU-R policy and the following

two learning-based static content replication policies proposed in Chapter 5:

1. Empirical + Static Storage: This is the standard empirical estimator –

the number of copies of a content type is directly proportional to the

number of requests for that content type in Phase 1.

2. Good Turing + Static Storage: The Good-Turing estimator [38, 30, 66]

is used to estimate both the popularities of content types seen during

Phase 1 as well as those of content types not seen in Phase 1. Thus,

this estimator tries to account for the fact that in a high-dimensional

setting, there are several content-types that are simply not even seen

during Phase 1. Further, the estimator assigns all the content types that

have not been seen to have equal popularity; however, these are assigned

a smaller popularity than content types that have been seen. The key

algorithmic operation in the Good-Turing estimator is to determine the

relative popularities assigned to those that have been seen vs. those

that are unseen. Please refer to Section IV in Chapter 5 for a detailed

description of the policy, and [66, 94] for some theoretical guarantees for

this type of policy.

We compare the performance of the policies for different values of sys-

tem size (n) and plot the mean cost over a duration of 5 s (T (n) = 5), by

averaging over 10000 simulations for each policy. The learning time for the

151

learning-based policies is 0.1 s, the Zipf parameter β = 2 and the load λ̄ = 0.9.

Recall that our setting has three types of costs: Cf (the cost of fetching a con-

tent from a front-end server to replicate on another front-end server), Cb (the

cost of fetching a content from the back-end server to replicate on another

front-end server) and Cm (the cost of serving a request using the back-end

server), such that Cf ≤ Cb ≤ Cm. Without loss of generality, we fix the value

of Cf to 1 and present simulation results for two sets of values for Cb and Cm.

For the first plot (Figure 6.5), we assume that Cf = Cb = Cb = 1 and for

the second plot (Figure 6.6), Cf = 1, Cb = Cm = 10. We see that LRU-R

significantly outperforms the two learning-based static storage policies in both

cases and the performance gap increases for higher values of Cb and Cm.

100 200 300 400 500 600 700 800
0

200

400

600

800

1000

1200

1400

n

T
o
ta

l
C

o
s
t

LRU−R

Empirical + Static Storage

Good−Turing + Static Storage

Figure 6.5: The cost of content replication policies as a function of system size (n)
for λ̄ = 0.9, β = 2, Cf = Cb = Cm = 1.

152

100 200 300 400 500 600 700 800
0

1000

2000

3000

4000

5000

6000

n

T
o
ta

l
C

o
s
t

LRU−R

Empirical + Static Storage

Good−Turing + Static Storage

Figure 6.6: The cost of content replication policies as a function of system size (n)
for λ̄ = 0.9, β = 2, Cf = 1, Cb = Cm = 10.

6.4.2 Dynamic Catalog (SNM)

As mentioned in Section 6.3, under the SNM, adaptation is necessary

because the contents stored on the front-end servers need to be modified as

new contents arrive in order to serve the requests using the front-end servers.

Here we investigate the effect of adaptation based on metrics other than LRU.

In particular, we compare the performance of the LRU-R policy with a LFU-

based adaptive policy called LFU-Replicate (LFU-R), that tries to replicate

most frequently used contents on idle servers. Formally, for the LFU-R policy,

in Step 9 in Figure 6.3, we replace “recently” by “frequently”. We compare

the performance of the policies for different values of system size (n) over a

duration of 30 s (T (n) = 30). For the results presented in Figure 6.7, the

153

Zipf parameter β = 4, the load λ̄ = 0.9, α = 0.5, c = 0, γ1 = 1, γ2 = 0.33,

Cf = Cb = Cm = 1. We see that LRU-R significantly outperforms the LFU-

R for large n. Hence, although adaptation can improve the performance, the

choice of LRU based adaptation seems crucial to get asymptotic optimality.

100 150 200 250 300 350 400 450 500
0

2000

4000

6000

8000

10000

12000

n

T
o
ta

l
C

o
s
t

LRU−R

LFU−R

Figure 6.7: The cost of content replication policies as a function of system size (n)
for λ̄ = 0.9, β = 4, Cf = Cb = Cm = 1.

6.5 Conclusions

In this chapter, we studied content placement in large-scale content

delivery networks, where content can be replicated/updated on the servers, but

by incurring a cost per replicate/update. We showed that a simple adaptive

policy called LRU-R, which makes online replication decisions based on an

LRU metric, asymptotically minimizes the total cost over time. We proved

154

the result under both static and dynamic models, thus also demonstrating the

robustness of LRU-R to temporal changes in catalog and content popularity.

The simulation results indeed verify the theoretical results, and further suggest

that the use of LRU metric, as opposed to other metrics like LFU, is necessary

to get any asymptotic optimality for the adaptive policy.

155

Chapter 7

Conclusions

In this dissertation, we have presented and analyzed resource alloca-

tion algorithms for large-scale multi-server systems arising from two applica-

tions – multi-channel wireless communication networks and large-scale con-

tent delivery networks. For each resource allocation problem, we take the

more appropriate modeling approach – stochastic or adversarial and use ap-

propriate performance metrics (stability/queue-length performance/delay per-

formance/goodput/competitve ratio). In spite of these difference, the large-

scale of these problems motivates the need to design algorithms which are

simple/greedy/distributed and thus scalable, yet, have rigorous performance

guarantees.

One common lesson we draw from all the problems studied in this

dissertation is that although the large-scale of these problems necessitates al-

gorithms that are scalable, thus restricting the kind of techniques that can

be employed by the resource allocation algorithms, it also provides flexibil-

ity due to the degrees of freedom, which if carefully utilized can ensure that

simple/greedy/iterative and “sloppy” algorithms which have incomplete state

information, have good performance. For instance,

156

• In general multi-hop settings, it is known that MaxWeight type policies

are not stabilizing, however, in the large-scale instantiations we consider

in Chapter 2, variants of the MaxWeight algorithm stabilize the system

without the knowledge of downsteam queue-length information. The key

factor which facilitates this is the huge amount of diversity in the sys-

tem as a result of the large number of frequency channels and relays. We

exploit this diversity by proposing a simple iterative channel allocation

procedure, where each channel decides which user to serve in a greedy

manner using a cyclic tie-breaking policy. For this simple channel al-

location procedure, we show that even if the routing algorithm makes

“mistakes” in the first hop (base-station to relays), i.e., it forwards pack-

ets to a relay which is already backlogged, there is sufficient flexibility

in the second hop (relays to users) due to the large number of OFDM

frequency channels to ensure that the system is stabilized.

• In Chapter 3, the goal is to design a distributed scheduler which can

stabilize the system without any coordination between the ANs. To

achieve this, we propose the DIST scheduler, where each AN implement-

ing the DIST scheduling policy decides which frequency channels to use

in a greedy manner, breaking ties at random. The number of frequency

channels being large ensures that the event that two nearby ANs pick

the same channels for transmission is quite unlikely, thus the probability

that transmissions of the two ANs interfere with each other is low. This

ensures that the system is stabilized by the DIST scheduler even without

157

coordination between ANs.

• In Chapter 5, in the large-scale setting we consider, even without any

information about content popularity, a simple greedy policy (MYOPIC)

ensures that all but the first request for each content is served at a

low cost by the network. The MYOPIC policy uses recently requested

contents as proxies for the more popular contents and replicates recently

requested contents on idle servers. The large number of servers in the

system ensure that for any load which can be supported by the system,

with high probabililty, the number of idle servers in the system at any

time is large enough to ensure that for all popular contents, once the

content type is requested for the first time, there is always at least one

idle server which can serve an incoming request for that content.

We therefore conclude that for the resource allocation problems we con-

sider, carefully designed low-complexity resource allocation algorithms which

effectively exploit the flexibility and diversity in the system due to its large-

scale can satisfy the dual purpose of good performance and scalability.

158

Appendices

159

Appendix A

Proofs from Chapter 2

A.1 Large System Stability of Iterative Max Weight

We consider the FD-w/oDL and HD-wDL models separately. We first

provide a proof outline for the FD-w/oDL model.

A.1.1 FD-w/oDL

1. We first prove that if λ > Smax, no scheduling policy can stabilize the

system.

2. We then show that the base-station queues are stable for any λ < Smax.

This proof uses the fact that since there are R(n) relays, for large n, every

channel can be used at Smax to send packets to at least one of these relays

with very high probability. As λ < Smax, with high probability, fewer

packets come into the system in a time slot than the number that can

be served, thus ensuring that the base-station queues are stable.

3. Since the arrival process at the base-station queues is stationary and

ergodic, and the base-station queues are stable, the arrival process at the

relay queues (which is the departure process of the base-station queues)

is also stationary and ergodic. By Theorem 5 in [15], we know that the

160

SSG algorithm is throughput optimal for the system consisting of just

the relay queues. Therefore, to prove that the MaxWeight SSG algorithm

stabilizes the relay queues, we need to show that the arrival process at

the relays is inside the throughput region of the relays queues.

4. Since the throughput region of the relays queues is not known, to do this,

we propose an algorithm called the Arrival Prioritized-SSG (AP-SSG)

algorithm and show that this algorithm can stabilize the relay queues

for the arrival process which is the departure process of the base-station

queues. This shows that the departure process of the base-station queues

lies in the throughput region of the relay queues and therefore, the relay

queues will also be stabilized by the throughput optimal SSG algorithm.

5. The AP-SSG algorithm stores 2 values corresponding to each relay queue.

Before allocation for slot t begins, the first value A
r(0)
i is initialized to

the number of arrivals to that queue at the beginning of slot t and the

second value R
(0)
ri is initialized to the queue length of the queue for user

i at relay r at the end of time-slot t− 1.

The allocation proceeds in n rounds. In round k, the algorithm finds a

queue with the highest A
r(k−1)
i Xr

i,k value. If this value is greater than

0, channel k is allocated to queue i at relay r and A
r(k)
i is updated to

(A
r(k−1)
i −Xr

i,k)
+. If A

r(k−1)
i Xr

i,k = 0, the algorithm finds a queue with the

highest R
(k−1)
ri Xr

i,k value and serves it. It updates R
(k)
ri to (R

(k−1)
ri −Xr

i,k)
+.

The AP-SSG algorithm therefore, gives the first priority to queues which

161

have packets that arrived at the beginning of that slot and then to queues

which are the most backlogged. For the AP-SSG algorithm, we prove

the following key lemma.

Lemma 3. Let Sri be the service allocated to queue i at relay r by the

AP-SSG algorithm. Let E4 be the event that

∩r,i{Ari ≤ Sri} ∩ {Sr∗i∗ ≥ Ar
∗

i∗ + Smax},

where {r∗, i∗} ∈ arg maxr,iRri(t− 1). The event E4 implies that all the

arrivals to the relay queues at the beginning of slot t are served in slot

t and the at least one of the longest relay queues is served by at least 1

additional channel at Smax. Then, under Assumption 2,

P (Ec
4) = o

(
1

n

)
.

The above lemma essentially shows a negative drift of at least RmaxSmax,

where Rmax is the maximum queue length of the relay queues at the end

of time-slot t − 1. We then show that there exists an n0 such that this

algorithm stabilizes the relay queue system with n > n0 channels via the

quadratic lyapunov function. This proves that the arrival process at the

relay queues which is the departure process of the base-station queues

lies inside the throughput region of the relay queues and therefore, the

relay queues will be stabilized by the SSG algorithm.

The following Lemma generalizes Theorem 4 in [16]. Theorem 4 in [16]

was restricted to computing the stationary distribution of Markov Chains such

162

that in each time-slot, the value of the Markov random variable could increase

by at most a constant number (k0) with exponentially small probability (e−cn).

This lemma generalizes the theorem to markov chains which increase by at

most χ(n) in a given slot with probability at most f(n) such that χ(n)3f(n) =

o(1/n2).

Lemma 4. Consider a discrete time Markov Chain Y (n) ∈ {0, 1, 2, ...}. Let

f(n) = o
(

1
n6

)
and χ(n) such that χ(n)3f(n) = o(1/n2). Suppose that the

transition probabilities are as follows:

If Y (n)(t) > 0,

P (Y (n)(t+ 1) = Y (n)(t)− 1) = 1/2

P (Y (n)(t+ 1) = Y (n)(t) + χ(n)) = f(n)

P (Y (n)(t+ 1) = Y (n)(t)) = 1/2− f(n).

If Y (n)(t) = 0,

P (Y (n)(t+ 1) = χ(n)) = f(n)

P (Y (n)(t+ 1) = 0) = 1− f(n).

Let π(m) = P (Y (n)(t) = m). For this Markov Chain, we have that,

1− π(0) ≤ 4χ(n)3f(n) = o

(
1

n2

)
.

163

Proof: Consider the Lyapunov function Lyap(x)=x. For n large enough,

we have

E(Y (n)(t+ 1) − Y (n)(t)|Y (n)(t), Y (n)(t) > 0)

≤ χ(n)f(n)− 1

2
≤ −1

3
,

so the Lyapunov function has negative drift outside the set {0} and therefore

the Markov Chain is positive recurrent. The Markov Chain is also irreducible

and aperiodic and therefore has a unique stationary distribution. We prove

the following statement by induction about π(m) by induction

π(m) ≤ π(0)(2χ(n))2dm/χ(n)ef(n)dm/χ(n)e.

For n large enough, 2χ(n)2f(n) < 1.

Case I: 1 ≤ m ≤ χ(n)

π(m) = 2
m∑
r=1

π(m− r)
m∑
j=r

f(n)

≤ 2m2π(0)f(n)

≤ 2(χ(n))2π(0)f(n).

Case II: (k − 1)χ(n) < m ≤ kχ(n)

π(m) = 2

χ(n)∑
r=1

π(m− r)
χ(n)∑
j=r

f(n)

≤ 2(χ(n))2π(m− χ(n))f(n)

≤ 2χ(n)2π(0)2k−1(χ(n))k−1f(n)k−1f(n)

= (2χ(n))2kπ(0)f(n)k,

164

thus completing the proof by induction.

Let n be large enough such that W = 2χ(n)3f(n) < 1/2, then, by adding

the values of π(m) for m = 0 to ∞ and equating it to 1, we get that,

1− π(0) ≤ W

1−W
≤ 2W

= 4χ(n)3f(n).

�

In the following lemma, we prove that if on average, more than nSmax

packets come into the system in every slot, no scheduling policy can stabilize

the system.

Lemma (1). Under Assumption 2, if
1

n
E

[n∑
i=1

Ai(0)

]
= λ > Smax, then the

system is unstable under any scheduling algorithm.

Proof: If λ > Smax, then the mean number packet arrivals to the system

in a given time-slot is more than the maximum number of packets that can be

served by the base-station or the relays in a given time-slot (= nSmax). Hence

the system is unstable under any scheduling algorithm.

�

We now prove that if λ < Smax, the SSG MaxWeight algorithm stabilizes the

system. To handle coupled queues across hops (and the routing induced by

165

muliple hops and paths), our proof is iterative across hops. We first look at

the base-station queues.

Lemma 5. Under Assumptions 2 and the SSG MaxWeight algorithm, given any

arrival process such that λ < Smax, the markov chain (Q(t),A(t)) is positive

recurrent for n large enough.

Proof: We say that the base-station queue are stable if the SSG MaxWeight

algorithm makes the base-station queues an aperiodic Markov Chain with a

single communicating class which is positive recurrent.

Consider the Markov chain (Q(t),A(t)) and the lyapunov function Q(t)

where Q(t) =
∑n

i=1 Qi(t).

Consider the finite set F = {Q : max
1≤i≤n

Qi ≤ nSmax}. In this set,

E[Q(t+ 1)−Q(t)|Q(t),A(t)]

= E

[n∑
i=1

Qi(t+ 1)−
n∑
i=1

Qi(t)

∣∣∣∣Q(t),A(t)

]
≤ nλ <∞,

166

by Assumption 2(a). Outside the set F ,

E[Q(t+ 1)−Q(t)|Q(t),A(t)]

= E

[n∑
i=1

Qi(t+ 1)−
n∑
i=1

Qi(t)

∣∣∣∣Q(t),A(t)

]
= E

[n∑
i=1

(
Qi(t) + Ai(t+ 1)−

n∑
j=1

XB,r
i,j (t+ 1)Y B,r

i,j (t+ 1)

)+

−Q(t)

∣∣∣∣Q(t),A(t)

]
(a)
= E

[n∑
i=1

Ai(t+ 1)

−
n∑
j=1

XB,r
i,j (t+ 1)Y B,r

i,j (t+ 1)

∣∣∣∣Q(t),A(t)

]

= E

[n∑
i=1

Ai(t+ 1)

∣∣∣∣Q(t),A(t)

]
−E
[n∑
j=1

XB,r
i,j (t+ 1)Y B,r

i,j (t+ 1)

∣∣∣∣Q(t),A(t)

]

= nλ− E
[n∑
j=1

XB,r
i,j (t+ 1)Y B,r

i,j (t+ 1)

∣∣∣∣Q(t),A(t)

]
.

Where (a) follows from the fact that outside the set F , since max1≤i≤nQi >

nSmax the base station always has packets to send on all channels, therefore,

no capacity is wasted. Let 3ε = Smax−λ
Smax

. Consider the event E that there exists

a set J of channels such that |J | = 2nε and XB,r
i,j < Smax for all j ∈ J and

167

1 ≤ r ≤ R(n).

E

[n∑
j=1

XB,r
i,j (t+ 1)Y B,r

i,j (t+ 1)

∣∣∣∣Ec

]
≥ (1− 2ε)Smaxn,

E

[n∑
j=1

XB,r
i,j (t+ 1)Y B,r

i,j (t+ 1)

∣∣∣∣E] ≥ 0.

Therefore,

E

[n∑
j=1

XB,r
i,j (t+ 1)Y B,r

i,j (t+ 1)

]

= E

[n∑
j=1

XB,r
i,j (t+ 1)Y B,r

i,j (t+ 1)

∣∣∣∣E]P (E)

+E

[n∑
j=1

XB,r
i,j (t+ 1)Y B,r

i,j (t+ 1)

∣∣∣∣Ec

]
P (Ec)

≥ (1− 2ε)SmaxnP (Ec).

By Assumption 2(b), P (Ec) = o

(
1

n6

)
and therefore, for λ < Smax and n large

enough,

E[Q(t+ 1)−Q(t)|Q(t),A(t)]

≤ nλ− (1− 2ε)SmaxnP (Ec)

≤ −1/2.

Therefore, by Foster’s theorem, the Markov Chain Q(t) is positive recurrent.

Now consider the Markov Chain Q(t). We need to compute P (Q(t) > 0) to

prove that the relay queues are stable. To this end, we study the Markov Chain

Y (n)(t) defined in Lemma 4 for f(n) = o(1/n6) and χ(n) = k1n
2. Note that

by Theorem 3 in [16], Q(t) ≤st Y (n)(t) where Q(t) ≤st Y (n)(t) ⇒ P (Q(t) >

168

x) ≤ P (Y (n)(t) > x), ∀x. By Lemma 4 we have that, for n large enough, for

the Markov Chain Y (n)(t),

1− π(0) ≤ W

1−W
≤ 2W

= 4(k1n
2)2P (Ec).

Therefore, P (Q(t) > 0) ≤ 4k1
2n4P (Ec) = o

(
1

n2

)
.

�

We now look at the relay queues. We note that the departure process of

the base-station queues is the arrival process of the relay queues. Since the

arrival process of the base-station queues is stationary and ergodic and the

base-station queue system is stable, the departure process is also stationary

and ergodic and therefore, the arrival process of the relay queues is stationary

and ergodic. Additionally, if we prove that the departure process of the base-

station queues is inside the throughput region of the relay queues, then we

have that the SSG algorithm will stabilize the relay queues. Since the SSG

algorithm is throughput optimal for the system consisting of just the relay

queues and users by Theorem 5 in [15].

To prove that the departure process of the base-station queues is in-

side the throughput region of the relay queues, we prove that there exists an

algorithm that can stabilize the relay queues for the arrival process which is

169

the departure process of the base-station queues. We call this algorithm the

Arrival Prioritized-SSG (AP-SSG) algorithm.

Definition: The AP-SSG algorithm allocates channels to queues in time-slot

t according to the following procedure.

Input:

1. The queue lengths Rri(t− 1), for 1 ≤ i ≤ n, 1 ≤ r ≤ R(n).

2. The arrival vector Ari (t), for for 1 ≤ i ≤ n, 1 ≤ r ≤ R(n).

3. The channel realizations Xr
ij(t), for 1 ≤ i ≤ n, 1 ≤ r ≤ R(n), 1 ≤ j ≤ n.

Steps:

1. Initialize k = 1 and Y r
ij(t) = 0, R

(0)
ri (t) = Rri(t), A

r(0)
i (t) = Ari (t) for

1 ≤ i ≤ n, 1 ≤ r ≤ R(n), 1 ≤ j ≤ n.

2. In the kth round of allocation, search for the relay and queue index

{r∗, i∗} ∈ arg max
1≤i≤n,1≤r≤R(n)

A
r(k−1)
i Xr

ij(t),

breaking ties in the favor of the smaller relay index, followed by the

smaller queue index. If A
r(k−1)
i∗ Xr∗

i∗j(t) > 0, goto step 3. Else goto step 4.

3. Allocate channel k to serve Rr∗i∗ , define Y r∗

i∗k(t) = 1 and update the value

of A
r∗(k)
i∗ to (A

r∗(k−1)
i∗ −Xr∗

i∗j(t))
+. Goto Step 5.

170

4. Search for the relay and queue index

{r∗, i∗} ∈ arg max
1≤i≤n,1≤r≤R(n)

R
(k−1)
ri Xr

ij(t),

breaking ties in the favor of the smaller relay index, followed by the

smaller queue index. Allocate channel k to serve Rr∗i∗ , define Y r∗

i∗k(t) = 1

and update the value of R
(k)
r∗i∗ to (R

(k−1)
r∗i∗ −Xr∗

i∗j(t))
+.

5. If k = n, stop, else increment k by 1 and goto step 2.

We now define a series of events and compute their probabilities.

Lemma 6. Under Assumption 2 and the SSG MaxWeight algorithm, let E0 be

the event that the max queue-length of the base-station queues at the end of

slot t is 0. Then,

P (Ec
0) = o

(
1

n3

)
.

Proof: Follows by Lemma 5.

�

Lemma 7. Let 3ε = Smax − λ. Under Assumption 2 and the SSG MaxWeight

algorithm, let E1 be the event that the max arrivals to the base-station queues

at the beginning of slot t is less than n(λ+ ε). Then,

P (Ec
1) = o

(
1

n3

)
.

Proof: Follows by Assumption 2(a).

171

�

Lemma 8. Under Assumption 2(c) and the SSG MaxWeight algorithm, let E2

be the event that the max arrivals to any relay queue in a given time-slot is

less than 2nSmax
R(n)

. Then,

P (Ec
2) = o

(
1

n3

)
.

Proof: Recall the tie-breaking policy of the SSG MaxWeight rule: initialize the

priority order of the relays as {1, 2, ..., R(n)}. In each round of the allocation

process, the relay that is allocated that particular channel is then removed

from its current position in the priority order and inserted at the last position

to get the new priority order. Consider a particular relay r which is allocated

the jth channel. It is then pushed to the end of the priority order. In the

subsequent rounds of channel allocation, another channel will be allocated

to it only if that channel cannot be used at Smax to send packets to any of

the other relays which are higher than r in the priority list. Consider the next

R(n)/2 rounds of channel allocation. In each of these rounds, there are at least

R(n)/2 relays that have higher priority than relay r. Then, by Assumption

2(c) for δ = 0.5, we have that the probability that relay r is allocated another

channel in the next R(n)/2 rounds of channel allocation is o(n−4). The result

then follows from the union bound over all channels.

�

Let E3 = E0 ∩ E1 ∩ E2. By Lemma 6, 7 and 8, P (Ec
3) = o(1

n3). In the

following lemma, we prove that the AP-SSG algorithm stabilizes the relay

172

queues. Then, using the fact that the SSG algorithm is throughput optimal

for one hop networks, we prove that the SSG MaxWeight algorithm will also

stabilize the relay queues.

Lemma (3). Let Sri =
∑n

j=1X
r
ijY

r
ij be the service allocated to queue i at relay

r by the AP-SSG algorithm. Under Assumption 2(c) and 2(d), let E4 be the

event that

∩r,i{Ari ≤ Sri} ∩ {Sr∗i∗ ≥ Ar
∗

i∗ + Smax},

where {r∗, i∗} ∈ arg maxr,iRri(t−1). The event E4 means that all the arrivals

to the relay queues at the beginning of slot t are served in slot t and at least

one of the longest relay queues is served by at least 1 additional channel. Then,

P (Ec
4) = o

(
1

n

)
.

Proof: We condition the proof on E3. Pick any δ in(
0,
qmin(1− λ− 2ε)

2Smax(2− qmin)

)
.

Let Fm be the set of relay queues which received m packets at the beginning of

slot t. Conditioned on E3, |Fm| = 0 for m > 2nSmax
R(n)

. Recall that 3ε = Smax−λ.

Let m = 2nSmax
R(n)

.

Case I: |Fm| = |F (0)
m | ≥ δR(n).

Define w0 = |F (0)
m | − δR(n). By Assumption 2(c), we have that after the first

w0 rounds of service, |F (w0)
m | ≤ δR(n) w.p. ≥ 1− δR(n)o(1/n3).

Consider the next v0 =
2δR(n)

qmin
rounds of allocation, By Assumption 2(d), we

173

have that |F (v0+w0)
m | = 0 w.p. ≥ 1− o(1/n3).

Case II: |Fm| = |F (0)
m | ≤ δR(n).

Consider the first v0 =
2δR(n)

qmin
rounds of allocation, By Assumption 2(d), we

have that |F (v0)
m | = 0 w.p. ≥ 1− o(1/n3).

The proof now follows by repeatedly applying the above procedure for

m = 2nSmax
R(n)

− 1, 2nSmax
R(n)

− 2, ...1. As a result, all the new packets are served at

the end of

n(λ+ ε)− 2nSmaxδ

(
2

qmin
− 1

)
< n(1− ε)

rounds of allocation with probability

≥ 1− P (Ec
3) +

2n2Smax
R(n)

(
δR(n)o

(
1

n3

)
+ o

(
1

n3

))
.

In the remaining εn rounds of allocation, by Assumption 2(d), at least one

channel serves the longest relay queue with probability = o(1/n3). Therefore,

P (Ec
4) = o(1/n).

�

Lemma 9. Under Assumptions 2 and the Iterative MaxWeight algorithm, for

any arrival process with λ < Smax, the relay queues are stable for n large

enough.

174

Proof: Let R(t + 1) = R(t) + A(t) − S(t) + U(t) where A(t), S(t) and U(t)

represent the arrivals, service and unused service respectively. Consider the

Lyapunov function V (t) where V (R(t)) = ||R(t)||2. We drop the time index

for convenience.

E[V (t+ 1)− V (t)|R(t)]

= ||R(t+ 1)||2 − ||R(t)||2

= ||R + A− S + U ||2 − ||R||2

= ||R||2 + ||(A− S)||2 + 2R(A− S) + ||U ||2

+2〈U, (R + A− S)〉 − ||R||2

≤ n2S2
max + 2〈R, (A− S)〉.

We use the fact that U = −(R+A−S), therefore 〈U, (R+A−S)〉 = −||U ||2 ≤

0.

For the AP-SSG algorithm and the event E4 defined above, P (Ec
4) = o(1/n).

By the definition of event E4, we have that

E[〈R,A− S〉|R(t), E4] ≤ −RmaxSmax.

Also,

E[〈R,A− S〉|R(t), Ec
4] ≤ RmaxSmaxn.

175

Therefore,

E[V (t+ 1)− V (t)|R(t)]

≤ n2S2
max + 2〈R, (A− S)〉.

≤ n2S2
max − 2RmaxSmaxP (E4) + 2RmaxSmaxnP (Ec

4)

≤ n2S2
max −RmaxSmaxP (E4),

for n large enough. For Rmax >
n2S2

max−1/2
P (E4)Smax

, the drift is ≤ −1
2
. Therefore, by

Foster’s theorem, the relay queues are stabilized by the AP-SSG algorithm.

Further, by Theorem 5 in [15], the SSG algorithm is throughput optimal for

a system consisting of just the relay queues. Since there exists an algorithm

(AP-SSG) which can stabilize the relay queues, the SSG algorithm will also

stabilize the relay queues.

�

Theorem (2). Under Assumption 2, for arrival processes with λ < Smax, the

SSG MaxWeight algorithm stabilizes the FD-w/oDL system, i.e., the markov

chain {Q(t),R(t),A(t))} is positive recurrent for n > n0 where n0 is a function

of λ.

Proof: The proof follows from Lemma 5 and Lemma 9.

�

176

A.1.2 HD-wDL

This proof proceeds in the following three steps. Please refer to [72] for

the complete proof.

1. We first prove that under Assumption 3, there are no arrivals to the

relays at the beginning of a slot with probability = o(1/n2).

2. We then prove that with high probability, the maximum queue-length in

the system does not increase in any time-slot.

3. Next, we prove that there exists a constant k0 such that in k0 consecutive

time-slots, the maximum queue-length in the system decreases by 1 with

probability ≥ 1/2. We use the proof technique used in Lemma 8 in [15]

to get this result.

4. Finally, We prove the stability of the system by constructing a Markov

Chain of the maximum queue-length of the system. We then use Theo-

rems 2 and 3 from [16] and Lemma 4 to prove stability of this Markov

Chain, thus proving the stability of the HD-wDL system.

A.2 Performance Analysis

In this section, we analyze the rate function for the small buffer overflow

probability of the BackPressure algorithm, the SSG MaxWeight algorithm, the

ILQF MaxWeight algorithm and the ILQF BackPressure algorithm for the

FD-W/oDL model.

177

A.2.1 BackPressure

We first show that the BackPressure algorithm has a zero rate for the

small buffer overflow event. The proof follows on the same lines as the proof

of Theorem 3 in [15]. In [15], it was proved that the maximum queue-length

increases with at least a constant probability in each slot. We prove the

same result for the backpressure value of the base-station queues and use the

backpressure values as a lower bound for the queue-lengths to prove the desired

result. Please refer to [72] for the complete proof.

A.2.2 SSG MaxWeight

The proofs for performance of the ILQF BackPressure algorithm, the

ILQF MaxWeight algorithm and the SSG MaxWeight algorithm for the FD-

w/oDL system proposed in Section 2.4 work in a sequential manner. We divide

the set of queues into two sets: the base-station queues and the relay queues.

Even though the two sets of queues are coupled, surprisingly, they can be

analyzed in a sequential manner to provide performance guarantees on all the

queue-lengths in the system.

For the ILQF BackPressure algorithm, we analyze the relay queues

first and prove that they are all empty with probability ≈ e−nc for some c > 0.

We observe that at the base-station, the ILQF backpressure algorithm tries to

serve queues with the highest backpressure values which are not always queues

with maximum queue lengths. However, if the relay queues are all empty, the

two sets are the same. We use this fact to analyze the maximum base-station

178

queue length.

For the ILQF MaxWeight algorithm and the SSG MaxWeight algo-

rithm, we analyze the base-station queues first and use that result to analyze

the relay queues.

The analysis for each set of queues is carried out in the following steps:

1. We first show that for the set of queues that we are analyzing (either

the relay queues or the base-station queues), the maximum queue length

increases in a slot with a very small probability (≤ e−nc).

2. Using Step 1 and Lemma 8 in [15], we show that there exists a constant

k0 such that in k0 consecutive time-slots, with probability at least 1/2,

the maximum queue length decreases by 1.

3. To compute the stationary distribution of the maximum value of queues

in this set, we construct a Markov Chain Y (n)(t) which has the following

properties:

P (Y (n)(t+ 1) = (Y (n)(t)− 1)+) = 1/2

P (Y (n)(t+ 1) = Y (n)(t) + χ(n)) = e−nc

P (Y (n)(t+ 1) = Y (n)(t)) = 1/2− e−nc.

For the relay queues, χ(n) = k0n. We prove that for f(n) = e−nc for

some c > 0, we have that,

lim inf
n→∞

−1

n
logP

(
Y (n)(0) > b

)
≥ (b+ 1)c.

179

For the base-station queues, χ(n) = k0. Using Theorem 4 in [16], we

have that,

lim inf
n→∞

−1

n
logP

(
Y (n)(0) > b

)
≥ (b+ 1)c.

4. We use Theorem 3 in [16] to prove that the maximum queue length in

the set of interest is stochastically dominated by the process Y (n)(t) for

the corresponding value of χ(n). We then use the stationary distribution

of Y (n)(t) to get the desired result.

For the SSG MaxWeight algorithm, we first focus on the base-station

queues and find the probability that in the steady state, the maximum queue-

length is greater than b at the beginning of a slot. Conditioned on the fact

that the longest base-station queue has b packets, at the end of time-slot t−1,

not more than b + 1 packet can arrive to any particular relay queue at the

beginning of slot t + 1. Using this, we find the probability that in the steady

state, all relay queues have less than b packets at the end of a time-slot for all

integers b ≥ 0.

Base-station Queues

Lemma 10. Fix a value of ε ∈ (0, 1− p). Define

ξB(t) =: max
1≤i≤n

Qi(t).

Then,

P (ξB(t) > ξB(t− 1)) ≤ e−cBn
2+k(ε)n + e−nH(p|p+ε).

180

Proof: Consider the event E that

n∑
i=1

Ai(t) ≤ (p+ ε)n.

Then,

P (Ec) ≤ e−nH(p|p+ε).

We condition the rest of the proof on the event E.

Let F denote the set of queues whose length is ξB(t−1)+1 after incorporating

arrivals for that slot. Let F (i) denote the updated set after i rounds of channel

allocation. If ξB(t) > ξB(t− 1), then there exist at least n(1− p− ε) channels

that were not used.

P (n(1− p− ε) unused channels) = (1− q2)R̃n
2(1−p−ε)

= e−cBn
2

,

where cB = R̃(1− p− ε) log 1
1−q2 . Therefore,

P (ξB(t) > ξB(t− 1)) ≤ e−cBn
2+k(ε)n + e−nH(p|p+ε).

�

We now prove there exists a constant k0 such that the maximum relay queue-

length decreases by 1 in k0 consecutive time-slots with probability ≥ 1/2.

Lemma 11. We can find k0 such that

P (ξR(t+ k0) = ξR(t)− 1) ≥ 1

2
.

181

Proof: The proof follows from Lemma 8 in [15] and Lemma 10 as stated

above.

�

The following theorem uses the same proof technique as Theorem 5 in [16] to

compute a bound on the rate function for the small buffer overflow event for

the base-station queues using Lemma 10 and 11.

Theorem (5a). Under Assumption 4, for the SSG MaxWeight algorithm, for

any ε ∈ (0, 1− p),

lim inf
n→∞

−1

n
logP

(
max
1≤i≤n

Qi(0) > b

)
≥ c(b+ 1).

Where,

c = H(p|p+ ε) > 0.

Proof: Using Lemma 10 and Lemma 11 as stated above and by Theorem

5 in [16].

�

Relay Queues

In the following theorem we use the same proof technique as was used to

compute the rate function of the SSG algorithm in [16] with the additional

step that we use the fact that the base-station queues have less than b at the

182

end of every time-slot with an exponentially large probability. Conditioned on

this event, the maximum number of packets that arrive to any relay queue in

a time-slot is b + 1. This is an important step in this proof because poten-

tially nSmax packets can arrive to a particular relay queue in a given time-slot

and it is not possible to serve all of them in that time-slot and therefore the

maximum queue-length in the relay queues can increase in a time-slot.

Theorem (5b). Under Assumption 4, for the SSG MaxWeight algorithm, for

any ε ∈ (0, 1− p) and

δ ∈
(

0,
q3(1− p− ε)

2− q3

)
,

lim inf
n→∞

−1

n
logP

(
max

1≤i≤n,1≤j≤k
Rik(0) > b

)
= (b+ 1)cR,

where,

cR ≥ min

(
H
(
p|p+ ε

)
, δ log

1

1− q3

,
2δH

(
q3| q32

)
q3

)
.

Proof: Consider the event E5 that ξB(t− 1) = b. This implies that all

the base-station queues had less than b packets at the end of time-slot t − 1.

Then from Theorem 5a, we have that,

P (Ec
5) ≤ (b+ 1)s(n)e−nH(p|p+ε),

where s(n) is a sub-exponential function of n. We condition the rest of the

proof on the event E5.

Conditioned on E5, the maximum possible arrivals to any relay queue at the

beginning of slot t is b + 1. Therefore, using the same steps as in Theorem 5

183

in [16], we have that, for any ε ∈ (0, 1− p) and

δ ∈
(

0,
q3(1− p)

2− q3

)
,

lim inf
n→∞

−1

n
logP

(
max

1≤i≤n,1≤j≤k
Rik(0) > b

)
= (b+ 1)cR,

where,

cR ≥ min

(
H
(
p|p+ ε

)
, δ log

1

1− q3

,
2δH

(
q3| q32

)
q3

)
.

�

A.2.3 ILQF BackPressure

For the ILQF BackPressure algorithm, we first focus on the relay queues

and find the probability that in the steady state, they are all empty at the

beginning of a slot. We observe that at the base-station, the iterative back-

pressure algorithm tries to serve queues with the highest backpressure values

which are not always queues with maximum queue-lengths. However, condi-

tioned on the fact that the relay queues are all empty, the two sets are the

same. This allows us to bound the probability that the maximum base-station

queue-length at the end of a time-slot is > b. Please refer to [72] for the

complete proof.

A.2.4 ILQF MaxWeight

Similar to the analysis of the SSG MaxWeight algorithm, we first focus

on the base-station queues and find the probability that in the steady state,

184

they are have less than b packets at the beginning of a slot. Conditioned on

the fact that the base-station queues have less than b packets at the end of

time-slot t− 1, not more than b + 1 packet can arrive to any particular relay

queue at the beginning of slot t + 1. Using this, we find the probability that

in the steady state, all relay queues are empty at the end of a time-slot.

A.3 k-hop Stability

We consider a k−hop full-duplex feed-forward network with 1 base-

station, k−1 layers of relays and n users. The relays in the first layer of relays

receive packets from the base-station and the relays in the kth layer forward

received packets to the users. A relay in the lth layer (for 2 ≤ l ≤ k − 1)

receives packets from the (l − 1)th layer of relays and forwards them to the

next layer. See Figure A.1 for an example of such a network.

We use the following notation for this proof.

• Ai(t) = the number of arrivals for user i at the base-station at the

beginning of time-slot t.

• Qi(t) = The queue length of user i at the BS (measured at the end of

the time-slot).

• R(l),ri(t) = The queue length of user i at relay r at layer l (measured at

the end of the time-slot).

185

Basestation

Layer 2

Relays

UsersLayer 1

Relays

Figure A.1: An illustrative example of a 3-hop feed-forward relay network with 2
layers of relays and 3 users.

• R(l)(t) = {R(l)ri(t) : ∀r; 1 ≤ i ≤ n} : The vector of queue lengths at the

relays at layer l.

The k−hop version of the SSG MaxWeight algorithm is as follows:

In each time-slot, for each hop, sequentially allocate channels to queues

in the following manner: first allocate channel S1 to the maximum weight

queue, i.e., the queue with largest queue-length channel-rate product. Then

update the queue length based on the number of packets that are drained due

to this allocation, and proceeds sequentially to the next channel (and so on).

For simplicity, we provide a proof of the stability of SSG MaxWeight

under the following assumptions.

Assumption 5: (k-hop Stability)

186

• The base-station can forward packets to all relays in the first layer of

relays. Each relay in layer l for every l ∈ {1, .., k − 2} can forward

packets to all relays in the next layer (layer l + 1). Each relay in layer

k − 1 can communicate with all the users.

• Bernoulli Arrivals and ON-OFF Channels

– Ai(t) = Bernoulli(p) i.i.d. across users and time-slots.

– All channels are Bernoulli(q) i.i.d. across channels, time-slots, re-

lays and users.

• Linearly Scaling Relays: We assume that the lth layer of relays has υln

relays for some constant υl > 0.

Theorem 27. Under Assumption 5, the k−hop system is stabilized by the

SSG MaxWeight algorithm.

Proof: The stability of the base-station queues follows from Lemma 5.

In addition, by applying Theorem 4 for χ(n) = 1 and f(n) = e−nc1 for some

c1 > 0, we have that

P (max
i
Qi(t) > 0) ≤ 4e−nc1 ,

for all t.

Let F1 be the event that maxiQi(t− 1) = 0. Therefore, we have that,

P (F c
1) ≤ 4e−nc1 . The rest of this proof is conditioned on F1. Consider the

queues at the relays of the first layer. In each round of channel allocation under

187

the SSG MaxWeight algorithm, the probability that the channel cannot serve

the currently longest queue (updated to reflect previous rounds of allocations)

is (1 − q)υ2n. Therefore with probability > n(1 − q)υ2n, in a given time-slot,

each channel serves the currently longest queue (updated to reflect previous

rounds of allocations). Since the total arrivals to the relay queues at the first

hop in a time-slot is less than ≤ n, with probability ≥ 1−4e−nc1−n(1− q)υ2n,

the maximum queue-length at the first layer of relays does not increase in a

time-slot. Therefore, we have that,

P (max
r,i

R(1)ri(t+ 1) = max
r,i

R(1)ri(t) + 1) ≤ 4e−nc1 .

Using this and Lemma 8 in [16], we can find k0 such that,

P (max
r,i

R(1)ri(t+ 1) = max
r,i

R(1)ri(t)− 1) ≥ 1

2
.

The stability of the relay queues at the first layer then follows using the Lya-

punov function Lyap(R(1)(t)) = maxr,iR(1)ri(t).

In addition, using Theorem 4, we have that,

P (max
r,i

R(1)ri(t) > 0) ≤ 16k0e
−nc1 + 4nk0(1− q)υ2n.

For the queues at the lth layer for 2 ≤ l ≤ k − 2, the proof of stability

follows on the same lines as the proof of stability for relay queues at layer 1.

For layer l, the proof follows by conditioning on the event that the queues

at the base-station and relay layers 1 to l − 1 are empty in the previous l

time-slots.

188

The stability of the relay queues at layer l follows from Lemma 9, thus

completing the proof of Theorem 27.

�

189

Appendix B

Proofs from Chapter 3

B.1 Stability

Proof. (of Theorem 8) If λ > 1, then the mean number packet arrivals to the

system in a given time-slot is more than the maximum number of packets that

can be served by the base-station in a given time-slot (= nCmax). Hence the

system is unstable under any scheduling algorithm.

We now prove that if the load on the system λ < 1, the DIST algorithm

stabilizes the system.

Lemma 12. The arrival process at the ANs is bounded by (d + 1)κ(n), i.e.,

max
1≤i≤n,1≤m≤M(n)

Ami (t) ≤ (d+ 1)κ(n) for all t.

Proof. In time-slot t, the BS only sends those packets which arrived at the BS

at the beginning of time-slot t to the ANs. In addition, at the end of time-slot

t−1, the ANs delete all packets in their queues which arrived at the BS before

time-slot t− d− 1. Since the arrival process at the base-station is bounded by

κ(n) by Assumption (a), we have that the arrival process at the ANs is also

bounded by (d+ 1)κ(n).

190

Lemma 13. Let U(t) be the set of users whose location is known at the begin-

ning of time-slots t and t+1. Consider the set of all packets for users u ∈ U(t)

which are received and queued at least one AN at the beginning of time-slot

t. A packet for user u in this set is said to be “lost” in time-slot t if at the

beginning of time-slot t+ 1, it is neither received by the user u nor by at least

one AN connected to user u in time-slot t + 1. Let E1 be the event that in

time-slot t, at most σn of the packets are “lost”. For the DIST-AN algorithm,

P (Ec
1) ≤ o

(
1

n2

)
.

Proof. Let q2 := q
(Cmax)
2 . Consider the event E2 that for any (AN, user) pair,

in a time-slot, the number of channels that have channel rate C(max) is at least

nq2

2
. By Assumption (a),

P (Ec
2) ≤ o

(
1

n2

)
.

The rest of this proof is conditioned on E2 for all (AN, user) pairs. Let

q3 := q
(Cmax)
3 . Consider the event E3 that from an AN to another AN within

its communication radius, in a time-slot, the number of channels that have

channel rate C(max) is at least
nq3

2
. By Assumption (a),

P (Ec
3) ≤ o

(
1

n2

)
.

The rest of this proof is conditioned on E3 for all such (AN, AN) pairs. Let

E4 be the event that not more than nν users are connected to any 1 AN where

ν < 1 is discussed in Section 3.2. Then, we have that,

P (Ec
4) ≤ e−bn,

191

for some b > 0. The rest of this proof is conditioned on E4. By Lemma 12, the

arrival process at the ANs is bounded by (d+1)κ(n). Therefore, every AN has

at most (d+1)nνκ(n) packets to send in a time-slot and can use at most k1(d+

1)nνκ(n) log n channels to do so since by our assumption in Section 3.2, each

AN can communicate with at most k1 log n other ANs. Therefore, each packet

is sent to either k1 log n other ANs or one user. So, for each AN, in any round

of channel allocation, there are at least
nq2

2
− k1(d + 1)nνκ(n) log n channels

that have channel rate Cmax for every user and
nq3

2
− k1(d + 1)nνκ(n) log n

channels that have channel rate Cmax for every AN within its communication

radius. Therefore,

P (AN m uses channel j|E2, E3, E4) ≤
k1(d+ 1)nνκ(n) log n

nq(c)

2
− k1(d+ 1)nνκ(n) log n

,

where q = min{q2, q3}. Let p be a packet that AN m transmits on channel

j in time-slot t. Let E5 be the event that this packet reaches its destination

without interference from other ANs in Im. Then, irrespective of all other

channel allocations by other ANs, we have that,

P (Ec
5|E2, E3, E4) ≤ k1(d+ 1)nνκ(n) log n

ηnq(c)

2
− k1(d+ 1)nνκ(n) log n

.

At the beginning of time-slot t, there are at most (d + 1)Cmaxn packets for

users u ∈ U(t) that are received and queued at the ANs. Therefore, for n large

192

enough,

P (Ec
1|E2, E3, E4) ≤

(
n(d+ 1)Cmax

nσ

)
×
(

k1(d+ 1)nνκ(n) log n
nq(c)

2
− k1(d+ 1)κ(n)nν log n

)σn
= o

(
1

n2

)
,

by Assumption (a) and the assumptions made in Section 3.2. Therefore, the

result follows.

Lemma 14. All arrivals to the base-station at the beginning to time-slot t for

users whose location information is available are sent to the ANs by the in

(λ+ σ)n rounds of channel allocation with probability ≥ 1− o(1/n).

Proof. Let E6 be the event that not more than n(λ+σ)Cmax packets arrive at

the base-station at the beginning of time-slot t. By Assumption (a), we have

that,

P (Ec
6) ≤ o

(
1

n

)
.

The rest of this proof is conditioned on the event E6. Let E7 be the event

that in the first (λ + σ)n rounds of channel allocation, (λ + σ)n channels

can be used by the base-station to send packets from the longest BS queue

(after updating after previous channel allocations) to the ANs at rate Cmax.

Under Assumption (a), the probability that a particular channel k can be

used to forward packets from the longest queue to the ANs connected to the

193

corresponding user is ≥ o(1/n2). Taking a union bound over all channels, we

have that,

P (Ec
7) ≤ o

(
1

n

)
.

Conditioned on E7, all packets which arrived at the base-station at the be-

ginning of time-slot t will be served in the first (λ + σ)n rounds of channel

allocation. Therefore, all arrivals to the base-station at the beginning to time-

slot t are sent to the ANs by the in (λ+σ)n rounds of channel allocation with

probability ≥ 1− o
(

1

n

)
.

Lemma 15. For any t,

1. max
1≤u≤n

Fu(t) ≤ κ(n)

2. In a time-slot t.

P

(
|F (t)|1 ≤ 4nσ ≥ 1− o

(
1

n

))
,

where σ is as defined in Lemma 13.

Proof. The first part of the lemma follows from the fact that the arrival pro-

cess for a user u at the BS is bounded by κ(n) and therefore, the number

of packets for a user u that arrived before time-slot t − d, but could not be

received by the corresponding users by time-slot t is ≤ κ(n).

This proof is conditioned on the event E7 defined in Lemma 14. We compute

194

the probability of the event E8 that in a time-slot, more than nσ
κ(n)

users are not

connected to the ANs or their locality information is not available. The prob-

ability that a user’s information is not known is ε(n), where ε(n)κ(n) = o(1).

By the Chernoff bound, we have that,

P (Ec
8) = o

(
1

n

)
.

The rest of this proof is conditioned of E8 for time-slots t−d and t−d+1. The

number of packets that arrived at the BS at beginning of time-slot t−d−1 for

users that were not connected to the ANs in either time-slot t− d or t− d+ 1

or both is 2nσ.

Now consider the packets that arrived at the BS at beginning of time-

slot t− d− 1 for users that were connected to the ANs in both time-slots t− d

and t− d+ 1. Conditioned on the event E1 defined in Lemma 17, the number

of packets “lost” in time-slots t− d is less than nσ. If a packets is not lost in

time-slot t−d, it either reaches the intended user by the end of time-slot t−d

or an AN connected to the user in time-slot t− d+ 1.

Consider the set of packets for users which are received by at least 1

AN connected to the corresponding user in time-slot t− d+ 1. Since at most

σn packets are lost in time-slot t − d + 1, all but at most σn of such packets

reach the corresponding users by the end of time-slot t− d+ 1.

From this, we conclude that, for users that are connected to ANs in

time-slot t− d and t− d+ 1, all but 2σn of the arrivals at the BS in time-slot

t− d− 1 are received by the users by the end of time-slot t− d+ 1. Therefore,

195

conditioned on E1 and E8 for time-slots t− d and t− d+ 1, we have that,

P

(
|F (t)|1 ≤ 4nσ

)
≤ o

(
1

n

)
.

Lemma 16. Let Si(t) =
∑n

j=1Xi,j(t)Yi,j(t) be the service allocated to queue i

at the base-station by the DIST algorithm in time-slot t. Dropping the time

index for simplicity, let G9 be the event that

∩i{Fi ≤ Si} ∩ {Si∗ ≥ Fi∗ + 1},

where i∗ ∈ arg maxiQi(t − 1). The event G9 means that all the new arrivals

and the feedback to the base-station queues at the beginning of slot t are

served in slot t and at least one of the longest queues is served by at least 1

additional channel. Then,

P (Gc
9) = o

(
1

n

)
.

Proof. The proof is conditioned on the event G7. Let q
(d)
min = mini,j Xi,j(t) = 1.

Pick any δ in (
0,

q
(d)
min(σ)

2(2− q(d)
min)

)
.

Let Fr be the set of queues which received r new packets at the beginning of

slot t. We know that |Fr| = 0 for r > κ(n). Let r = κ(n).

Case I: |Fr| = |F (0)
r | ≥ δn.

Define w0 = |F (0)
r | − δn. By Assumption (a), we have that after the first w0

196

rounds of service, |F (w0)
r | ≤ δn w.p. ≥ 1− δno(1/n3).

Consider the next v0 =
2δn

q
(d)
min

rounds of allocation, By Assumption (a), we have

that |F (v0+w0)
r | = 0 w.p. ≥ 1− o(1/n3).

Case II: |Fr| = |F (0)
r | ≤ δn.

Consider the first v0 =
2δn

q
(d)
min

rounds of allocation, By Assumption (a), we have

that |F (v0)
m | = 0 w.p. ≥ 1− o(1/n3).

Conditioned on G7, there are 6σn channels unused by the BS-AN links. The

proof now follows by repeatedly applying the above procedure for r = κ(n), κ(n)−

1, ...1. As a result, all new feedback arrival packets are served at the end of

the next 5σ rounds of allocation with probability

≥ 1− 2n2Smax
n

(
δno

(
1

n3

)
+ o

(
1

n3

))
.

In the remaining σn rounds of allocation, by Assumption (a), at least one

channel serves the longest relay queue with probability = o(1/n3). Therefore,

P (Gc
9) = o

(
1

n

)
.

Proof. (of Theorem 9) Consider the Lyapunov function V (t) where V (Q(t),A(t)) =

197

||Q(t)||2. We drop the time index for convenience.

E[V (t+ 1)− V (t)|Q(t)]

= ||Q(t+ 1)||2 − ||Q(t)||2

= ||Q+ F − S + U ||2 − ||Q||2

= ||Q||2 + ||(F − S)||2 + 2Q(F − S) + ||U ||2

+2〈U, (Q+ F − S)〉 − ||Q||2

≤ n2C2
max + 2〈Q, (F − S)〉.

We use the fact that U = −(Q+F−S), therefore 〈U, (Q+F−S)〉 = −||U ||2 ≤

0.

For the DIST algorithm and the event G9 defined above, P (Gc
9) = o(1/n). By

the definition of event G9, we have that

E[〈Q,F − S〉|Q(t), G9] ≤ −Qmax.

Also,

E[〈Q,F − S〉|Q(t), Gc
9] ≤ QmaxCmaxn.

Therefore,

E[V (t+ 1)− V (t)|Q(t)]

≤ n2C2
max + 2〈Q, (F − S)〉.

≤ n2C2
max − 2QmaxP (G9) + 2QmaxCmaxnP (Gc

9)

≤ n2C2
max −QmaxP (G9),

198

for n large enough. For Qmax >
n2C2

max−1/2
P (G9)

, the drift is ≤ −1
2
. Therefore, by

Foster’s theorem, the queues are stabilized by the DIST algorithm.

B.2 Performance

Proof. (of Theorem 10) Let a packet for a mobile user u be sent to AN m in

time-slot t. Let E be the event that the user is not connected to AN m in the

next b time-slots.

P (E) ≥ (min{µ1, µ2})b.

Conditioned on E, the packets cannot reach the user before time-slot t + b.

Hence the result follows.

Lemma 17. Recall that U(t) is the set of users whose location is known at the

beginning of time-slot t. Consider the set of all packets for users u ∈ U(t)

which are received and queued at least one AN at the beginning of time-slot

t. As defined in Lemma 13, a packet for user u in this set is said to be “lost”

in time-slot t if by the end of time-slot t, it is neither received by the user

u nor at least one AN connected to user u in time-slot t + 1. Let γ > 0 be

a constant. Let G1 be the event that in a time-slot, at most γn are “lost”.

Under Assumption (b), for the DIST-AN algorithm,

P (Gc
1) ≤ o(e−n) + exp

(
− nH

(
q

(C)
2

2
|q(C)

2

))
+ exp

(
− nH

(
q

(C)
3

2
|q(C)

3

))
+ e−bn.

199

Proof. Consider the event G2 that for any (AN, user) pair, in a time-slot, the

number of channels that have channel rate C is at least
nq

(C)
2

2
. Since channels

are i.i.d. across users and ANs,

P (Gc
2) ≤ exp

(
− nH

(
q

(C)
2

2
|q(C)

2

))
.

The rest of this proof is conditioned on G2 for all (AN, user) pairs. Consider

the event G3 that for any AN in the communication radius of an AN, in a

time-slot, the number of channels that have channel rate C is at least
nq

(C)
3

2
.

Since channels are i.i.d. across users and ANs,

P (Gc
3) ≤ exp

(
− nH

(
q

(C)
3

2
|q(C)

3

))
.

The rest of this proof is conditioned on G3 for all such (AN, AN) pairs. Let

G4 be the event that not more than nν users are connected to any 1 AN where

ν is as defined in Section 3.2. By the assumptions in Section 3.2,

P (Gc
4) ≤ e−bn,

for some b > 0. The rest of this proof is conditioned on G4.

The arrival process at the ANs is bounded by K. Therefore, every AN

has at most Knν packets to send in a time-slot and can use at most Knν

channels to do so. So, for each AN, in any round of channel allocation, there

are at least
nq

(C)
2

2
− Knν channels that have channel rate C for every user.

Therefore,

P (AN m uses channel j|G2, G3, G4) ≤ Knν

nq(C)

2
−Knν

.

200

where q(c) = min{q(c)
2 , q

(c)
3 }. Let p be a packet that AN m transmits on channel

j in time-slot t. Let G5 be the event that this packet reaches its destination

without interference from other ANs in Im. Then, irrespective of all other

channel allocations by other ANs, we have that,

P (Gc
5|G2, G3, G4) ≤ nνKnβ

ηnq
(C)
2

2
−Knν

.

Let G6 be the event that Gc
5 occurs for at most γn packets. Then we have

that for n large enough,

P (Gc
5|G2, G3, G4) ≤

(
n(d+ 1)Cmax

nγ

)(
nβKnν

ηnq(C)

2
−Knν

)γn
≤ 2nH(γ/(d+1)Cmax)

(
Knκ

nq(C)
2
−Knν

)γn
≤ 2nH(γ/(d+1)Cmax)C1e

−(1−β−ν)γn logn

= o(e−n).

Therefore,

P (Gc
1) ≤ o(e−n) + exp

(
− nH

(
q

(C)
2

2
|q(C)

2

))
+ exp

(
− nH

(
q

(C)
3

2
|q(C)

3

))
+ e−bn.

Lemma 18. Fix

γ ∈ 1

7

(
0,min

(
p0

K
,
1−

∑K
k=1 pkd

k
C
e

dK
C
eC

))
.

201

and let M be the set difference between the probability simplex in K dimen-

sions and an γ ball around the probability vector p. Let

τ := inf
M

K∑
k=0

zklog
zk
pk
.

Let G6 be the event that all arrivals to the base-station at the beginning to

time-slot t are sent to the ANs by the in (λ+2γ)n rounds of channel allocation.

Then, for a positive constant ρ < 1,

P (Gc
6) ≤ e−nτ(1−ρ) + exp(−nγ2/2).

Proof. By Sanov’s theorem, we have that the load on the system in time-slot

t ≤ (λ+ γ) with probability ≥ e−nτ(1−ρ) for any ρ < 1. We condition the rest

of the proof of this event. By Assumption (b), the probability that channel

k cannot be used at rate C to serve the longest queue at the base-station

updates after k − 1 rounds of allocation is ≥ (1 − q(C)
1)2 logn = o(1). Define

ε′(n) = (1− q(C)
1)2 logn

P (Gc
6) = exp(−nD(γ||ε′(n))),

where

D(γ||ε(n)) = γ log
γ

ε′(n)
+ (1− γ) log

1− γ
1− ε′(n)

.

Using Pinsker’s inequality [25], for n large enough, we have that,

P (Gc
6) ≤ exp

(
− nγ

2

2

)
+ e−nτ(1−ρ).

202

Lemma 19. For any t,

1. max
1≤u≤n

Fu(t) ≤ K

2.

P (|F (t)|1 ≤ 4nγ) ≥ 1 − 2 exp

(
− n γ2

2K2

)
− o(e−n) + 2e−bn

− 2 exp

(
− nH

(
q

(C)
2

2
|q(C)

2

))
− 2 exp

(
− nH

(
q

(C)
3

2
|q(C)

3

))
− 2 exp

(
− nγ

2

2

)
− 2e−nτ(1−ρ).

where γ is as chosen in Lemma 18.

Proof. The first part of the lemma follows from the fact that the arrival process

for a user u at the ANs is bounded by K and therefore, the number of packets

for a user u that cannot be served by the ANs in a given time-slot is ≤ K.

This proof is conditioned on the event G1 defined in Lemma 17 and G6

defined in Lemma 18 for time-slots t−d and t−d+ 1 and follows on the same

lines as that of the proof of Lemma 15.

Conditioned of G1 and G6, we need to compute the probability of the

event that not more than γ
K
n users each are not connected to the ANs or their

locality information is not available in time-slots t− 1 and t.

203

Let G7 be the event that more than γn users’ location information is

not known in a given time-slot. The probability of this event is ε(n), i.i.d.

across users and time-slots. Therefore,

P (G7|G1, G6) = 2 exp(−nD(γ||ε(n))),

where

D(γ||ε(n)) = γ log
γ

ε(n)
+ (1− γ) log

1− γ
1− ε(n)

.

Using Pinsker’s inequality [25], for n large enough, we have that,

P (|F (t)|1 ≤ 4nγ) ≥ 1 − exp

(
− n γ2

2K2

)
− P (Gc

1)− P (Gc
6).

Substituting the value of P (Gc
1) and P (Gc

6), the result follows.

Lemma 20. Let ξ(t) := max1≤i≤nQi(t) be the maximum queue-length at the

end of time-slot t. Fix a constant

δ ∈
(

0,
q1γ

K(2− q1)

)
.

Then,

P (ξ(t) > ξ(t− 1)) ≤ exp

(
− n γ2

2K2

)
+ P (Hc

3) + P (Hc
4)

+ Kn(1− q1)nδ

+ Knδ exp

(
2nδ

q1

H

(
q1

2

∣∣∣∣q1

))
.

204

Proof. Conditioned on the properties of the feedback arrivals from Lemma 19

and Lemma 4 in [16], we have that all feedback arrivals are forwarded directly

to the users by the end of n rounds of channel allocation with probability

≥ Kn(1− q1)nδ +Knδ exp

(
2nδ

q1

H

(
q1

2

∣∣∣∣q1

))
. This completes the proof.

Lemma 21. Let ξ(t) := max1≤i≤nQi(t) be the maximum queue-length at the

end of time-slot t. There exists a constant k0, such that

P (ξ(t) < ξ(t− k0)) ≥ 1/2.

Proof. This result follows from Lemma 20 and Lemma 8 in [16].

Proof. (of Theorem 11) The proof follows from Lemma 20, Lemma 21 and

Theorem 5 in [16].

205

Appendix C

Proofs from Chapter 4

C.1 Proof of Proposition 1

Recall the extended bipartite graph representation discussed in Section

5.3 where we converted the problem of load balancing on G(U,V,E) to the

problem of finding a matching in the bipartite graph Gb(Ub, V, Eb).

For any graph G, on average, the algorithm RANKING proposed in

[53] applied on Gb(Ub, V, Eb) matches the same number of vertices of V as

applying our algorithm on G(U, V,E).

Therefore, once the load balancing problem on G(U, V,E) is converted

to a matching problem for the bipartite graph Gb(Ub, V, Eb), Proposition A.1.1

follows as a direct consequence of the updated proof of the performance of the

algorithm RANKING proposed in [53] for online bipartite matching presented

in [13] and [3].

C.2 Proof of Theorem 12

To upper bound the performance of all online load balancing algo-

rithms, we construct graph between jobs and servers and specify an arrival

sequence on the jobs and upper bound the competitive ratio of any online

206

load balancing algorithm by upper bounding the performance of any online

algorithm for this arrival sequence.

We consider an arrival sequence in which jobs arrive only the first time-

slot and all of them have to be served in the next b = dmax time-slots. There-

fore, we are looking for an allocation where not more than b jobs are allocated

to any one server. We refer to such an allocation as a b−Matching.

We visualize the problem of b−Matching on a bipartite graph between

jobs and servers as the problem of finding a matching in a bigger graph where

each server is replicated b times. The analysis in this section uses proof tech-

niques used in [53] to upper bound the performance of all online randomized

algorithms for bipartite matching. As in [53], we use a matrix S to describe

the bipartite graph. Let the columns of this matrix represent jobs. Let the set

of jobs be V . Since each server can be matched to b vertices in V , we make

b copies of each server in the server set U to get a set Ub. The rows of the

matrix S represent vertices in set Ub. The entry S(i, j) = 1 if vj can be served

by u ∈ U and row i represents a copy of u and 0 otherwise. Since each vertex

in u in replicated b times in S, the b rows of S which represent u are identical.

The key difference in the analysis in [53] and the analysis for b−Matching

is that the matrix (or graph) used to upper bound the performance of any

online algorithm in [53] is the upper triangular matrix which is not a valid

matrix in the b−Matching case as no two rows of the upper triangular matrix

are identical. Therefore, several key steps in the proof in [53] do not apply to

the b−Matching problem.

207

Based on the proof in [53], we now outline our proof in 5 steps.

1. We first characterize a graph S which we use to upper bound the per-

formance of all online b−Matching algorithms.

2. We prove that for a graph {S, π}, which is obtained by permuting the

rows of S by a permutation π, chosen uniformly at random, the best de-

terministic algorithm is greedy in the sense that it never leaves a column

unmatched if there is an eligible row when this column arrives (Lemma

22).

3. We consider an algorithm called RANDOM [53], which matches each

column in A to a randomly chosen eligible row, independent of all past

choices. We show that for an arrival sequence from {S, π}, the expected

size of matching produced by any deterministic algorithm is the same

as the expected size of matching produced by RANDOM on S (Lemma

24).

4. We use Yao’s Lemma [106] to upper bound the expected performance of

any randomized algorithm on S by the expected performance of the best

deterministic algorithm when given a problem instance {S, π}. Using

this and the previous two results, we upper bound the expected perfor-

mance of any randomized algorithm on S by the expected performance

of RANDOM on S (Lemma 25).

5. We evaluate the performance of RANDOM on S to get the upper bound

(Lemma 26).

208

The analysis in [53] also proceeds via Steps 2-5, but for the upper

triangular matrix. The specific details of the proofs are different because in

our case S is not upper triangular. The main challenge in our analysis is Step

5. In [53], for the upper triangular matrix, it is possible to exactly characterize

the performance of RANDOM. In our case, exact characterization is difficult

and therefore, we upper bound the performance of RANDOM on S. We show

that the dominant term in the bound scales correctly and the error term in

sublinear in |V |.

We now characterize the matrix S. We assume that columns are re-

vealed from right to left. We try to find a matching between V and Ub which

is equivalent to finding a b−Matching between U and V . We construct the ad-

jacency matrix A using the n×n upper triangular matrix. The first b columns

are identical to the nth column of the upper triangular matrix, the next b are

identical to the (n − 1)th column and so on. We thus get a set V such that

|V | = bn. We then replicate each row of A b times to get a matrix S. For

instance, for n = 4 and b = 2,

S =



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1


This point onward, we will focus on algorithms for bipartite matching on S

instead of algorithms for finding b−Matchings on A.

209

For the matrix S defined above, with every permutation π on {1, ..., bn}

associate a problem instance {S, π} such that the adjacency matrix is obtained

by permuting the rows of S under π and the columns or jobs arrive in the order

bn, bn− 1, ..., 1. Let Z denote the uniform distribution over the (bn)! possible

permutations.

Lemma 22. The best deterministic algorithm is greedy, i.e. it never leaves a

column unmatched if there is an eligible row.

Proof. Assume that there exists a deterministic algorithm ALG which is not

greedy and it is the best possible deterministic algorithm. Now consider an al-

ternative greedy algorithm ALG-GREEDY which does the following. If ALG

allocates an incoming column to a particular row, and that row is available

then ALG-GREEDY also matches them. If that row is not available, then

ALG-GREEDY matches that column to an arbitrary available row. If ALG

does not allocate a column to any row, ALG-GREEDY again matches that

column to any arbitrary available row.

We will now prove that the number of rows matched by ALG-GREEDY is ≥

the number of rows matched by ALG.

CLAIM: The set of rows matched by ALG-GREEDY at time t is a super-

set of the set of rows matched by ALG at time t.

210

We prove the claim by induction. It is clearly true for t = 1. Let it be

true at t. We consider the following three cases:

1. Both ALG and ALG-GREEDY match the next column to the same row.

In this case, the claim is true for t+ 1.

2. ALG does not match the next column. In this case too, the claim is true

for t+ 1.

3. ALG matches the next column to a row r and ALG-GREEDY does not

match it to row r. This can only happen only if row r has already been

matched by ALG-GREEDY. Therefore the claim is true for t+ 1.

This proves that the number of rows matched produced by ALG GREEDY is

≥ the number of rows matched by ALG.

This contradicts our assumption that the best deterministic algorithm

is not greedy, hence the best deterministic algorithm is greedy.

Lemma 23. For ALG on {S, π} and RANDOM on {S, I} where I is the identity

permutation, if the number of eligible rows at time t is k, they are equally likely

to be any set of k rows from among the first b(n− b(t− 1)/bc) rows of S.

Proof. We first prove the lemma for RANDOM by induction. The claim is

true at time 1. Assume that it is true at time t.

Case I : ((t− 1) mod b) 6= 0

211

By the induction hypothesis at time t, we have that for the algorithm RAN-

DOM, if there are k eligible rows, they are equally likely to be any of the first

b(n − b(t − 1)/bc) rows of S. The number of eligible rows at time t + 1 will

then be k − 1 since columns n − t + 1 and n − t have the same neighbors.

For each subset of eligible rows of size k at time t, there are k − 1 possible

subsets of eligible rows at time t+1 and each one of them is equally likely with

probability 1/k because the algorithm RANDOM breaks ties among eligible

rows uniformly at random. We therefore have that the claim is true for time

t+ 1 for RANDOM.

Case II : ((t− 1) mod b) = 0

By the induction hypothesis at time t, we have that for the algorithm RAN-

DOM, if there are k eligible rows, they are equally likely to be any of the first

b(n−b(t− 1)/bc) rows of S. Let k′ of these rows be such that they are eligible

to be matched with the column arriving at time t + 1. Since all sets of size

k are equally likely, all sets which contain k′ rows which can be used by the

column arriving at t+ 1 are also equally likely. We consider two cases. In the

first case, the column which arrives at t is matched to one of these k′ rows.

The number of eligible rows at time t+ 1 will then be k′− 1. Since RANDOM

breaks ties uniformly at random, this set can be any one of the k′−1 sets with

probability 1/k′. The second case is when the column which arrives at t is not

matched to one of these k′ rows. In this case, the number of eligible rows at

time t+ 1 will then be k′ and every such set is equally likely.

212

The proof of the first claim for ALG also follows by induction on time. It

centers on the fact that at any time, if ALG chooses to match column to a

particular eligible row, that row is equally likely to be any one of the rows of

S that is eligible to be matched to the column arriving at time t. This follows

from the fact that the permutation π of the rows of S to get {S, π} is chosen

uniformly at random from the (nb)! possible permutations.

The next lemma shows that on average, any greedy deterministic al-

gorithm on {S, π} has the same performance as that of RANDOM on {S, I}.

There is an analogous result in [53] for the upper triangular matrix.

Lemma 24. Let ALG be a greedy deterministic online algorithm. The expected

size of matching produced by ALG on {S, π} where π is picked according to

the distribution Z is the same as the expected size of matching produced by

RANDOM on (S, I).

Proof. We claim that for each k and t, the probability that there are k eligible

rows at time t is the same for RANDOM run on (S, I) as it is for ALG run on

{S, π}.

The claim is true for t = 1. We assume that it is true at time t and show that

this implies that it is also true for time t+ 1.

Case I : ((t− 1) mod b) 6= 0

213

Let PRANDOM(t, k) be the probability that for RANDOM on (S, I), there are

k eligible rows at time t and PALG(t, k) the same probability for ALG. By the

induction hypothesis, we have that PRANDOM(t, k) = PALG(t, k). Given this,

since the columns arriving at t and t+1 have the same neighbors, we have that

PRANDOM(t+ 1, k− 1) = PRANDOM(t, k) and PALG(t+ 1, k− 1) = PALG(t, k),

and therefore, the claim is true for t+ 1.

Case II : ((t− 1) mod b) = 0

By the induction hypothesis we have that PRANDOM(t, k) = PALG(t, k). By

the first claim, we have that each such set of k rows is equally likely for both

algorithms. Therefore, the probability that the two sets have k′ rows which

can be matched to the vertex arriving at t + 1 is also the same. Let this

probability be γ(k′, k). Let

β(k′, k) =

(
γ(k′, k).

k − k′

k
+ γ(k′ + 1, k).

k′ + 1

k

)
,

Since RANDOM breaks ties uniformly at random and ALG breaks ties deter-

ministically, but that particular row is equally likely to be any eligible row S,

we have that

PRANDOM(t+ 1, k′) =
∑
k≥k′

PRANDOM(t, k)β(k′, k),

and

PALG(t+ 1, k′) =
∑
k≥k′

PALG(t, k)β(k′, k).

214

Therefore, we conclude that PRANDOM(t+ 1, k′) = PALG(t+ 1, k′).

An incoming column at time t will not be matched only when there are no

rows to match it to. Since PRANDOM(t, 0) = PALG(t, 0) for all t, the result

follows.

Lemma 25. The expected number of rows matched by any online matching al-

gorithm is upper bounded by the expected number of rows matched by RAN-

DOM on (S, I).

Proof. Fix a randomized algorithm R. Let D be the set of all deterministic

algorithms and DG be the set of all greedy deterministic algorithms. Let

E[R(S, π)] be the expected size of matching produced by R on (S, π) and let

E[D(S,Z)] denote the expected size of matching produced by D ∈ D given an

input from the distribution Z. By Yao’s Lemma [106], we have that

min
π
{E[R(S, π)]} ≤ max

D∈D
{E[D(S,Z)]}.

By Lemma 22 we know that the best deterministic algorithm is greedy. There-

fore, we can conclude that,

min
π
{E[R(S, π)]} ≤ max

D∈DG
{E[D(S, Z)]}.

By Lemma 24 we have the expected size of matching produced by any greedy

deterministic algorithm given an instance (S, π) is the same as the expected

size of matching produced by RANDOM on (S, I). Therefore,

min
π
{E[R(S, π)]} ≤ E[|MRANDOM(S, I)|],

215

where MRANDOM(S, I) is the matching produced by RANDOM on the in-

put (S, I). Therefore, we have that, the performance of any online matching

algorithm is upper bounded by the expected size of matching produced by

RANDOM on (S, I).

Lemma 26. The expected number of rows matched when RANDOM is exe-

cuted on (S, I) is at most bn

(
1− 1

e

)
+ o(n).

Proof. We first classify the columns of the matrix S. Observe that columns

bk + 1 to bk + b for all integral values of k such that 1 ≤ k ≤ n are identical.

We refer to columns bk + 1 to bk + b as columns of type k. Let x(t) be the

number of types of columns remaining at time t and y(t) be the number of

rows eligible at time t. Let ∆x = x(bt+ b)− x(bt) and ∆y = y(bt+ b)− y(bt).

For any column j such that bk + 1 ≤ j ≤ bk + b, we refer to the rows bk + 1

to bk + b as the good rows and the others as bad rows.

The following arguments use the fact we proved in Lemma 23 that if

there are r eligible rows when column c arrives at time t, they are equally

likely to be any r of the first b(n− b(t− 1)/bc) rows of S.

If a column is matched to a bad row by RANDOM when there was at

least one good row available, we say that algorithm RANDOM made an error.

Let Ec be the event that there is at least one good row available when column

c comes in. For any column c,

Pc(error) = Pc(bad decision, Ec)

= Pc(bad decision|Ec)P (Ec).

216

Let column c arrive at time t. By Lemma 23, we have that,

P (Ec) =

(
bx(t)−1
y−1

)(
bx(t)
y

) .

Dropping the time index for convenience, we have that,

P (Ec) =
y

x
. (C.1)

Additionally we have that

Pc(error|Ec) ≥
y − b
y

, (C.2)

since there can only be at most b good rows. From Equations C.1 and C.2, we

have that,

Pc(error) ≥ y

x

y − b
y

=
y − b
x

. (C.3)

We now bound the expected number of errors made by all columns of a par-

ticular type. Let the first column of type k come in at time t. Therefore,

x(t) = k and let y(t) = y. Let Perr(k) be the probability that the first column

of type k makes an error. We claim that

Perr(k) ≥ y − b
x

. (C.4)

From Equation C.4, we have that,

E[∆y] ≤ −b− by − 2b

bx
.

Therefore, for the algorithm RANDOM, we have that

E[∆y]

E[∆x]
≥ b+

y − b
x

. (C.5)

217

Consider a system such that

E[∆y]

E[∆x]
= b+

y − b
x

. (C.6)

We refer to this system as System B. Next, instead of solving Equation C.6 (a

stochastic difference equation), as in [53] we solve Equation C.7 (an ODE). It

is known from Kurtz’s theorem [56] that the corresponding two solutions tend

to each other as n→∞ (and with high probability).

dy

dx
= b+

y − b
x

. (C.7)

Let f(y, x) be such that for the original system, System A,

E[∆y]

E[∆x]
= f(y, x), (C.8)

such that f(y, x) is an increasing function of y for y > b. Note that f(y, x) is an

increasing function of y for y > b because the more options an incoming column

has, the higher the probability of making an error, since there are always at

most b good rows. From Equation C.5, we know that f(y, x) ≥ b+
y − b
x

. The

solution to System A can be approximated by

dy

dx
= f(y, x). (C.9)

Since both systems start at the same point i.e. y = bn, x = n, we have that

for a given value of x, yA(x) ≤ yB(x). We will therefore use System B to get

a bound on the performance of System A. We have that

dy

dx
= b+

y − b
x

.

218

Solving this, we get that

y = cx+ bx log x+ b.

We know that when x = n, y = bn, therefore, we get that

c = b− b log n+− b
n
.

Therefore,

y = bx+ bx log
x

n
− bx

n
+ b.

At y = b, we have that

x+ x log
x

n
− x

n
= 0,

therefore,

x = e−1+ 1
nn.

Therefore, the number of columns matched by System B is at most

bn− be−1+ 1
nn+ b.

Since System A matches fewer columns than System B, we have that the

expected size of matching produced by RANDOM is at most

bn(1− e−1+ 1
n + 1/n).

Proof. (Proof of Theorem 1)

Follows from Lemma 25 and Lemma 26.

219

Algorithm 4 ALG

1: Create dmax + t− 1 copies of each server si ∈ S.
2: Label the jth copy of si as s

(j)
i .

3: For each s
(j)
i , pick a value V (s

(j)
i) i.i.d. uniform [0,1].

4: S = {s(j)
i : si ∈ S, 1 ≤ j ≤ t+ dmax − 1}, M = φ.

5: for each time-slot u ≤ t do
6: for arriving job p characterized by {Sp, dp} do
7: E(p) = {si ∈ Sp and u ≤ j ≤ u+ dp − 1}.
8: if (C(p) := E(p) ∩ S\ M 6= φ) then

9: s
(j∗)
i∗ = arg minx∈C(p) V (x), M = M ∪ s(j∗)

i∗ .
10: end if
11: end for
12: end for

C.3 Proof of Theorem 13

We propose an algorithm called INSERT RANKING as defined in Sec-

tion 5.3. In this section, we analyze the performance of this algorithm. Recall

the set RANKING defined in Algorithm 1 which is updated after each job

allocation and at the end of each time-slot. Each element in RANKING had

a value associated with it, which is chosen independently according to the

uniform distribution on [0, 1].

Consider an arrival sequence A which is constructed by appending all

arrivals in time-slots 1 to t such that the relative order of arrival of jobs is

maintained.

We define a new algorithm ALG whose performance on A is closely

related to the performance of INSERT RANKING on all the arrivals from

time-slot 1 to t.

220

Lemma 27. For any arrival process, ALG matches at least 1 − 1/e fraction

of the jobs matched by the optimal offline algorithm which knows the entire

arrival sequence a-priori.

Proof. ALG is identical to the RANKING algorithm proposed in [53]. The

result therefore follows from the fact that the competitive ratio of the algorithm

RANKING is 1-1/e.

For the next Lemma, we focus on arrival sequences such that no jobs

arrive after time-slot t.

Lemma 28. For a given sample path (i.e. for the same values of V (sji) for

all si ∈ S and 1 ≤ j ≤ t + dmax − 1), for a given arrival process, the set

of jobs matched by ALG is a subset of the set of jobs matched by INSERT

RANKING.

Proof. Recall Step 15 of Algorithm 1 where matched server copies re-inserted

into the set of unmatched servers.

For a job p, the sets of eligible server copies that it can be matched to

are denoted by N(p) for INSERT RANKING and C(p) for ALG.

We claim the following properties:

P1: When a job p arrives, the set of jobs that arrived before p and were

matched by INSERT RANKING is a superset of the the set of jobs that

arrived before p and were matched by ALG.

221

P2: When a job p arrives in time-slot t, the set unmatched server copies is a

superset of server copies with indices t ≤ j ≤ t + dmax − 1 not matched

by ALG.

The two algorithms are identical in the first time-slot. Consider the first

arrival p in the second time-slot. Consider the sets of eligible server copies that

it can be matched to (N(p) for INSERT RANKING and C(p) for ALG). Due

to reinsertion, N(p) ⊇ C(p). There are three possible cases:

I: INSERT RANKING matches p to a reinserted server copy. In this case,

P1 and P2 follow directly.

II: INSERT RANKING matches p to a non-reinserted server copy. As be-

fore, P1 follows. If ALG also matches p to the same server copy, P2 also

follows. If not, since N(p) ⊇ C(p), INSERT RANKING matches p to an

non-reinserted server copy s
(j)
i ∈ RANKING with a lower value. Since

ALG does not match p to this server, we conclude that s
(j)
i has already

been matched by ALG to some other job and therefore P2 follows.

III: INSERT RANKING does not match p to any server copy. Since N(p) ⊇

C(p), this implies ALG also does not match p to any server copy and P1

and P2 follow.

By induction, the proof follows for all subsequent arrivals. By P1, we

conclude that the set of jobs matched by ALG is a subset of the set of jobs

matched by INSERT RANKING.

222

Proof. (Proof of Theorem 13) We first bound the quantity ρt(INSERT RANKING).

By Lemmas 27 and 28, we conclude that

ρt(INSERT RANKING) ≥ 1− 1

e
,

and therefore,

ρ(INSERT RANKING)

= inf
t
ρt(INSERT RANKING) ≥ 1− 1

e
.

C.4 Alternative Algorithms: Proofs of Theorems 14
and 15

From Sections C.2 and C.3 we conclude that INSERT RANKING is

an optimal online algorithm. In this section, we try to understand if corre-

lated randomness is necessary to achieve optimality or if just randomization

is sufficient.

C.4.1 RANDOMIZED JSQ

The first algorithm which we study is a Join the Shortest Queue al-

gorithm which break ties between the shortest queues uniformly at random

independent of all past choices. We refer to this algorithm as RANDOMIZED

JSQ. The algorithm has been defined in Section 5.3.

Proof. (Proof of Theorem 14)

To compute an upper bound on the competitive ratio of RANDOMIZED JSQ,

223

we construct a bad arrival sequence and upper bound the performance of

RANDOMIZED JSQ by its performance for that particular arrival sequence.

We construct the arrival sequence as follows. Consider a matrix such that

A(i, i) = 1 for 1 ≤ i ≤ n, A(i, j) = 1 if j ≥ n/2, i ≤ n/2 and A(i, j) = 0

otherwise. As in Section C.2, columns of A represent jobs and rows represent

servers. The jobs (columns) arrive from right to left. For example, for n = 8,

this matrix is

A =



1 0 0 0 1 1 1 1
0 1 0 0 1 1 1 1
0 0 1 0 1 1 1 1
0 0 0 1 1 1 1 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


We set the deadline of all jobs to be 1. Consider an arrival process Arr, where

Arr(t) = A for all t. At time t, all jobs that arrived before time-slot t are no

longer in the system. They are either served or dropped. Since each job has a

service time of 1 time-slot, for this arrival process, the task of load balancing

at time t is equivalent to the task of finding an online matching. The proof is

based the analysis for a similar arrival sequence presented in [69]. However,

as the arrival sequence is different, the proof is structurally similar, but the

detailed analysis differs.

We focus on the first n/2 servers. Let x(c) and y(c) be random variables

denoting the number of jobs remaining and the number of servers among the

first n/2 servers which have not been matched by the time the (n − c + 1)th

224

column arrives. Let

∆x = x(c)− x(c+ 1),

∆y = y(c)− y(c+ 1).

∆y = −1 w.p.
y

y + 1

and 0 otherwise. Therefore, using Kurtz’s Theorem [56], we approximate this

system by the system given by

dy

dx
=

y

y + 1
.

Solving for y with initial conditions x = n, y = n/2, we get that:

x = y +
n

2
+ log

2y

n
.

For x = n/2, we have that:

y + log
2y

n
= 0.

Therefore, y(n/2) < log n. Therefore, we have that,

ρt(RANDOMIZED JSQ) ≤ t(n/2 + log n)

tn
.

As n→∞,

ρt(RANDOMIZED JSQ) ≤ 1

2
.

Therefore, we have that

ρ(RANDOMIZED JSQ) ≤ 1

2
.

225

C.4.2 RANDOMIZED P-JSQ

Since INSERT RANKING is not a join the short queue algorithm, but,

is biased towards joining shorter queues, we analyze the performance of an

algorithm which we call RANDOMIZED P-JSQ. Like INSERT RANKING,

this algorithm is also biased towards joining shorter queues. The algorithm

has been defined in Section 5.3.

Proof. (Proof of Theorem 15)

To compute an upper bound on the competitive ratio of RANDOMIZED P-

JSQ, we construct a bad arrival sequence and upper bound the performance of

RANDOMIZED P-JSQ by its performance for that particular arrival sequence.

We construct the arrival sequence as follows.

Construct a matrix B such that B(i, i) = 1 and B(i, j) = 1 for i ≤ n/2

and j > n/2. For example for n = 4,

B =


1 0 1 1
0 1 1 1
0 0 1 0
0 0 0 1


We then make dmax copies for each column to get the arrival matrix A. For

dmax = 2,

A =


1 1 0 0 1 1 1 1
0 0 1 1 1 1 1 1
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1


We set the deadline of all jobs to be dmax. Like in Section C.2, consider an

arrival process Arr, where Arr(1) = A and Arr(t) = φ for t 6= 1. We construct

226

a matrix S from A by creating dmax copies of each server and try to find a

matching for S. In this case where dmax = 2,

S =



1 1 0 0 1 1 1 1
1 1 0 0 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1


We first classify the columns of the matrix S. Observe that columns dmaxk+1

to dmaxk+dmax for all integral values of k such that 1 ≤ k ≤ n are identical. We

refer to columns dmaxk+1 to dmaxk+dmax as columns of type k. Let x(t) be the

number of types of columns remaining at time t and y(t) be the number of the

top dmaxn/2 rows eligible at time t. Let ∆x = x(dmaxt+dmax)−x(dmaxt) = −1

and ∆y = y(dmaxt+dmax)−y(dmaxt). For any column j such that dmaxk+1 ≤

j ≤ dmaxk+ dmax, we refer to the rows dmaxk+ 1 to dmaxk+ dmax as the good

rows and the others as bad rows.

Let the first column of type k come in at time t. The quantity y(t)

decreases by at most 1 after each column gets matched since all columns of

type k have the same set of eligible rows. Therefore, y > y(t) − dmax for all

columns of type k. For any column of type k, the probability of making an

error is at least y
y+dmax

≥ y(t)−dmax
y(t)+dmax

. Therefore,

E[∆y] ≤ −dmax
y(t)− dmax
y(t) + dmax

.

227

Since ∆x = −1, we have that

E[∆y]

E[∆x]
≥ dmax

y(t)− dmax
y(t) + dmax

.

Instead of solving the stochastic difference equation, we use Kurtz’s theorem

[56] and bound its solution by the solution to

dy

dx
= dmax

y − dmax
y + dmax

,

with the initial condition x = n, y = dmaxn/2. We then compute the value of

y for x = n/2. We get that when x = n/2, y ≤ 2dmax log n. Therefore, we

have that,

ρt(RANDOMIZED P-JSQ) ≤ dmaxn/2 + 2dmax log n

dmaxn
.

As n→∞,

ρt(RANDOMIZED P-JSQ) ≤ 1

2
.

Therefore, we have that

ρ(RANDOMIZED P-JSQ) ≤ 1

2
.

228

Appendix D

Proofs from Chapter 5

D.1 Proof of Theorem 16

We first present an outline of the proof of Theorem 16. We consider two cases.

We first focus on the case when the learning-based storage policies use fewer

than n arrivals to learn the distribution.

1. If the learning phase lasts for the first nγ arrivals for some 0 < γ ≤ 1,

we show that under Assumption (i), w.h.p., in the learning phase, there

are no arrivals for at least n−O(n
γ
β) content types. (Lemma 29).

2. Next, we show that w.h.p., among the first nγ arrivals, i.e., during the

learning phase, Ω(nγ) requests are deferred (Lemma 31).

3. Using Lemma 29, we compute a lower bound on the number of requests

deferred in Phase 2 (after the learning phase) by any learning-based

static storage policy (Lemma 32).

4. Using Steps 2 and 3, we lower bound the number of requests deferred in

the interval of interest.

In the case when the learning phase lasts for more than n arrivals, we

show that the number of requests deferred in the learning phase alone is Ω(n),

229

thus proving the theorem for this case.

Lemma 29. Let E1 be the event that in the first nγ arrivals, for 0 < γ < 1 no

more than O(n
γ
β) different types of contents are requested. Then,

P(Ec
1) = o

(
1

n

)
. (D.1)

for n large enough.

Proof. Recall λi = λ̄npi where pi = i−β

Z(β)
for Z(β) =

∑m
i=1 i

−β.

Z(β) =
αn∑
i=1

i−β ≥
∫ αn+1

1

i−βdi ≥ 0.9

β − 1

for n large enough. Therefore, for all i,

pi ≤
β − 1

0.9
i−β.

The total mass of all content types i = k, ..m = αn is

αn∑
i=k

pi ≤
αn∑
i=k

β − 1

0.9
i−β ≤

∫ αn

k−1

β − 1

0.9
i−βdi ≤ 1

0.9

1

(k − 1)β−1
.

Now, for k = (n)γ/β + 1, we have that,

αn∑
i=k

pi ≤
1

0.9

nγ/β

nγ
.

Therefore, the expected number of requests for content types k, k + 1, ..αn is

less than 1
0.9

(nγ/β). Using the Chernoff bound, the probability that there are

more than 2
0.9

(nγ/β) requests for content types k, k + 1, ..αn in the interval of

interest is less than 1
n2 for n large enough.

230

Therefore, with probability greater than 1−1/n2, the number different

types of contents requests for in the interval of interest is less than nγ/β +

2
0.9

(nγ/β). Hence the result follows.

We use the following concentration result for Exponential random vari-

ables.

Lemma 30. Let Xk for 0 ≤ k ≤ v, be i.i.d. exponential random variables with

mean 1, then,

P
(v∑

k=1

Xi ≤ a

)
≤ exp(v − a)

(
a

v

)v
. (D.2)

Proof. This follows from elementary calculations, and is provided here for

completeness. For any a and v, by the Chernoff bound, we have that,

P
(v∑

k=1

Xi ≤ a

)
≤ min

t>0
eta(E[e−tXi])v.

Since Xk is an exponential random variable with mean 1, we have that,

P
(v∑

k=1

Xi ≤ a

)
≤ min

t>0
eta
(

1

1 + t

)v
= exp(v − a)

(
a

v

)v
.

Lemma 31. Suppose the system starts with each content piece stored on ex-

actly one server. Let E2 be the event that in the first nγ arrivals for γ such

that 0 < γ < 1, at most O(nγ/β)(log n + 1) are served (not deferred). Then,

for β > 1,

P(E2) ≥ 1− 1

log n
. (D.3)

231

Proof. This proof is conditioned on the event E1 defined in Lemma 29. Con-

ditioned on E1, in the first nγ arrivals, at most O(nγ/β) different content types

are requested. Therefore, at most O(nγ/β) servers can serve requests during

the first nγ arrivals.

Let E3 be the event that the time taken for the first nγ arrivals is less

than 2nγ

λ̄n
. Since the expected time for the first nγ arrivals is nγ

λ̄n
, by the Chernoff

bound, P(E3) ≥ 1− o(1/n). The rest of this proof is conditioned on the event

E3.

If the system serves (does not defer) more than O(nγ/β(log n + 1))

requests in this interval, at least one server needs to serve more than log n

requests. By substituting a = cn−1+γ and v = log n in Lemma 30, we have

that,

P
(logn∑

k=1

Xk ≤ cn−1+γ

)
≤ exp(log n− cn−1+γ)

×
(
cn−1+γ

log n

)logn

= o

(
1

n

)
.

Therefore, the probability that a server serves more than log n requests in an

interval of 2nγ

λ̄n
time is o

(
1
n

)
. Therefore, using the union bound, the probability

that none of these O(nγ/β) servers serve more than log n requests each in 2nγ

λ̄n

time is greater than 1−O(nγ/β)o(1
n
). Therefore, we have that,

P(Ec
2) ≤ O(nγ/β)o

(
1

n

)
+ P (Ec

1) + P (Ec
3)

≤ 1

log n

for n large enough.

232

Lemma 32. Let the interval of interest be T (n) such that T (n) = Ω(1). If the

learning phase of the storage policy lasts for the first nγ arrivals, 0 < γ < 1,

the expected number of requests deferred in Phase 2 is Ω
(
T (n)n1−γn

γ
β
)
.

Proof. Let N2 be the number of arrivals in Phase 2, then we have that, E[N2] =

T (n)λ̄n− nγ.

Let E4 be the event that N2 > E[N2]/2. Using the Chernoff bound, it

can be shown that P (Ec
4) = o(1/n).

The rest of this proof is conditioned on E1 defined in Lemma 29 and E4

defined above. We consider the following two cases depending on the number

of servers allocated to content types not seen in Phase 1.

Case I: The number of servers allocated to content types not seen in Phase 1

is less than εn for some ε ≤ 1− λ̄
1000

. For β > 1,

Z(β) =
αn∑
i=1

i−β ≤
∞∑
i=1

i−β = cz <∞.

Therefore, for all i, pi ≥ 1
cz
i−β. The total mass of all content types k, k+1, ..αn

is

αn∑
i=k

pi ≥
αn∑
i=k

1

cz
i−β ≥

∫ αn+1

k

1

cz
i−βdi

=
0.9

cz(β − 1)

1

kβ−1
,

for n large enough.

233

Therefore, the expected number of arrivals of types not requested in

Phase 1 in Phase 2 is at least (T (n)λ̄n−nγ
2

) 0.9
cz(β−1)

n
γ
β

nγ
.

Let E5 be the event that in Phase 2, there are at least (T (n)λ̄n−nγ
4

) 0.9
cz(β−1)

n
γ
β

nγ

arrivals of types not requested in Phase 1. Using the Chernoff bound, P(Ec
5) =

o(1/n).

Conditioned on E1, all but O(nγ/β) content types, are not requested in

Phase 1. Recall that all learning-based policies treat all these content types

equally and that the total number of servers allocated to store the content

types not seen in Phase 1 is less than εn. Let η be the probability that a

content is not stored by the storage policy under consideration. Then,

η ≥ 1− εn

n−O(nγ/β)
≥ 1− ε

2
,

for n large enough.

Let E6 = E1 ∩E3 ∩E4 ∩E5 and D2 be the number of requests deferred

in Phase 2.

E[D2|E6] ≥ η

((
T (n)λ̄n− nγ

2

)
0.9

2cz(β − 1)

nγ/β

nγ

)
≥

(
1− ε

2

)(
T (n)λ̄n− nγ

2

)
0.9

2cz(β − 1)

nγ/β

nγ

= Ω
(
T (n)n1−γnγ/β

)
.

234

Therefore,

E[D2] ≥ E[D2|E6]P(E6)

≥ E[D2|E6]

(
1− 1

log n
− 3

n

)
= Ω

(
T (n)n1−γnγ/β

)
.

Case II: The number of servers allocated to content types not seen in Phase 1

is more than εn for some ε > 1− λ̄
1000

.

Let f(n) be the number of servers allocated to store all content types

that are requested in Phase 1. By our assumption, f(n) ≤ λ̄
1000

n.

Let C1 be the set of content types requested in Phase 1. Let p =∑
c∈C1

pc be the total mass of all content types c ∈ C1. Let p̂c be the fraction

of requests for content-type c in Phase 1. By the definition of C1, the total

empirical mass of all content types c ∈ C1 is obviously p̂ =
∑

c∈C1
p̂c = 1.

Recall that there are nγ arrivals in Phase 1. Let r = nγ. We now use

the Chernoff bound to compute a lower bound on the true mass p, using a

technique similar to that used in [66] (Lemma 4). By the Chernoff bound, we

know that,

P(p̂ > (1 + κ)p) ≤ exp

(
− prκ2

3

)
.

Let δ = exp

(
− prκ2

3

)
, then, we have that, with probability greater than

1− δ,

p̂− p >
√
−3p log δ

r
.

235

Solving for p, we get that, with probability greater than 1 − δ, p > 1 −
3 log(1/δ)

2r
, for n large enough. Let δ = 1/n, then we have that, with prob-

ability greater than 1 − 1/n, p > 1 − 3 log n

2nγ
. Conditioned on the event E4,

there are at least T (n)λ̄n−nγ
2

arrivals in Phase 2. The remainder of this proof is

conditioned on E4. Let A2 be the number of arrivals of types c ∈ C1 in phase

2. Let E7 be the event that

A2 >
T (n)λ̄n− nγ

2

(
1− 3 log n

2nγ

)
.

Since the expected number of arrivals of content types c ∈ C1 in Phase 2 is at

least

(T (n)λ̄n− nγ)
(

1− 3 log n

2nγ

)
,

using the Chernoff bound, we can show that P(Ec
7) = o(1/n). The rest of this

proof is conditioned on E7. By our assumption, the number of servers which

can serve arrivals of types c ∈ C1 in Phase 2 is f(n). Therefore, if at least

A2/2 requests are to be served in Phase 2, the sum of the service times of

these A2/2 requests should be less than T (n)f(n) (since the number of servers

which can serve these requests is f(n)). Let E8 be the event that the sum

of A2/2 independent Exponential random variables with mean 1 is less than

T (n)f(n). By substituting v = A2/2 and a = T (n)f(n) in Lemma 30, we have

that,

P(E8) ≤ exp

(
A2

2
− T (n)

)(
2T (n)f(n)

A2

)A2
2

≤ exp

(
A2

2

)(
2T (n)f(n)

A2

)A2
2

= o

(
1

n

)

236

for n large enough. Hence,

P
(
D2 ≥

A2

2

)
≥ 1− P(Ec

1)− o
(

1

n

)
⇒ E[D2] = Ω

(
T (n)n1−γnγ/β

)
.

Proof. (Proof of Theorem 16)

We consider two cases:

Case I: The learning phase lasts for the first nγ arrivals where 0 ≤ γ < 1.

Let D1 be the number of requests deferred in Phase 1 and D be total number

of requests deferred in the interval of interest. Then, we have that,

E[D] = E[D1] + E[D2].

By Lemmas 31 and 32 and since T (n) = Ω(1), we have that,

E[D] ≥ nγ − (nγ log n)
1

β−1 log n+ E[D2]

= Ω(nT (n))
1

2−1/β .

Case II: The learning phase lasts for longer than the time taken for the first n

arrivals.

By Lemma 31, the number of requests deferred in the first n arrivals is at least

n−O(n1/β log n) with probability greater than 1−1/ log n. Therefore, we have

that,

E[D] ≥
(
n−O(n1/β log n)

)(
1− 1

log n

)
= Ω(n)

= Ω(nT (n))
1

2−1/β .

237

D.2 Proof of Theorem 17

In this section, we provide an outline of the proof of Theorem 17. The

proof follows on the same lines as the proof of Theorem 16.

1. First, we show that w.h.p., among the first nγ arrivals, i.e., during the

learning phase, Ω(nγ) requests are deferred (Lemma 31).

2. Since we are studying the performance of the MYOPIC policy for the

Continuous Change Model, the relative order of popularity of contents

keeps changing in the interval of interest. If the learning phase lasts for

the first nγ arrivals for some 0 < γ ≤ 1, we show that under Assump-

tion (i), w.h.p., in the learning phase, only O(nγ/β) content types are

requested.

3. Next, we show that the expected the number of requests in Phase 2 for

content types not requested in Phase 1 is Ω(n1−γnγ/β). Using this, we

compute a lower bound on the number of requests deferred in Phase 2

(after the learning phase) by any learning-based static storage policy.

This results follows by the same arguments as the proof of Lemma 32.

4. Using Steps 1 and 3, we lower bound the number of requests deferred in

the interval of interest.

D.3 Proof of Theorem 18

We first present an outline the proof of Theorem 18.

238

1. We first show that under Assumption (i), on every arrival in the interval

of interest (T (n)), there are Θ(n) idle servers w.h.p. (Lemma 34).

2. Next, we show that w.h.p., in the interval of interest of length T (n), only

O
(
(nT (n)

) 1
β) unique content types are requested (Lemma 35).

3. Conditioned on Steps 1 and 2, we show that, the MYOPIC policy ensures

that in the interval of interest, once a content type is requested for the

first time, there is always at least one idle server which can serve an

incoming request for that content.

4. Using Step 3, we conclude that, in the interval of interest, only the

first request for a particular content type will be deferred. The proof of

Theorem 18 then follows from Step 2.

Lemma 33. Let the cumulative arrival process to the content delivery system

be a Poisson process with rate λ̄n. At time t, let χ(t) be the number of occupied

servers under the MYOPIC storage policy. Then, we have that, χ(t) ≤st S(t),

where S(t) is a poisson random variable with rate λ̄n(1− e−t).

Proof. Consider an M/M/∞ queue where the arrival process is Poisson(λ̄n).

Let S(t) be the number of occupied servers at time t in this system. It is well

known that S(t) is a Poisson random variable with rate λ̄n(1− e−t). Here we

provide a proof of this result for completeness. Consider a request r∗ which

arrived into the system at time t0 < t. If the request is still being served by a

239

server, we have that,

t0 + µ(r∗) > t,

where µ(r∗) is the service time of request r∗. Since µ(r∗) ∼ Exp(1), we have

that,

P(µ(r∗) > t− t0|t0) = e−(t−t0).

Therefore,

P(r∗ in the system at time t) ≤
∫ t

0

1

t
e−(t−t0)dt0

=
1− e−t

t
.

Therefore, every request that arrived in the system is still in the system with

probability at most 1−e−t
t

. Since the arrival process is Poisson, the number

of requests in the system at time t is stochastically dominated by a Poisson

random variable with rate λ̄nt
(

1−e−t
t

)
= λ̄n(1− e−t).

To show χ(t) ≤st S(t), we use a coupled construction similar to Figure

D.1. The intuition behind the proof is the following: the rate of arrivals to the

content delivery system and the M/M/∞ system (where each server can serve

all types of requests) is the same. The content delivery system serves fewer

requests than the M/M/∞ system because some requests are deferred even

when the servers are idle. Hence, the number of busy servers is the content

delivery system is stochastically dominated by the number of busy servers in

the M/M/∞ queueing system.

240

Lemma 34. Let the interval of interest be [t0, t0 +T (n)] where T (n) = o(nβ−1)

and ε ≤ 1−λ̄
2

. Let F1 be the event that at the instant of each arrival in

the interval of interest, the number of idle servers in the system is at least(
1− λ̄− ε

)
n. Then, P(F c

1) = o
(

1
n

)
.

Proof. Let F2 be the event that the number of arrivals in [t0, t0 + T (n)] ≤

nT (n)(λ̄ + ε). Using the Chernoff bound for the Poisson process, we have

that,

P(F c
2) = o

(
1

n

)
.

Consider any t ∈ [t0, t0 + T (n)]. By Lemma 33, χ(t) ≤st S(t), where S(t) ∼

Poisson(λ̄n(1− e−t)). Therefore,

P(χ(t) > (λ̄+ ε)n) ≤ P(S(t) > (λ̄+ ε)n).

Moreover, S(t) ≤st W (t) where W (t) = Poisson(λ̄n). Therefore, using the

Chernoff bound for W (t), we have that,

P(S(t) > (λ̄+ ε)n) ≤ P(W (t) > (λ̄+ ε)n) = e−c1n,

for some constant c1 > 0. Therefore,

P(F c
1) ≤ P(F c

2) + (λ̄+ ε)nT (n)P(χ(t) > (λ̄+ ε)n)

= o

(
1

n

)
.

241

Lemma 35. Let F3 be the event that in the interval of interest of duration

T (n) such that T (n) = o(nβ−1), no more than O((nT (n))1/β) different types

of contents are requested. Then, P(F c
3) = o

(
1
n

)
.

Proof. Recall from the proof of Lemma 29 that the total mass of all content

types k, ..m = αn is

αn∑
i=k

pi ≤
1

0.9

1

(k − 1)β−1
.

Now, for k = (nT (n))1/β + 1, we have that,

αn∑
i=k

pi ≤
1

0.9
(nT (n))−

β−1
β .

Conditioned on the event F2 defined in Lemma 34, the expected number of re-

quests for content types k, k+1, ..αn is less than 1
0.9

(λ̄+ε)(nT (n))1/β. Using the

Chernoff bound, the probability that there are more than 2
0.9

(λ̄+ ε)(nT (n))1/β

requests for content types k, k + 1, ..αn in the interval of interest is less than

1
n2 for n large enough.

Therefore, with probability greater than 1− 1/n2−P(F c
2), the number

different types of contents requests for in the interval of interest is less than

(nT (n))1/β + 2
0.9

(λ̄+ ε)(nT (n))1/β. Hence the result follows.

Proof. (Proof of Theorem 18)

Let F4 be the event that, in the interval of interest, every request for a par-

ticular content type except the first request is not deferred. The rest of this

242

proof is conditioned on F1 and F3. Let U(t) be the number of unique con-

tents which have been requested in the interval of interest before time t for

t ∈ [t0, t0 + T (n)]. Conditioned on F3, as defined in Lemma 35, U(t) ≤

k1(nT (n))1/β for some constant k1 > 0 and n large enough. Conditioned on

F1, there are always (1− λ̄− ε)n idle servers in the interval of interest.

CLAIM: For every i and n large enough, once a content Ci is requested for the

first time in the interval of interest, the MYOPIC policy ensures that there is

always at least 1 idle server which can serve a request for Ci.

Note that since T (n) = o(nβ−1), (nT (n))1/β = o(n). Let n be large enough

such that k1(nT (n))1/β < (1 − λ̄ − ε)n, i.e., at any time t ∈ [t0, t0 + T (n)],

the number of idle servers is greater than U(t). We prove the claim by in-

duction. Let the claim hold for time t− and let there be a request at time t

for content Ci. If this is not the first request for Ci in [t0, t0 + T (n)], by the

claim, at t = t−, there is at least one idle server which can serve this request.

In addition, if there is exactly one server which can serve Ci at t−, then the

MYOPIC policy replaces the content of some other idle server with Ci. Since

there are more than k1(nT (n))1/β idle servers and U(t) < k1(nT (n))1/β, at t+,

each content type requested in the interval of interest so far, is stored on at

least one currently idle server. Therefore, conditioned on F1 and F3, every

request for a particular content type except the first request, is not deferred.

243

Hence, putting everything together,

P(F4) ≥ 1− P(F c
1)− P(F c

3),

thus P(F4)→ 1 as n→∞ and the result follows.

D.4 Proof of Theorem 19

We first present an outline of the proof of Theorem 19.

1. Since we are studying the performance of the MYOPIC policy for the

Continuous Change Model, the relative order of popularity of contents

keeps changing in the interval of interest. We show that w.h.p., the

number of content types which are in the n1/β most popular content

types at least once in the interval of interest is O(n1/β) (Lemma 36).

2. Next, we show that w.h.p., in the interval of interest of length b, only

O(n1/β) content types are requested (Lemma 37).

3. By Lemma 34 and the proof of Theorem 18, we know that, conditioned

on Step 3, the MYOPIC storage policy ensures that in the interval of

interest, once a content type is requested for the first time, there is

always at least one idle server which can serve an incoming request for

that content. Using this, we conclude that, in the interval of interest,

only the first request for a particular content type will be deferred. The

proof of Theorem 19 then follows from Step 2.

244

Lemma 36. Let G1 be the event that, in the interval of interest of length b,

the number of times that a content among the current top n1/β most popular

contents changes its position in the popularity ranking is at most 4b
α
n1/βν.

Then, P (G1) ≥ 1− o
(

1
n

)
.

Proof. The expected number of clock ticks in b time-units is bnν. The proba-

bility that a change in arrival process involves at least one of the current n1/β

most popular contents is n1/β

αn
. Therefore, the expected number of changes in

arrival process which involve at least one of the current n1/β most popular con-

tents is 2bν
α
n1/β. By the Chernoff bound, we have that P (G1) ≥ 1− o

(
1
n

)
.

Lemma 37. Let G2 be the event that in the interval of interest, no more than

O(n1/β) different types of contents are requested. Then, P(Gc
2) = o

(
1
n

)
.

Proof. Conditioned on the event G1 defined in Lemma 36, we have that in the

interval of interest, at most
(

2b
α
ν+1

)
n1/β different contents are among the top

n1/β most popular contents. Given this, the proof follows the same lines of

arguments as in the proof of Lemma 35.

The proof of the theorem then follows from Lemma 37 and uses the

same line of arguments as in the proof of Theorem 18.s

D.5 Proof of Theorem 20

To show that GENIE is the optimal policy, we consider the process X(t)

which is the number of occupied servers at time t when the storage policy is

245

GENIE. Let Y (t) be the number of occupied servers at time t for some other

storage policy A ∈ A. We construct a coupled process (X∗(t), Y ∗(t)) such

that the marginal rates of change in X∗(t) and Y ∗(t) is the same as that of

X(t) and Y (t) respectively.

Recall λ̄ =

∑m
i=1 λi
n

. At time t, let CGENIE(t) and CA(t) be the sets

of contents stored on idle servers by GENIE and A respectively. The con-

struction of the coupled process (X∗(t), Y ∗(t)) is described in Figure D.1. We

assume that the system starts at time t = 0 and X∗(0) = Y ∗(0) = 0. In this

construction, we maintain two counters ZX∗ and ZY ∗ which keep track of the

number of departures from the system. Let ZX∗(0) = ZY ∗(0) = 0. Let Exp(µ)

be an Exponential random variable with mean 1
µ

and Ber(p) be a Bernoulli

random variable which is 1 with probability (w.p.) p.

246

1: Generate: ARR ∼ Exp(nλ̄), DEP ∼ Exp(max{X∗, Y ∗})
2: t = t+ min{ARR,DEP}
3: if ARR<DEP, then
4: if (X∗ = Y ∗) then

5: Generate u1 ∼ Ber

(∑
i∈CGENIE(t) λi

nλ̄

)
6: if (u1 = 1) then
7: X∗ ← X∗ + 1

8: Generate u2 ∼ Ber

(∑
i∈CA(t) λi∑

i∈CGENIE(t) λi

)
9: if (u2 = 1) then Y ∗ ← Y ∗ + 1

10: end if
11: else

12: Generate u1 ∼ Ber

(∑
i∈CGENIE(t) λi

nλ̄

)
13: if(u1 = 1) then X∗ ← X∗ + 1

14: Generate u2 ∼ Ber

(∑
i∈CA(t) λi∑

i∈CGENIE(t) λi

)
15: if(u2 = 1) then Y ∗ ← Y ∗ + 1
16: end if
17: else
18: if (X∗ ≥ Y ∗) then
19: X∗ ← X∗ − 1, ZX∗ ← ZX∗ + 1

20: Generate u3 ∼ Ber

(
Y ∗

X∗

)
21: if (u3 = 1) then Y ∗ ← Y ∗ − 1, ZY ∗ ← ZY ∗ + 1
22: else
23: Y ∗ ← Y ∗ − 1, ZY ∗ ← ZY ∗ + 1

24: Generate u4 ∼ Ber

(
X∗

Y ∗

)
25: if (u4 = 1) then X∗ ← X∗ − 1, ZX∗ ← ZX∗ + 1
26: end if
27: end if
28: Goto 1

Figure D.1: Coupled Process

247

Lemma 38. X∗(t) and Y ∗(t) have the same marginal rates of transition as

X(t) and Y (t) respectively.

Proof of Lemma 38. Consider a small interval of time [t0, t0 + δ]. By the defi-

nition of X(t),

P(X(t0 + δ) = X(t0) + 1) ≈
(∑
i∈CGENIE(t)

λi

)
δ,

P(X(t0 + δ) = X(t0)− 1) ≈ X(t0)δ.

The above probabilities are implicitly conditioned on a suitable state definition

for the system; we henceforth drop the conditioning on the state for notational

compactness. For the process X∗(t),

P(X∗(t0 + δ) = X∗(t0) + 1) ≈ nλ̄

(∑
i∈CGENIE(t) λi

nλ̄

)
δ

=

(∑
i∈CGENIE(t)

λi

)
δ.

If (X∗(t0) ≥ Y ∗(t0)),

P(X∗(t0 + δ) = X∗(t0)− 1) ≈ X∗(t0)δ,

and if (X∗(t0) < Y ∗(t0)),

P(X∗(t0 + δ) = X∗(t0)− 1) ≈ Y ∗(t0)
X∗(t0)

Y ∗(t0)
δ

= X∗(t0)δ.

The approximations become exact as δ → 0, since the inter-event (arrival or

departure) times are exponential. This proves the lemma for X∗ and X.

248

By the definition of Y (t),

P(Y (t0 + δ) = Y (t0) + 1) ≈
(∑
i∈CA(t)

λi

)
δ,

P(Y (t0 + δ) = Y (t0)− 1) ≈ Y (t0)δ.

Consider the case when Y ∗(t0) = X∗(t0).

From Section 5.3.3, we know that, under the GENIE storage policy, if the

number of idle servers at time t is k(t), they store the k(t) most popular

contents. Given this, if X∗(t0) = Y ∗(t0),

∑
i∈CA(t) λi∑

i∈CGENIE(t) λi
≤ 1. Therefore, u2

as defined in Step 8 of the coupling construction is a valid bernoulli random

variable and in addition, u1×u2 is a bernoulli random variable with parameter(∑
i∈CA(t) λi

nλ̄

)
. Therefore, we have that,

P(Y ∗(t0 + δ) = Y ∗(t0) + 1) ≈ nλ̄

(∑
i∈CA(t) λi

nλ̄

)
δ

=

(∑
i∈CA(t)

λi

)
δ.

If Y ∗(t0) 6= X∗(t0),

P(Y ∗(t0 + δ) = Y ∗(t0) + 1) ≈ nλ̄

(∑
i∈CA(t) λi

nλ̄

)
δ

=

(∑
i∈CA(t)

λi

)
δ.

If (X∗(t0) ≥ Y ∗(t0)),

P(Y ∗(t0 + δ) = Y ∗(t0)− 1) ≈ X∗(t0)
Y ∗(t0)

X∗(t0)
δ

= Y ∗(t0)δ,

249

and if (X∗(t0) < Y ∗(t0)),

P(Y ∗(t0 + δ) = Y ∗(t0)− 1) ≈ Y ∗(t0)δ

= Y ∗(t0)δ.

This completes the proof.

Lemma 39. Let D(GENIE)(t) be the number of jobs deferred by time t by the

GENIE adaptive storage policy and D(A)(t) to be the number of jobs deferred

by time t by a policy A ∈ A. In the coupled construction, let W ∗(t) be the

number of arrivals by time t. Let, DX∗(t) = W ∗(t) − Z(X∗)(t) − X∗(t) and

DY ∗(t) = W ∗(t)− Z(Y ∗)(t)− Y ∗(t). Then, DX∗(t) and DY ∗(t) have the same

marginal rates of transition as D(GENIE)(t) and D(A)(t) respectively.

Proof. This follows from Lemma 38 due to the fact that X(t) have the same

distribution as X∗(t) and the marginal rate of increase of DX∗(t) given X∗(t)

is the same as the rate of increase of D(GENIE)(t) given X(t). The result for

DY ∗(t) follows by the same argument.

Lemma 40. X∗ ≥ Y ∗ for all t on every sample path.

Proof of Lemma 40. The proof follows by induction. X∗(0) = Y ∗(0) by con-

struction. Let X∗(t−0) ≥ Y ∗(t−0) and let there be an arrival or departure at

time t0. There are 4 possible cases:

i: If ARR<DEP andX∗(t−0) = Y ∗(t−0), Y ∗(t0) = Y ∗(t−0)+1 only ifX∗(t0) =

X∗(t−0) + 1. Therefore, X∗(t0) ≥ Y ∗(t0).

250

ii: If ARR<DEP and X∗(t−0) > Y ∗(t−0), Y ∗(t0) ≤ Y ∗(t−0) + 1 ≤ X∗(t−0) ≤

X∗(t0). Therefore, X∗(t0) ≥ Y ∗(t0).

iii: If DEP<ARR and X∗(t−0) = Y ∗(t−0), X∗(t0) = Y ∗(t0).

iv: If DEP<ARR and X∗(t−0) > Y ∗(t−0), X∗(t0) = X∗(t−0) − 1 ≥ Y ∗(t−0) ≥

Y ∗(t0). Therefore, X∗(t0) ≥ Y ∗(t0).

Lemma 41. ZX∗ ≥ ZY ∗ for all t on every sample path.

Proof. The proof follows by induction. Since the system starts at time t = 0,

ZX∗(0) = ZY ∗(0). Let ZX∗(t
−
0) ≥ ZY ∗(t

−
0) and let there be a departure at time

t0. By Lemma 40, we know that, X∗(t−0) ≥ Y ∗(t−0). Therefore, ZX∗(t0) ≥

ZY ∗(t0) by the coupling construction.

Proof. (Proof of Theorem 20)

By Lemmas 40 and 41, for any sample path,

X∗(t) + ZX∗(t) ≥ Y ∗(t) + ZY ∗(t).

Therefore, for every sample path, the number of requests already served (not

deferred) or being served by the servers by a content delivery system imple-

menting the GENIE policy is more than that by any other storage policy. This

implies that for each sample path, the number of requests deferred by GENIE

is less than that of any other storage policy. Sample path dominance in the

251

coupled system implies stochastic dominance of the original process. Using

this and Lemma 39, we have that,

D(GENIE)(t) ≤st D(A)(t).

D.6 Proof of Theorem 21

Proof of Theorem 21. The key idea of the GENIE policy is to ensure that at

any time t, if the number of idle servers is k(t), the k(t) most popular contents

are stored on exactly one idle server each. Since the total number of servers

is n, and the number of content-types is m = αn for some constant α > 1,

all content-types Ci for i > n are never stored on idle servers by the GENIE

policy. This means that under the GENIE policy, all arrivals for content types

Ci for i > n are deferred. For β > 1,for all i,pi ≥ 1
cz
i−β, for some constant

cz <∞. The cumulative mass of all content types i = n+ 1, ..αn is

αn∑
i=n+1

pi ≥
αn∑
i=k

1

cz
i−β ≥

∫ αn+1

n+1

1

cz
i−βdi

≥ 0.9

cz(β − 1)

1

(n+ 1)β−1
,

for n large enough.

Let the length of the interval of interest be b. The expected number

of arrivals of types n + 1, n + 2, ..αn, in the interval of interest is at least

0.9bλ̄n

cz(β − 1)

1

(n+ 1)β−1
. Therefore, the expected number of jobs deferred by the

252

GENIE policy in an interval of length b is Ω(n2−β).

D.7 Proof of Theorem 22

Proof of Theorem 22. From the proof of Theorem 18, we know that if T =

o(nβ−1), w.h.p.,

- no more than O(nT)1/β different types of contents are requested,

- once a content Ci is requested for the first time, the MYOPIC policy

ensures that there is always at least 1 idle server which can serve a

request for Ci.

It follows that once a content is requested for the first time, there is at

least one copy of that content in the system (more specifically, there is at least

one copy of that content on an idle server). Therefore, w.h.p., the number of

external fetches is equal to the number of unique content types requested in

the interval of interest and the result follows.

For the GENIE policy, before the first arrival, the GENIE policy fetches

the n most popular contents to place on the servers.

Let the number of idle servers at t− be k(t) and let there be a departure

from the system at time t. After this departure, the content of the new idle

server is replaced with Ck(t−)+1. From Lemma 34, we have that with proba-

bility ≥ 1− o
(

1
n

)
, Θ(n) servers are idle at all times in the interval of interest.

253

Therefore, k(t−) + 1 > εn for some ε > 0 and λk(t−)+1 ≤ λ̄n
(εn)β

. The number

of currently busy servers serving a request for content k(t−) + 1 is stochasti-

cally dominated by a Poisson random variable with rate λ̄n
(εn)β

. Therefore, at

time t+, with probability ≥ 1− λ̄n
(εn)β

, there is no currently busy server in the

system serving a request for Ck(t−)+1. By the properties of the GENIE policy,

the other k(t−) idle servers store the k(t−) most popular contents. Therefore,

content k(t−) + 1 is not available in the system (on a busy or idle server) at

time t+ and will be fetched from the back-end server. Therefore, w.h.p., each

departure is followed by an external fetch. Since there are Θ(nT) departures

in an interval of duration T , the result follows.

254

Appendix E

Proofs from Chapter 6

E.1 Proof of Theorem 23

It follows from the definition of Zj(T (n)) that Zj(T (n)) requests for

content j were being served concurrently at some time in [0, T (n)]. If only

the front-end servers are used to serve these requests, the content j needs to

be replicated on at least Zj(T (n)) front-end servers at that time. The cost of

this alone is CfZj(T (n)) + (Cb −Cf), since at least the first copy will have to

be fetched from the back-end server at cost Cb and the other (Zj(T (n)) − 1)

copies will cost at least Cf each. If one or more requests are served by the

back-end server instead of making a copy on a front-end server, each will cost

Cm(≥ Cb ≥ Cf) and therefore, the bound CfZj(T (n)) + (Cb − Cf) still holds.

Summing over all contents requested at least once in the interval [0, T (n)], the

result follows.

E.2 Proof of Theorem 24

We first provide an outline of the proof.

(i) We first bound the quantity Zj(T (n)) (see Definition 1) for each content

j (Lemmas 42 and 43).

255

(ii) Using the bounds obtained, we show that for any δ ∈ (0, 1− λ̄), w.h.p.,

if T (n) = O(n), Z(T (n)) =
∑n

j=1 Zj(T (n)) ≤ (1− δ)n (Lemma 44).

(iii) It follows from the bound in Step (ii) and the fact that the system begins

from the empty state (all servers are idle with no contents on them)

that at least δn servers will have no contents on them during [0, T (n)].

Whenever a new content is fetched, the LRU-R policy first tries to place

it on an idle server which has nothing stored on it. Since there is always

an empty idle server, once a content is placed on a front-end server, it is

not replaced in [0, T (n)].

(iv) Using the property that the LRU-R policy fetches content only when an

incoming request cannot be served, we show that the number of fetches

by the LRU-R in [0, T (n)] = Z(T (n)).

(v) Since every time a content is requested for the first time, it has to be

fetched from the back-end server at cost Cb, we have that the total

fetching cost paid by implementing the LRU-R policy is CfZ(T (n)) +

(Cb − Cf)U(T (n)), which matches the lower bound on the cost of the

optimal offline policy (which knows the entire sample path in advance).

Lemma 42. Recall the definition of Xj(t) as in Definition 1. Under Assumption

6.3.1, with probability greater than 1− e−(logn)2 ,

(i) Xj(t) ≤ λj +
√
λj log n for 1 ≤ j ≤ n1/β

(log n)6/β
,

256

(ii) Xj(t) ≤ (log n)7 for
n1/β

(log n)6/β
< j ≤ n.

Proof. Under Assumption 6.3.1, λj = λ̄n
j−β

z(β)
, where z(β) =

∑n
i=1 i

−β, for

β > 2. Note that ∫ ∞
1

x−βdx ≤ z(β) ≤ 1 +

∫ ∞
1

x−βdx,

therefore,

λ̄
1

β − 1
nj−β ≤ λj ≤ λ̄

β

β − 1
nj−β; 1 ≤ j ≤ n.

Consider an M/M/∞ queue where the arrival process is Poisson with

rate λj and the service times are iid Exp(1). Then Xj(t) is exactly the number

of busy servers in the M/M/∞ queue at time t, which is well known to be

a Poisson random variable with mean λj(1 − e−t) (see e.g. page 75 of [103]).

Hence, for all t ≥ 0, Xj(t) ≤st Poisson(λj), where ≤st denotes stochastic

dominance.

For j ≤ n1/β

(log n)6/β
, λj = Ω((log n)6). Therefore, using the Chernoff

Bound for Poisson random variables, we have that,

P (Xj(t) ≥ λj +
√
λj log n)

≤ e
√
λj logn

(
λj +

√
λj log n

λj

)−(λj+
√
λj logn)

= e−(logn)2 ,

as n→∞.

257

For j >
n1/β

(log n)6/β
, λj = O((log n)6). Therefore, using the Chernoff

Bound, we have that,

P (Xj(t) ≥ (log n)7)

≤ e(logn)7−(logn)6
(

(log n)7

(log n)6

)−(logn)7

≤
(

log n

e

)−(logn)7

≤ e−(logn)2 ,

for n large enough.

Lemma 43. For a fixed ε ∈ (0, β − 2), let Yε(T (n)) be the number of requests

for contents j ≥ n
1+ε
β−1 in the interval [0, T (n)]. Then, under Assumption 6.3.1,

for T = O(n), Yε(T (n)) = O(n1−ε) with probability ≥ 1− e−(logn)2 .

Proof. Let n2 = n
1+ε
β−1 , and λ(n2) be the cumulative request arrival rate for the

contents j ∈ [n2, n], then

λ(n2) =
∑

n2≤j≤n

λj = O(nn2
1−β) = O(n−ε).

Therefore, Yε(T (n)) ≤st Poisson(λ(n2)T (n)). By the Chernoff bound, for T =

O(n), Yε(T (n)) = O(n1−ε) with probability ≥ 1− e−(logn)2 .

Lemma 44. Let Zj(T (n)) = maxt∈[0,T (n)] Xj(t) and Z(T (n)) =
∑n

j=1 Zj(T (n)).

Under Assumption 6.3.1 for δ ∈ (0, 1−λ̄), Z(T (n)) ≤ (1−δ)n with probability

258

≥ 1− 1
n
.

Proof. For compactness, define

n1 :=
n1/β

(log n)6/β
; n2 := n

1+ε
β−1 for some ε ∈ (0, β − 2).

Under Assumption 6.3.1, the total request arrival process is Poisson(λ̄n). Con-

sider the first 2λ̄T (n)n requests after t = 0. By the union bound and using

Lemma 42, with probability ≥ 1 − 2λ̄T (n)ne−(logn)2 , each incoming request

sees at most λi +
√
λi log n servers serving requests for each content i ∈ [1, n1]

and (log n)7 servers serving requests for each content i ∈ (n1, n2).

Let E1 be the event that it takes at least T (n) units of time for the first

2nT (n) content arrivals. By the Chernoff Bound, P (Ec
1) ≤ e−0.386nT (n).

Therefore, with probability at least 1− e−0.386nT (n)− 2λ̄T (n)ne−(logn)2 ,

the following inequalities hold

Zj(T (n)) ≤ λj +
√
λj log n; for all j ∈ [1, n1], (E.1)

Zj(T (n)) ≤ (log n)7; for all j ∈ (n1, n2). (E.2)

In addition, from Lemma 43, with probability ≥ 1− e−(logn)2 ,

n∑
j=n2

Zj(T (n)) = O(n1−ε). (E.3)

Using (E.1), (E.2) and (E.3), it follows that with probability greater than

259

1− e−0.386nT (n) − 2λ̄T (n)ne−(logn)2 − e−(logn)2 ,

Z(T (n)) ≤
n1∑
i=1

(λi +
√
λi log n) +

n2∑
i=n1+1

(log n)7

+O(n1−ε)

= λ̄n+ o(n) ≤ (1− δ)n,

for any δ ∈ (0, 1− λ̄), by choosing n large enough,

Proof of Theorem 24. Let E2 be the event that Z(T (n)) ≤ (1 − δ)n for δ ∈

(0, 1− λ̄). By Lemma 44, P (E2) ≥ 1− 1
n

for n large enough. The rest of this

proof is conditioned on E2. Since we start from an empty system (no content

on front-end servers), conditioned on E2:

- No requests are forwarded to the back-end server since there are always

at least δn idle servers in the system.

- The LRU-R policy does not replace the content placed on a non-empty

front-end server in the interval (0,T (n)].

The second point follows because the LRU-R policy replaces the content stored

on the front-end servers only if when a request arrives, there is no idle server

which can serve the request. At this instant, the LRU-R policy replaces the

least recently requested content on idle servers with the content being re-

quested. Let Rj(s) be the number of front-end servers serving requests for

the content j at time s, Wj(t) = maxs∈[0,t] Rj(s), and W (t) =
∑n

j=1Wj(t).

Since we start with an empty system at t = 0, W (t) ≤ Z(T (n)) ≤ (1 − δ)n,

260

i.e., at each time t ∈ [0, T (n)], there are at least δn servers with no content

on them. It is then sufficient to prove that CLRU−R(T (n)) = CfW (T (n)) +

(Cb−Cf)U(T (n)) since we already know from Theorem 23 that COPT(T (n)) ≥

CfZ(T (n))+(Cb−Cf)U(T (n)). The proof is based on using the two properties

above and induction on request arrival instances.

First note that the system starts at t = 0 with W (0) = U(0) = 0.

Let t1 be the instant of the first request arrival. Obviously, CLRU-R(t−1) =

CfW (t−1) + (Cb −Cf)U(t−1) = 0. To serve the first request, the LRU-R policy

will fetch the requested content from the back-end server and replicate it on a

front-end server. Therefore, CLRU-R(t+1) = Cb = CfW (t+1) + (Cb − Cf)U(t+1).

Next, let CLRU-R(t−r−1) = CfW (t−r−1) + (Cb −Cf)U(t−r−1) and tr be the instant

of arrival of the rth request. Let the rth request be for content j. There are

two possible cases:

Case 1 : Wj(t
−
r) = Wj(t

+
r).

In this case, there are currently Wj(t
−
r) servers with content j replicated on

them and since Wj(t
−
r) = Wj(t

+
r), at least one of these servers is idle at t−r and

therefore can server the rth request. Therefore, CLRU-R(t+r) = CLRU-R(t−r) =

CfW (t−r) + (Cb − Cf)U(t−r) = CfW (t+r) + (Cb − Cf)U(t+r).

Case 2 : Wj(t
+
r) = Wj(t

−
r) + 1.

This implies that there are Wj(t
−
r) requests for content j currently being served

by the front-end servers (excluding the rth request). To serve the rth request,

261

content j needs to be placed on another front-end server.

If this is the first request for Cj, U(t+r) = U(t−r) + 1 and the con-

tent needs to be fetched from the back-end server, therefore, CLRU-R(t+r) =

CLRU-R(t−r) +Cb = Cf (W (t−r) + 1) + (Cb−Cf)U(t−r + 1) = Cf (W (t+r)) + (Cb−

Cf)U(t+r).

If this is not the first request for Cj, U(t+r) = U(t−r) and the content will

be available on a front-end server. Therefore, CLRU-R(t+r) = CLRU-R(t−r)+Cf =

Cf (W (t−r) + 1) + (Cb − Cf)U(t−r) = Cf (W (t+r)) + (Cb − Cf)U(t+r).

E.3 Proof of Theorem 25

Proof. (Proof of Theorem 25) We first show that

E [CLearning(T (n))] ≥ min{Cmn,Γ1(T (n))},

for the choice of Γ1(T (n)) as in the statement of Theorem 25.

Case 1: Phase 1 lasts for n or more arrivals.

Since we start with an empty system, no content is stored on the front-end

servers in Phase 1. Therefore, the first n requests are served using the back-end

server, CLearning(T (n)) ≥ Cmn.

Case 2: Phase 1 lasts for nγ arrivals for some γ < 1.

Let H1 be the event that in [0, T (n)], there are no arrivals for content types

k, k+1, · · · , n, for some k = O((nT (n))
γ
β), 0 < γ < 1. By Lemma 1 of Chapter

5, P (H1) ≥ 1− o(1/n).

262

Recall the event E2 defined in the proof of Theorem 24. Conditioned

on E2, the total number of fetches made by the optimal policy is at most n

and no requests are sent to the back-end server. Using this property, we have

that,

COPT(T (n)) = CfZ(T (n)) + (Cb − Cf)U(T (n)), (E.4)

for Z(T (n)) and U(T (n)) defined in Definition 1.

The rest of the proof is conditioned on H2 = H1 ∩E2. Let the number

of requests forwarded to the back-end server by the learning based policy

in [0, T (n)] be D(T (n)). By the proof of Theorem 23, the sum of the total

number of content fetches and the number of requests forwarded to the back-

end server in order to serve all requests which arrive in [0, T (n)] is at least

Z(T (n)). Since each content fetch costs at least Cf units and each request

served by the back-end server costs Cm units, we have that,

CLearning(T (n)) ≥ CfZ(T (n)) + (Cm − Cf)D(T (n)). (E.5)

From Equations E.4 and E.5, we have that,

E [CLearning(T (n))|H2] ≥ E [COPT(T (n))|H2]

+(Cm − Cf)E [D(T (n))|H2]

−(Cb − Cf)E [U(T (n))|H2] .

For the learning-based static policy, let D1 be the number of requests sent to

the back-end server in Phase 1 and D2 be the number of requests sent to the

263

back-end server in Phase 2. Since we start with an empty system, no content

is stored on the front-end servers in Phase 1. Therefore, E [D1|H2] = nγ. By

Lemma 4 of Chapter 5, E [D2|H2] ≥ T (n)n1−γ+ γ
β . Therefore, minimizing over

γ, E [D(T (n))|H2] = Ω(nT (n))
1

2−1/β .

Recall that H1 is the event that in [0, T (n)], there are no arrivals

for at least n − O((nT (n))
γ
β) content types. Therefore, E [U(T (n))|H2] ≤

O((nT (n))
γ
β), and

E [CLearning(T (n))|H2] ≥ E [COPT(T (n))|H2]

+(Cm − Cf)Ω(nT (n))
1

2−1/β ,

for β > 1 and γ < 1. Using the fact that H2 is a high probability event, as

n→∞, and CLearning(T (n)) ≥ COPT(T (n)) by definition, it then follows that,

E [CLearning(T (n))] ≥ E [COPT(T (n))]

+(Cm − Cf)Ω(nT (n))
1

2−1/β .

Next we show that E [CLearning(T (n))] ≥ Γ2(T (n)), where Γ2(T (n)) =

CmΩ(nT (n))
1

2−1/β . This is immediate because we already showed above that

for any learning-based static storage policy,

E[D(T (n))] = Ω(nT (n))
1

2−1/β ,

as n→∞. Since D(T (n)) requests are served by the back-end server at cost

Cm each, we have that,

E [CLearning(T (n))] ≥ CmΩ(nT (n))
1

2−1/β .

264

E.4 Proof of Theorem 26

Let C(k)(t) be the set of active contents of the top k :=
(
n log n

) ε
β−1

most popular classes at time t, i.e., j ∈ C(k)(t) means that the content j is

active at time t and it belongs to a class i, 1 ≤ i ≤ k.

Definition 2 (Block). We divide time into a sequence of blocks B1, B2, · · · .

A block B` is defined as an interval of time in which C(k)(t) remains invariant

(C(k)(t) = C(k)(B`) for all t ∈ B`), i.e., the block B` ends either when the life-

span of a content j ∈ C(k)(B`) elapses or a new content of class i, 1 ≤ i ≤ k

arrives, which marks the beginning of the (`+ 1)-th block.

We first provide an outline of the proof. We prove that under the

LRU-R replication policy, the following properties hold w.h.p.

(i) In each block B`, every active content in C(k)(B`) is requested at least

once during B`.

(ii) At each time instant s, the number of idle servers storing copies of active

contents in C(k)(s) is o(n).

(iii) At each time instant s, the number of idle servers storing copies of con-

tents (active or otherwise) of class i such that i > k is o(n).

(iv) At each request arrival instant, there are Θ(n) idle servers.

(v) The total number of requests for all contents in classes ≥ k over the

interval of length nε, where ε < α(β − 1), is o(n).

265

(vi) At each request arrival instant, the number of front-end servers storing

a particular content j is o(n).

It follows that w.h.p (i)-(vi) hold simultaneously for all the blocks if ε <

β−1
2β+1

(3α−2 + 2c). Next we show that conditioned on (i)-(vi), once a content j

in one of the classes 1 ≤ i ≤ k arrives, no copy of that content on the front-end

server is replaced in its life-span.

Lemma 45. Consider a block B and let F1 be the event that each active content

in C(k)(B) is requested at least once during B. Then

P (F1) ≥ 1− π2

γ12λ̄

kβ+1

nc+2α−1
(log n)2 − 2n− logn → 1.

Proof. Let F2 be the event that the duration of a block is at least (logn)2
γ2
γ1
λ̄ 6
π2

nα

kβ

. By

Assumption 6.2.1, the cumulative content arrival of top k classes to C(k)(B) is

a Poisson process with rate (γ2
k
nα
n1−c). Since the life-time of each content is

Exp(γ1n
−c), we have that |C(k)(B)| ≤st Poisson(γ2

γ1
k
nα
n) (similar to M/M/∞

arguments in the proof of Lemma 42). Therefore, by the Chernoff bound,

with probability ≥ n− logn, the time to first end of the life-span of a content in

C(k)(B) is ≤st Exp (2γ2
k
nα
n1−c). Since the block ends at the arrival of a new

content to C(k)(B) or the end of the life-span of any content in C(k)(B),

Length of block B ≤st Exp

(
3γ2

k

nα
n1−c

)
.

By the Chernoff bound, we have that,

P (F2) = exp

(
− 3γ2

k

nα
n1−c (log n)2

γ2
γ1
λ̄ 6
π2

nα

kβ

)
,

= exp

(
− 3γ1

π2

6λ̄
kβ+1n1−c−2α(log n)2

)
.

266

The rest of this proof is conditioned on the event F2.

Every content j ∈ C(k)(B) has a request arrival rate of at least γ2
γ1
λ̄ 6
π2

nα

kβ
.

Let F3 be the event that j is requested at least once in this interval. Therefore,

P (F c
3) ≤ exp

(
−γ2

γ1

λ̄
6

π2

nα

kβ
(log n)2

γ2
γ1
λ̄ 6
π2

nα

kβ

)
= n− logn.

On the other hand, by the Chernoff bound, it follows that |C(k)(B)| (the num-

ber of contents in C(k)(B)) is O(n) with probability ≥ 1− n− logn. Therefore,

by the union bound, we have that, for n large enough,

P (F c
1) ≤ γ1π

2

2λ̄
kβ+1n1−c−2α(log n)2 + 3n− logn.

Lemma 46. Starting from an empty system, consider the first p(n) requests,

where p(n) is a polynomial function of n and ti is the arrival time of the i-th

request. Let F4 be the event that at any arrival instance s ∈
{
t1, t1, · · · , tp(n)

}
,

the number of idle servers storing copies of active contents in C(k)(s) is o(n),

where k = (n log n)
ε

β−1 . Then, P (F c
4) ≤ f(n)e−(logn)2 , where f(n) = (p(n) +

1)(γ2/γ1n+
√
γ2/γ1n1+α log n).

Proof. Consider a system consisting of infinite front-end servers. For such a

system, once a content is placed on a server, it is never replaced as there

are always servers which have nothing stored on them. Consider any time t,

t < tp(n). Consider a content j of class i which has arrived to the catalog

at time τ , τ ≤ t, and is still active at time t. Let S
(i)
j (t) be the number of

267

requests for this content that have arrived before time t and have not finished

their services yet. Under Assumption 6.2.2, S
(i)
j (t) ∼ Poisson(λi(1 − e(t−τ))).

Under the LRU-R policy, a new copy of a content is replicated on a server only

when an incoming request cannot be served by any idle front-end servers. Let

D
(i)
j (t) be the number of front-end servers storing a copy of content j of class

i at time t. At time t, under the LRU-R policy,

D
(i)
j (t) = max

s∈[τ,t]
S

(i)
j (s).

Let I
(i)
j (t) denote the number of idle servers storing content j of class i at time

t. Thus I
(i)
j (t) = D

(i)
j (t)− S(i)

j (t).

Case 1: i ≤ nα/β

(log n)6/β
.

In this case, λi = Ω((log n)6). Therefore, using the Chernoff Bound for Poisson

random variables (similar to the proof of Lemma 42) and the union bound over

all p(n) arrivals,

P(D
(i)
j (t) ≥ λi(1− e−(t−τ)) +

√
λi(1− e−(t−τ)) log n)

= p(n)e−(logn)2 ,

P(S
(i)
j (t) ≤ λi(1− e−(t−τ))−

√
λi(1− e−(t−τ)) log n)

= e−(logn)2 ,

as n→∞.

Therefore, P
(
I

(i)
j (t) ≤ 2

√
λi(1− e−(t−τ)) log n

)
≥ 1− (p(n) + 1)e−(logn)2 .

Case 2: i >
nα/β

(log n)6/β
.

In this case, λi = O((log n)6). Therefore, using the Chernoff Bound for Poisson

268

random variables (similar to the proof of Lemma 42) and the union bound over

all p(n) arrivals,

P(D
(i)
j (t) ≥ (log n)7)

≤ p(n)e(logn)7−(logn)6
(

(log n)7

(log n)6

)−(logn)7

≤ p(n)

(
log n

e

)−(logn)7

≤ p(n)e−(logn)2 ,

as n→∞.

Therefore, P
(
I

(i)
j (t) ≤ log7 n

)
≥ 1− p(n)e−(logn)2 .

Let Qi(t) be the number of active contents in class i at time t. Then

Qi(t) ≤st Poisson

(
γ2

γ1

n1−α
)

, again by similar M/M/∞ arguments as in proof

of Lemma 1. Therefore,

P
(
Qi(t) ≤ γ2/γ1n

1−α +
√
γ2/γ1n1−α log n

)
≥

1− e−(logn)2 . (E.6)

Finally, taking the union bound over all contents, we have that, with proba-

bility ≥ 1− (p(n) + 1)(γ2/γ1n+
√
γ2/γ1n1+α log n)e−(logn)2 , the total number

of idle servers storing copies of current active contents of classes 1 ≤ i ≤ k,

k = (n log n)
ε

β−1 , is

k∑
i=1

Qi(s)∑
j=1

I
(i)
j (s) ≤ (γ2/γ1n

1−α +
√
γ2/γ1n1−α log n)×

(nα/β

logn6/β∑
i=1

√
γ2/γ1nα

iβ
log n+

n
ε

β−1∑
i= nα/β

logn6/β

(log n)7

)
= o(n),

269

for all s ∈
{
t1, t1, · · · , tp(n)

}
.

It can be shown via a coupling argument that for the LRU-R policy, for

each content and at each time, the number of idle front-end servers storing the

content in the system consisting of n front-end servers is ≤st the number of idle

front-end servers storing the content in the system consisting of infinite front-

end servers. The key idea behind the coupling argument is that no content

is ever replaced in the system consisting of infinite front-end server, however,

in a system consisting of n front-end servers, content on idle servers may be

replaced if there are no idle servers which have no content on them. Therefore,

if we start from empty systems, i.e., no content on any front-end servers, at

each step in the coupled sample path, the system with infinite servers has

more idle servers storing each content than in the system with n servers. This

completes the proof.

Proof. (of Theorem 26)

1. We divide the time-interval of length T (n) = nε into blocks (see Def-

inition 2). Let G1 be the event that the number of blocks in T (n) is

6γ2
knε

nα
n1−c = O(knε−α+1−c). From the proof of Lemma 45, we have that

the number of blocks in an interval of length nε ≤st Poisson (3γ2
knε

nα
n1−c),

by the Chernoff bound, we have that,

P (Gc
1) ≤ e3γ2

knε

nα
n1−c
(

6γ2
knε

nα
n1−c

3γ2
knε

nα
n1−c

)−6γ2
knε

nα
n1−c

≤ e

4

3γ2
knε

nα
n1−c

≤ e−(logn)2 ,

270

for n large enough.

2. Using (E.6), and union bound over all classes, the total request ar-

rival rate at any time t is less than λ̄(n +
√
γ2/γ1n1+α log n). With

probability ≥ 1 − e−(logn)2 the number of content arrivals in an inter-

val of length nε is a polynomial in n. Let this polynomial be p1(n).

Hence, taking the union bound over all the p1(n) content arrivals, we

have that, the total arrival rate in this interval of length nε is ≤ λ̄(n +√
γ2/γ1n1+α log n) with probability ≥ 1 − p1(n)e−(logn)2 . Conditioned

on this, the request arrival process ≤st the Poisson process with rate

λ̄(n +
√
γ2/γ1n1+α log n). Since the service time of each request is a

Exp(1), the number of concurrent requests being served at any time is

≤st Poisson(λ̄(n+
√
γ2/γ1n1+α log n)) (similar to the proof of Lemma 42).

Since there are n front-end servers and the number of busy servers at

any time ≤st Poisson(λ̄(n +
√
γ2/γ1n1+α log n)) and λ̄ < 1, w.h.p. at

each request arrival instant, there are Θ(n) idle front-end servers. More

specifically, by the Chernoff bound for Poisson random variables, at any

time-instant,

P (Θ(n) idle servers) ≥ 1− e−(logn)2 .

Let G2 be the event that for the first p(n) = poly(n) requests, at least

Θ(n) servers are free on each request arrival. By the union bound over

the first p(n) request arrivals, we have that,

P (Gc
2) ≤ (p1(n) + p(n))e−(logn)2 .

271

3. Let G3 be the event that the total request arrivals for all contents in

content classes ≥ k for k = (n log n)
ε

β−1 in the interval of length nε

where ε < α(β − 1) is o(n). Under Assumptions 6.2.1 and 6.2.2, by the

Chernoff bound, we have that,

P (Gc
3) ≤ e−(logn)2 .

4. Let G4 be the event that the total request arrivals in the interval of

length nε is p(n) = poly(n). Under Assumptions 6.2.1 and 6.2.2, using

arguments similar to point (2) above, by the Chernoff bound, we have

that,

P (Gc
4) ≤ e−(logn)2 ,

for n large enough.

5. Let G5 be the event that F1 happens for the first L = O(knε−α+1−c)

blocks.

6. Let G6 be the event that D
(i)
j as defined in Lemma 46 is o(n) for a content

j in class i for the first p(n) requests. From the proof of Lemma 46, we

have that,

P (D
(i)
j (t) ≥ λi(1− e−(t−τ))

+
√
λi(1− e−(t−τ)) log n)

= p(n)e−(logn)2 ,

272

where p(n) is a polynomial function of n. Since λi = O(nα) for α < 1, it

follows that,

P (Gc
6) ≤ p(n)e−(logn)2 .

Let G = G1 ∩G2 ∩G3 ∩G4 ∩G5 ∩G6 ∩ F4. Using the union bound, we have

that,

P (Gc) ≤ (2p(n) + p1(n) + f(n) + 5 + 3L)e−(logn)2

+L
γ1π

2

2λ̄
kβ+1n1−c−2α(log n)2,

where f(n) is a polynomial function of n as defined in Lemma 46. For ε <

β−1
2β+1

(3α − 2 + 2c) and k =
(
nε log n

) 1
β−1 , P (G) ≥ 1 − o(1). The rest of this

proof is conditioned on G.

Next we show that conditioned on G, once a content j in one of the

classes 1 ≤ i ≤ k arrives, no copy of that content on the front-end server is

replaced in its life-span. Let the current block be B`. We first introduce some

notation:

- ξ1(B`) = C(k)(B`−1) \ C(k)(B`): The content in classes ≤ k whose life-

span elapsed at the beginning of block `. Note that ξ1(B`) = ∅ if block

` started due to the arrival of a new content in class ≤ k.

- ξ2(B`) = C(k)(B`)\C(k)(B`−1): The arrival to classes ≤ k at the beginning

of block `. Note that ξ2(B`) = ∅ if block ` started due to the end of the

life-span of a content in class ≤ k that was active in B`−1.

273

- Uk(t): Set of all contents (active or otherwise) in classes > k.

- Ij(t): Number of idle servers storing content j at time t.

Conditioned on (i)-(vi), at any time t ∈ B`,∑
j∈C(k)(B`−1)

Ij(t) +
∑
j∈Uk

Ij(t) + Iξ1(B`)(t) + Iξ2(B`)(t) = o(n)

and there are Θ(n) idle servers. Therefore, for n large enough, at any t ∈ B`,

there are idle servers storing either nothing, or contents other than contents in

C(k)(B`−1)∪Uk(t)∪ξ1(B`)∪ξ2(B`). Conditioned on (i)-(v) (specifically (i)), all

contents in C(k)(B`−1) were requested at least once in the previous block. Given

this, contents in C(k)(B`−1) are more recently requested than then contents in

∪r≤`−1ξ1(Br) (i.e. contents of the top k classes whose life-span elapsed before

the beginning of the (` − 1)-th block). Therefore, if a new copy of a content

needs to be placed on an idle server in this block, the LRU-R policy will pick a

server which does not store a copy of a content in C(k)(B`−1). Therefore, once

a content in C(k)(B`) arrives, no copy of that content on a front-end server is

replaced during its life-span.

Given this, since the LRU-R policy creates a new copy of a content only

if all the front-end servers storing that content are busy, at time t, the LRU-R

policy would have replicated content j in class i ≤ k on the minimum number

of copies required to serve all the requests for content j which arrive before

time t. Therefore, only requests for contents in classes > k can potentially

be served at a higher cost (≤ Cm) by the LRU-R policy as compared to the

274

optimal storage policy. Conditioned on (i)-(vi) (specifically (v)), the total

number of such requests in T (n) = nε is o(n). Therefore, we have that,

CLRU-R(T (n)) = COPT(T (n)) + Cmo(n). Since COPT(T (n)) = Ω(n) w.h.p. if

T (n) = Ω(1), the result follows.

275

Bibliography

[1]

[2] 3gpp tr 25.913. requirements for evolved utra (e-utra) and evolved utran

(e-utran). March, 2006.

[3] G. Aggarwal, G. Goel, C. Karande, and A. Mehta. Online vertex-

weighted bipartite matching and single-bid budgeted allocations. CoRR,

2010.

[4] M. Ahmed, S. Spagna, F. Huici, and S. Niccolini. A peek into the

future: predicting the evolution of popularity in user generated content.

In Proceedings of the sixth ACM international conference on Web search

and data mining, pages 607–616. ACM, 2013.

[5] M. Ahmed, S. Traverso, M. Garetto, P. Giaccone, E. Leonardi, and

S. Niccolini. Temporal locality in today’s content caching: why it mat-

ters and how to model it. ACM SIGCOMM Computer Communication

Review, 43(5):5–12, October 2013.

[6] M. Ahmed, S. Traverso, P. Giaccone, E. Leonardi, and S. Niccolini.

Analyzing the performance of lru caches under non-stationary traffic

patterns. arXiv preprint arXiv:1301.4909, 2013.

276

[7] J. Andrews. Seven ways that hetnets are a cellular paradigm shift.

IEEE Communications Magazine, 51(3), 2013.

[8] J. Andrews, H. Claussen, M. Dohler, S. Rangan, and M. Reed. Fem-

tocells: Past, present, and future. Selected Areas in Communications,

IEEE Journal on, 30(3):497–508, 2012.

[9] D. Applegate, A. Archer, V. Gopalakrishnan, S. Lee, and K. K. Ramakr-

ishnan. Optimal content placement for a large-scale VoD system. In

Proceedings of ACM CoNEXT, New York, NY, USA, 2010.

[10] P. Baptiste, P. Brucker, S. Knust, and V. Timkovsky. Ten notes on

equal-processing-time scheduling. 4OR: A Quarterly Journal of Opera-

tions Research, 2:111–127, 2004.

[11] A. Barbieri, P. Gaal, S. Geirhofer, T. Ji, D. Malladi, Y. Wei, and F. Xue.

Coordinated downlink multi-point communications in heterogeneous cel-

lular networks. In Information Theory and Applications Workshop

(ITA), 2012, pages 7–16. IEEE, 2012.

[12] P. Billingsley. Probability and Measure. Wiley,, 1995.

[13] B. Birnbaum and C. Mathieu. On-line bipartite matching made simple.

SIGACT News, 39(1):80–87, March 2008.

[14] S. Bodas, S. Shakkottai, L. Ying, and R. Srikant. Scheduling in multi-

channel wireless netowrks: Rate function optimality in the small buffer

regime. In Proceedings of SIGMETRICS/performance Conf., 2009.

277

[15] S. Bodas, S. Shakkottai, L. Ying, and R. Srikant. Low-complexity

scheduling algorithms for multi-channel downlink wireless networks. In

Proceedings of IEEE Infocom, 2010.

[16] S. Bodas, S. Shakkottai, L. Ying, and R. Srikant. Scheduling for small

delay in multi-rate multi-channel wireless networks. In Proceedings of

IEEE Infocom, 2011.

[17] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching

and Zipf-like distributions: Evidence and implications. In IEEE INFO-

COM’99, pages 126–134, 1999.

[18] L. Bui, R. Srikant, and A. Stolyar. A novel architecture for reduction of

delay and queueing structure complexity in the back-pressure algorithm.

IEEE/ACM Trans. Network., 19(6):1597–1609, 2011.

[19] S. Chen, L. Tong, and T. He. Optimal deadline scheduling with com-

mitment. In Communication, Control, and Computing (Allerton), 2011

49th Annual Allerton Conference on, pages 111 –118, Sept. 2011.

[20] W. Cheung, T. Quek, and M. Kountouris. Throughput optimization,

spectrum allocation, and access control in two-tier femtocell networks.

Selected Areas in Communications, IEEE Journal on, 30(3):561–574,

2012.

[21] M. Chrobak, W. Jawor, J. Sgall, and T. Tich. Online scheduling of

equal-length jobs: Randomization and restarts help. In Josep Daz,

278

Juhani Karhumki, Arto Lepist, and Donald Sannella, editors, Automata,

Languages and Programming, volume 3142 of Lecture Notes in Computer

Science, pages 145–156. Springer Berlin / Heidelberg, 2004.

[22] Cisco Whitepaper: http://www.cisco.com/c/en/us/solutions/collateral/service-

provider/ip-ngn-ip-next-generation-network/white paper c11-481360.html.

[23] D. Ciullo, V. Martina, M. Garetto, E. Leonardi, and G.L. Torrisi. Stochas-

tic analysis of self-sustainability in peer-assisted VoD systems. In IEEE

INFOCOM, pages 1539–1547, 2012.

[24] E. Coffman and P. Denning. Operating Systems Theory. Prentice-Hall,

1973.

[25] T. Cover, M. Thomas, and J. Thomas. Elements of information theory.

John Wiley & Sons, 2012.

[26] J. Ding and G. Zhang. Online scheduling with hard deadlines on parallel

machines. In Siu-Wing Cheng and Chung Poon, editors, Algorithmic

Aspects in Information and Management, volume 4041 of Lecture Notes

in Computer Science, pages 32–42. Springer Berlin / Heidelberg, 2006.

[27] A. Dua and N. Bambos. Downlink wireless packet scheduling with

deadlines. Mobile Computing, IEEE Transactions on, 6(12):1410 –1425,

dec. 2007.

[28] T. Ebenlendr and J. Sgall. A lower bound for scheduling of unit jobs

with immediate decision on parallel machines. In Evripidis Bampis and

279

Martin Skutella, editors, Approximation and Online Algorithms, volume

5426 of Lecture Notes in Computer Science, pages 43–52. Springer Berlin

/ Heidelberg, 2009.

[29] A. Eryilmaz, R. Srikant, and J. Perkins. Stable scheduling policies for

fading wireless channels. IEEE/ACM Trans. Network., 13:411–424,

April 2005.

[30] W. A. Gale. Good-turing smoothing without tears. Journal of Quanti-

tative Linguistics, 2:217–237, 1995.

[31] L. Georgiadis, M. J. Neely, and L. Tassiulas. Resource allocation and

cross-layer control in wireless networks. Foundations and Trends in

Networking, 1(1), 2006.

[32] L. Georgiadis, M.J. Neely, and L. Tassiulas. Resource allocation and

cross-layer control in wireless networks. Foundations and Trends in

Networking, 1(1):1–144, 2006.

[33] D. Gesbert, S. Hanly, H. Huang, S. Shamai, O. Simeone, and W. Yu.

Multi-cell mimo cooperative networks: A new look at interference. Se-

lected Areas in Communications, IEEE Journal on, 28(9):1380–1408,

2010.

[34] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. YouTube traffic characteri-

zation: A view from the edge. In 7th ACM SIGCOMM Conference on

Internet Measurement, pages 15–28, 2007.

280

[35] G. Goel and A. Mehta. Online budgeted matching in random input

models with applications to adwords. In Proceedings of the nineteenth

annual ACM-SIAM symposium on Discrete algorithms, SODA ’08, pages

982–991, Philadelphia, PA, USA, 2008.

[36] S.A. Goldman, J. Parwatikar, and S. Suri. Online scheduling with hard

deadlines. Journal of Algorithms, 34(2):370 – 389, 2000.

[37] M.H. Goldwasser and M. Pedigo. Online nonpreemptive scheduling of

equal-length jobs on two identical machines. ACM Trans. Algorithms,

5(1):2:1–2:18, December 2008.

[38] I. J. Good. The population frequencies of species and the estimation of

population parameters. Biometrika, 40(3-4):237–264, 1953.

[39] A. Gopalan, C. Caramanis, and S. Shakkottai. On the value of co-

ordination and delayed queue information in multicellular scheduling.

Automatic Control, IEEE Transactions on, 58(6):1443–1456, 2013.

[40] P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE

Transactions on Information Theory, 46(2), Mar. 2000.

[41] http://www.ericsson.com/news/120223 it comes back to backhaul 244159020 c.

[42] I-H. Hou and P.R. Kumar. Queueing systems with hard delay con-

straints: a framework for real-time communication over unreliable wire-

less channels. Queueing Syst. Theory Appl., 71(1-2):151–177, June

2012.

281

[43] A. Iamnitchi, M. Ripeanu, and I. Foster. Small-world file-sharing com-

munities. In IEEE INFOCOM, March 2004.

[44] R. Irmer, H. Droste, P. Marsch, M. Grieger, G. Fettweis, S. Brueck,

H. Mayer, L. Thiele, and V. Jungnickel. Coordinated multipoint: Con-

cepts, performance, and field trial results. Communications Magazine,

IEEE, 49(2):102–111, 2011.

[45] J.J. Jaramillo, R. Srikant, and L. Ying. Scheduling for optimal rate

allocation in ad hoc networks with heterogeneous delay constraints. Se-

lected Areas in Communications, IEEE Journal on, 29(5):979 –987, may

2011.

[46] B. Ji, G. R. Gupta, X. Lin, and N. B. Shroff. Performance of low-

complexity greedy scheduling policies in multi-channel wireless networks:

Optimal throughput and near-optimal delay. In Proceedings of IEEE

INFOCOM, 2013.

[47] B. Ji, C. Joo, and N. Shroff. Throughput-optimal scheduling in multi-

hop wireless networks without per-flow information. In Proceedings of

WiOPT, 2011.

[48] Bo Ji, Gagan R Gupta, Manu Sharma, Xiaojun Lin, and Ness B Shroff.

Achieving optimal throughput and near-optimal asymptotic delay per-

formance in multi-channel wireless networks with low complexity: A

practical greedy scheduling policy. arXiv preprint arXiv:1212.1638,

2012.

282

[49] D. Johnson and D. Maltz. Dynamic source routing in ad hoc wireless

networks. Kluwer International Series in Engineering and Computer

Science, pages 153–179, 1996.

[50] B. Kalyanasundaram and K.R. Pruhs. An optimal deterministic algo-

rithm for online b-matching. Theoretical Computer Science, 233:2000,

2000.

[51] J. Kangasharju, K.W. Ross, and D.A. Turner. Optimizing file availabil-

ity in peer-to-peer content distribution. In INFOCOM, 2007.

[52] J. Kangasharjua, J. Roberts, and K.W. Ross. Object replication strate-

gies in content distribution networks. Computer Communications, 25:376–

383, 2002.

[53] R.M. Karp, U.V. Vazirani, and V.V. Vazirani. An optimal algorithm for

on-line bipartite matching. In Proceedings of the twenty-second annual

ACM symposium on Theory of Computing, Baltimore, Maryland, May

1990.

[54] S. Katti, S. Gollakota, and D. Katabi. Embracing wireless interfer-

ence: Analog network coding. SIGCOMM Comput. Commun. Rev.,

37(4):397–408, August 2007.

[55] F . Khan, Z . Pi, and S. Rajagopal. Millimeter-wave mobile broadband

with large scale spatial processing for 5g mobile communication. In

283

Communication, Control, and Computing (Allerton), 2012 50th Annual

Allerton Conference on, pages 1517–1523. IEEE, 2012.

[56] T.G. Kurtz. Solutions of ordinary differential equations as limits of pure

jump markov processes. Journal of Applied Probability, 7(1):pp. 49–58,

1970.

[57] J. Laneman and G. Wornell. Distributed space-time-coded protocols

for exploiting cooperative diversity in wireless networks. Information

Theory, IEEE Transactions on, 49(10):2415–2425, 2003.

[58] M. Leconte, M. Lelarge, and L. Massoulie. Bipartite graph structures

for efficient balancing of heterogeneous loads. In the 12th ACM SIG-

METRICS Conference, pages 41–52, 2012.

[59] M. Leconte, M. Lelarge, and L. Massoulie. Adaptive replication in

distributed content delivery networks. Preprint, 2013.

[60] Jae-Ha Lee. Online deadline scheduling: multiple machines and ran-

domization. In Proceedings of the fifteenth annual ACM symposium on

Parallel algorithms and architectures, SPAA ’03, pages 19–23, New York,

NY, USA, 2003. ACM.

[61] X. Lin, R. Ganti, P. Fleming, and J. Andrews. Towards understanding

the fundamentals of mobility in cellular networks. 2012.

284

[62] S. Liu, E. Ekici, and L. Ying. Scheduling in multihop wireless networks

without back-pressure. In Annual Conference on Communication, Con-

trol and Computing (Allerton), 2010.

[63] A. Lozano, R. Heath Jr, and J. Andrews. Fundamental limits of coop-

eration. Arxiv: CoRR abs/1204.0011, 2012.

[64] http://www.3gpp.org/lte-advanced.

[65] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication

in unstructured peer-to-peer networks. In 16th international conference

on Supercomputing, 2002.

[66] A.D. McAllester and R.E. Schapire. On the convergence rate of Good-

Turing estimators. In COLT Conference, pages 1 – 6, 2000.

[67] A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani. Adwords and gen-

eralized on-line matching. In Proceedings of FOCS, 2005.

[68] S. Moharir, J. Ghaderi, S. Sanghavi, and S. Shakkottai. Serving content

with unknown demand: the high-dimensional regime. In the 14th ACM

SIGMETRICS Conference, 2014.

[69] S. Moharir and S. Sanghavi. Online load balancing and correlated ran-

domness. In Annual Conference on Communication, Control and Com-

puting (Allerton), 2012.

285

[70] S. Moharir, S. Sanghavi, and S. Shakkottai. Online load balancing under

graph constraints. In Proceedings of the ACM SIGMETRICS/international

conference on Measurement and modeling of computer systems, pages

363–364. ACM, 2013.

[71] S. Moharir and S. Shakkottai. Maxweight vs backpressure: Routing and

scheduling for multi-channel relay networks. In Proceedings of IEEE

Infocom, Turin, Italy, April 2013.

[72] S. Moharir and S. Shakkottai. Maxweight vs backpressure: Routing and

scheduling for multi-channel relay networks. Technical report, 2014.

[73] L. Qingwen nd W. Xin and G.B. Giannakis. A cross-layer scheduling

algorithm with qos support in wireless networks. Vehicular Technology,

IEEE Transactions on, 55(3):839 –847, may 2006.

[74] M. Neely, E. Modiano, and C. Rohrs. Dynamic power allocation and

routing for time-varying wireless networks. IEEE J. Sel. Areas Com-

mun., 23(1):89–103, 2005.

[75] www.netflix.com.

[76] A. Nosratinia, T. Hunter, and A. Hedayat. Cooperative communication

in wireless networks. Communications Magazine, IEEE, 42(10):74–80,

2004.

286

[77] F. Olmos, B. Kauffmann, A. Simonian, and Y. Carlinet. Catalog dy-

namics: Impact of content publishing and perishing on the performance

of a lru cache. arXiv preprint arXiv:1403.5479, 2014.

[78] A. Ozgur, O. Leveque, and D. Tse. Hierarchical cooperation achieves

optimal capacity scaling in ad hoc networks. Information Theory, IEEE

Transactions on, 53(10):3549–3572, 2007.

[79] Z. Pi and F. Khan. An introduction to millimeter-wave mobile broad-

band systems. Communications Magazine, IEEE, 49(6):101–107, 2011.

[80] V. Raghunathan, V. Borkar, M. Cao, and P.R. Kumar. Index policies

for real-time multicast scheduling for wireless broadcast systems. In

INFOCOM 2008. The 27th Conference on Computer Communications.

IEEE, pages 1570 –1578, april 2008.

[81] S. Rajagopal, S. Abu-Surra, Z. Pi, and F. Khan. Antenna array design

for multi-gbps mmwave mobile broadband communication. In Global

Telecommunications Conference (GLOBECOM 2011), 2011 IEEE, pages

1–6. IEEE, 2011.

[82] I. Rhee, M. Shin, S. Hong, K. Lee, S. Kim, and S. Chong. On the

levy-walk nature of human mobility. IEEE/ACM Transactions on Net-

working (TON), 19(3):630–643, 2011.

[83] S. Shakkottai. Effective capacity and qos for wireless scheduling. IEEE

Trans. Automat. Contr., 53(3):749–761, 2008.

287

[84] S. Shakkottai and R. Srikant. Scheduling real-time traffic with deadlines

over a wireless channel. Wireless Networks, 8(1):13–26, January 2002.

[85] M. Sharma and X. Lin. Ofdm downlink scheduling for delay-optimality:

Many-channel many-source asymptotics with general arrival processes.

In Proceedings of ITA, 2011.

[86] LTE Small Cells, http://http://en.wikipedia.org/wiki/Small cell.

[87] A. Stolyar. Large deviations of queues sharing a randomly time-varying

server. Queueing Systems, 59(2):1–35, 2008.

[88] A. Stolyar. Large number of queues in tandem: Scaling properties under

back-pressure algorithm. Queueing Systems, 67(2):111–126, 2011.

[89] B. Tan and L. Massoulie. Optimal content placement for peer-to-peer

video-on-demand systems. IEEE/ACM Trans. Networking, 21:566–579,

2013.

[90] L. Tassiulas and A.Ephermides. Stability properties of constrained

queueing systems and scheduling policies for maximum throughput in

multihop radio networks. IEEE Trans. Automat. Contr., 37(12):1936–

1948, 1992.

[91] L. Tassiulas and A.Ephermides. Dynamic server allocation to parallel

queues with randomly varying connectivity. IEEE Trans. Automat.

Contr., 39:466–478, 1993.

288

[92] S. Traverso, M. Ahmed, M. Garetto, P. Giaccone, E. Leonardi, and

S. Niccolini. Temporal locality in today’s content caching: why it mat-

ters and how to model it. ACM SIGCOMM Computer Communication

Review, 43(5):5–12, 2013.

[93] J.N. Tsitsiklis and K. Xu. Queueing system topologies with limited

flexibility. In SIGMETRICS ’13, 2013.

[94] G. Valiant and P. Valiant. Estimating the unseen: An n/log (n)-sample

estimator for entropy and support size, shown optimal via new clts. In

Proceedings of the 43rd annual ACM Symposium on Theory of Comput-

ing, pages 685–694, 2011.

[95] E. Veloso, V. Almeida, W. Meira, A. Bestavros, and S. Jin. A hierarchi-

cal characterization of a live streaming media workload. In Proceedings

of the 2nd ACM SIGCOMM Workshop on Internet measurment, pages

117–130, 2002.

[96] V. Venkataramanan and X. Lin. Structural properties of ldp for queue-

length based wireless scheduling algorithms. In Annual Conference on

Communication, Control and Computing (Allerton), 2007.

[97] V. Venkatramanan, X. Lin, L. Ying, and S. Shakkottai. On scheduling

for minimizing end-to-end buffer usage over multihop wireless networks.

In Proceedings of IEEE Infocom, 2010.

289

[98] A. Viterbi, A. Viterbi, K. Gilhousen, and E. Zehavi. Soft handoff ex-

tends cdma cell coverage and increases reverse link capacity. Selected

Areas in Communications, IEEE Journal on, 12(8):1281–1288, 1994.

[99] R. B. Wallace and W. Whitt. A staffing algorithm for call centers with

skill-based routing. Manufacturing and Service Operations Manage-

ment, 7:276–294, 2007.

[100] J. Wang. A survey of web caching schemes for the Internet. ACM

SIGCOMM Computer Communication Review, 29:36–46, 1999.

[101] S. Williams, M. Abrams, C.R. Standridge, G. Abdulla, and E.A. Fox.

Removal policies in network caches for world-wide web documents. In

SIGCOMM’96, 1996.

[102] S. Williams, M. Abrams, C.R. Standridge, G. Abdulla, and E.A. Fox.

Caching proxies: limitations and potentials. In the 4th International

WWW Conference, December 1995.

[103] Ronald W. Wolff. Stochastic Modeling and the Theory of Queues. Pren-

tice Hall; 1st edition, 1989.

[104] D. Wong and T. Lim. Soft handoffs in cdma mobile systems. Personal

Communications, IEEE, 4(6):6–17, 1997.

[105] W. Wu and J.C.S. Lui. Exploring the optimal replication strategy in

P2P-VoD systems: Characterization and evaluation. IEEE Transac-

tions on Parallel and Distributed Systems, 23, August 2012.

290

[106] A.C. Yao. Probabilistic computations: Toward a unified measure of

complexity. In Foundations of Computer Science, 1977., 18th Annual

Symposium on, pages 222 –227, 31 1977-nov. 2 1977.

[107] L. Ying, S. Shakkottai, and A. Reddy. On combining shortest-path and

back-pressure routing over multihop wireless networks. In Proceedings

of IEEE Infocom, 2009.

[108] L. Ying, R. Srikant, A. Eryilmax, and G. Dullrud. A large deviations

analysis of scheduling in wireless networks. IEEE Trans. Inform. The-

ory, 52(11):5088–5098, 2006.

[109] www.youtube.com.

[110] H. Yu, D. Zheng, B.Y. Zhao, and W. Zheng. Understanding user be-

havior in large scale video-on-demand systems. In EuroSys, April 2006.

[111] X. Zhou and C. Xu. Optimal video replication and placement on a

cluster of video-on-demand servers. In International Conference on

Parallel Processing, pages 547–555, 2002.

[112] Y. Zhou, T.Z. Fu, and D.M. Chiu. On replication algorithm in P2P-

VoD. IEEE/ACM Transactions on Networking, pages 233 – 243, 2013.

[113] W. Zhuang and M. Ismail. Cooperation in wireless communication

networks. Wireless Communications, IEEE, 19(2):10–20, 2012.

[114] Zipf’s Law on Wikipedia: http://en.wikipedia.org/wiki/Zipf’s law.

291

Vita

Sharayu Arun Moharir received the Master of Technology degree in

Comminication and Signal Processing and the Bachelor of Technology degree

in Electrical Engineering from the Indian Institute of Technology (IIT), Bom-

bay in 2009. Her dosctoral research at the University of Texas at Austin has

been co-advised by Prof. Sujay Sanghavi and Prof. Sanjay Shakkottai.

Permanent address: sharayu.moharir@gmail.com

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

292

