20 research outputs found

    How crucial is it to account for the antecedent moisture conditions in flood forecasting? Comparison of event-based and continuous approaches on 178 catchments

    Get PDF
    This paper compares event-based and continuous hydrological modelling approaches for real-time forecasting of river flows. Both approaches are compared using a lumped hydrologic model (whose structure includes a soil moisture accounting (SMA) store and a routing store) on a data set of 178 French catchments. The main focus of this study was to investigate the actual impact of soil moisture initial conditions on the performance of flood forecasting models and the possible compensations with updating techniques. The rainfall-runoff model assimilation technique we used does not impact the SMA component of the model but only its routing part. Tests were made by running the SMA store continuously or on event basis, everything else being equal. The results show that the continuous approach remains the reference to ensure good forecasting performances. We show, however, that the possibility to assimilate the last observed flow considerably reduces the differences in performance. Last, we present a robust alternative to initialize the SMA store where continuous approaches are impossible because of data availability problems

    Yapay sinir ağları yöntemi ile savalan sulama rezervuarının simülasyonu

    Get PDF
    Su kaynaklarının kısıtlılığı, amaçlardaki çeşitlilikler ve parasal kaynakların yetersizliği, optimum işletmeyi gerektirmektedir. Yağışların zaman ve konum açısından düzgün dağılmaması, tarımsal ürünlerin stratejik önemi ve su kaynakları sistemlerinde bulunan karmaşıklıklar, matematiksel modellerin kullanımını ve gelişmesini giderek artırmaktadır. Öte yandan su depolama yapısına giren akımların rastgelelik özelliğinden dolayı gelecekteki işletme kurallarının tahmini, arazilerin sulamasında önemli rol oynamaktadır. Simülasyon yönteminin amacı rezervuar sisteminin gelecekteki işletme dönemlerinde durumunu tahmin etmektir. Karar vericiler çeşitli senaryolar kullanarak, sistemin işletmesinde iyi bir yönetim sürdürmek isterler. Savalan barajı 90 hm3 aktif kapasite ile 1200 ha tarımsal alanı sulama amacı ile İran’ın Ardabil bölgesinde inşa edilmiştir. Mansapta bulunan tarım alanlarının aylık su taleplerinin tamamen karşılanacağı varsayılmıştır. Bu çalışmada rezervuar işletmesinde depolanan, savaklanan, hazne alanı üzerine düşen yağış ve buradan buharlaşan su miktarları, akımların çok tabakalı ileri beslemeli geriye yayınım yapay sinir ağları simülasyonu yönteminden yararlanarak tahmin edilmiştir. Rezervuar için süreklilik denklemi hem ölçülmüş ve hem de simüle edilmiş akımlarla çözülerek rezervuar parametreleri araştırılmıştır. Sonuçlar, gözlenmiş değerler ve simülasyonundan elde edilen değerler arasında genellikle uyum sağlandığını göstermektedir. AnahtarKelimeler: Rezervuar yönetimi, rezervuar simülasyonu, optimum işletme ve yapay sinir ağları YS

    Dynamic neuro-fuzzy systems for rainfall-runoff modelling

    Get PDF
    Urbanization has significant impact on the hydrological processes that have caused an increase in magnitude and frequency of floods; therefore, a reliable rainfall-runoff model will be helpful to estimate discharge for any watershed management plans. Beside physically-based models, the data driven approaches have been also used frequently to model the rainfall-runoff processes. Neuro-fuzzy systems (NFS) as one of the main category of data-driven models are common in hydrological time series modeling. Among the different algorithms, Adaptive network-based fuzzy inference system (ANFIS) is well-practiced in hydrological modeling. ANFIS is an offline model and needs to be retrained periodically to be updated. Therefore, an NFS model that can employ different learning process to overcome such problem is needed. This study developed dynamic evolving neuro fuzzy inference system (DENFIS) model for event based and continuous rainfallrunoff modeling and the results were compared with the existing models to check model capabilities. DENFIS evolves through incremental learning in which the rulebase is evolved after accommodating each individual new input data and benefitted from local learning implemented through the clustering method, Evolving Clustering Method (ECM). In this study, extreme events were extracted from the historical hourly data of selected tropical catchments of Malaysia. The DENFIS model performances were compared with ANFIS, the hydrologic modeling system (HECHMS) and autoregressive model with exogenous inputs (ARX) for event based rainfall-runoff modeling. DENFIS model was also evaluated against ANFIS for continuous rainfall-runoff modeling on a daily and hourly basis, multi-step ahead runoff forecasting and simulation of the river stage. The average coefficients of efficiency (CE) obtained from DENFIS model for the events in testing phase were 0.81, 0.79 and 0.65 for Lui, Semenyih and Klang catchments respectively which were comparable with ANFIS and HEC-HMS and were better than ARX. The CEs obtained from DENFIS model for hourly continuous were 0.93, 0.92 and 0.62 and for daily continuous were 0.73, 0.67 and 0.54 for Lui, Semenyih and Klang catchments respectively which were comparable to the ones obtained from ANFIS. The performances of DENFIS and ANFIS were also comparable for multistep ahead prediction and river stage simulation. This study concluded that less training time and flexibility of the rule-base in DENFIS is an advantage compared to an offline model such as ANFIS despite the fact that the results of the two models are generally comparable. However, the learning algorithm in DENFIS was found to be potentially useful to develop adaptable runoff forecasting tools

    Dynamic neuro-fuzzy systems for rainfall-runoff modeling

    Get PDF
    Urbanization has significant impact on the hydrological processes that have caused an increase in magnitude and frequency of floods; therefore, a reliable rainfall-runoff model will be helpful to estimate discharge for any watershed management plans. Beside physically-based models, the data driven approaches have been also used frequently to model the rainfall-runoff processes. Neuro-fuzzy systems (NFS) as one of the main category of data-driven models are common in hydrological time series modeling. Among the different algorithms, Adaptive network-based fuzzy inference system (ANFIS) is well-practiced in hydrological modeling. ANFIS is an offline model and needs to be retrained periodically to be updated. Therefore, an NFS model that can employ different learning process to overcome such problem is needed. This study developed dynamic evolving neuro fuzzy inference system (DENFIS) model for event based and continuous rainfallrunoff modeling and the results were compared with the existing models to check model capabilities. DENFIS evolves through incremental learning in which the rulebase is evolved after accommodating each individual new input data and benefitted from local learning implemented through the clustering method, Evolving Clustering Method (ECM). In this study, extreme events were extracted from the historical hourly data of selected tropical catchments of Malaysia. The DENFIS model performances were compared with ANFIS, the hydrologic modeling system (HECHMS) and autoregressive model with exogenous inputs (ARX) for event based rainfall-runoff modeling. DENFIS model was also evaluated against ANFIS for continuous rainfall-runoff modeling on a daily and hourly basis, multi-step ahead runoff forecasting and simulation of the river stage. The average coefficients of efficiency (CE) obtained from DENFIS model for the events in testing phase were 0.81, 0.79 and 0.65 for Lui, Semenyih and Klang catchments respectively which were comparable with ANFIS and HEC-HMS and were better than ARX. The CEs obtained from DENFIS model for hourly continuous were 0.93, 0.92 and 0.62 and for daily continuous were 0.73, 0.67 and 0.54 for Lui, Semenyih and Klang catchments respectively which were comparable to the ones obtained from ANFIS. The performances of DENFIS and ANFIS were also comparable for multistep ahead prediction and river stage simulation. This study concluded that less training time and flexibility of the rule-base in DENFIS is an advantage compared to an offline model such as ANFIS despite the fact that the results of the two models are generally comparable. However, the learning algorithm in DENFIS was found to be potentially useful to develop adaptable runoff forecasting tools

    An experiment on the parameter uncertainty of hydrological models with different levels of complexity in a climate change context

    Get PDF
    La possibilité d’estimer l’impact du changement climatique en cours sur le comportement hydrologique des hydro-systèmes est une nécessité pour anticiper les adaptations inévitables et nécessaires que doivent envisager nos sociétés. Dans ce contexte, ce projet doctoral présente une étude sur l'évaluation de la sensibilité des projections hydrologiques futures à : (i) La non-robustesse de l’identification des paramètres des modèles hydrologiques, (ii) l’utilisation de plusieurs jeux de paramètres équifinaux et (iii) l’utilisation de différentes structures de modèles hydrologiques. Pour quantifier l’impact de la première source d’incertitude sur les sorties des modèles, quatre sous-périodes climatiquement contrastées sont tout d’abord identifiées au sein des chroniques observées. Les modèles sont calés sur chacune de ces quatre périodes et les sorties engendrées sont analysées en calage et en validation en suivant les quatre configurations du Different Splitsample Tests (Klemeš, 1986; Wilby, 2005; Seiller et al. (2012); Refsgaard et al. (2014)). Afin d’étudier la seconde source d’incertitude liée à la structure du modèle, l’équifinalité des jeux de paramètres est ensuite prise en compte en considérant pour chaque type de calage les sorties associées à des jeux de paramètres équifinaux. Enfin, pour évaluer la troisième source d'incertitude, cinq modèles hydrologiques de différents niveaux de complexité sont appliqués (GR4J, MORDOR, HSAMI, SWAT et HYDROTEL) sur le bassin versant québécois de la rivière Au Saumon. Les trois sources d'incertitude sont évaluées à la fois dans conditions climatiques observées passées et dans les conditions climatiques futures. Les résultats montrent que, en tenant compte de la méthode d'évaluation suivie dans ce doctorat, l'utilisation de différents niveaux de complexité des modèles hydrologiques est la principale source de variabilité dans les projections de débits dans des conditions climatiques futures. Ceci est suivi par le manque de robustesse de l'identification des paramètres. Les projections hydrologiques générées par un ensemble de jeux de paramètres équifinaux sont proches de celles associées au jeu de paramètres optimal. Par conséquent, plus d'efforts devraient être investis dans l'amélioration de la robustesse des modèles pour les études d'impact sur le changement climatique, notamment en développant les structures des modèles plus appropriés et en proposant des procédures de calage qui augmentent leur robustesse. Ces travaux permettent d’apporter une réponse détaillée sur notre capacité à réaliser un diagnostic des impacts des changements climatiques sur les ressources hydriques du bassin Au Saumon et de proposer une démarche méthodologique originale d’analyse pouvant être directement appliquée ou adaptée à d’autres contextes hydro-climatiques.The possibility to estimate the impact of climate change on the hydrological behavior of hydrosystems, the hydrological risks, and the associated resources is a necessity in order to anticipate the inevitable and necessary adaptations that must consider our societies. In this context, the doctoral project presents a study on the evaluation of the uncertainty of hydrological projections for the future climate when considering: (i) The non-robustness of hydrological model parameter identification, (ii) the use of several ensembles of equifinal parameter sets over a given calibration period and (iii) the use of different model structures for the hydrological model. To quantify the impact of the first source of uncertainty on the model outputs, four climatically contrasted sub-periods are first identified within the observed time series. The models are calibrated on each of these four periods, then generated outputs are analyzed on calibration and validation data. The calibration and validation tests were performed according to the configurations of four Different Split-sample Tests (Klemeš, 1986; Wilby, 2005; Seiller et al., 2012; Refsgaard et al., 2014). In order to study the second source of uncertainty related to the model structure, the equifinality of the parameter sets is taken into account by considering an ensemble of equifinal parameter sets for each sub-period calibration. Finally, to assess the third source of uncertainty, five hydrological models of different levels of complexity are applied (GR4J, MORDOR, HSAMI, SWAT, and HYDROTEL) on the watershed of the Au Saumon River (Québec, Canada).The three sources of uncertainty are assessed in the past observed period and in future climate conditions. Results show that, given the evaluation approach followed in this Ph.D. research, the use of different levels of complexity of hydrological models is the major source of variability in streamflow projections in future climate conditions for the five models tested. This is followed by the lack of robustness of parameter identification. The hydrological projections generated by an ensemble of equifinal parameter sets are close to those associated with the optimal set. Therefore, it seems that greater effort should be invested in improving the robustness of models for climate change impact studies, especially by developing more suitable model structures and proposing calibration procedures that increase their robustness. This work serves to provide a detailed response on our ability to make a diagnosis of the impacts of climate change on water resources of the Au Saumon watershed and proposes a novel methodological approach that can be directly applied or adapted to other hydro-climatic contexts

    River flow forecasting using an integrated approach of wavelet multi-resolution analysis and computational intelligence techniques

    Get PDF
    In this research an attempt is made to develop highly accurate river flow forecasting models. Wavelet multi-resolution analysis is applied in conjunction with artificial neural networks and adaptive neuro-fuzzy inference system. Various types and structure of computational intelligence models are developed and applied on four different rivers in Australia. Research outcomes indicate that forecasting reliability is significantly improved by applying proposed hybrid models, especially for longer lead time and peak values

    Multisensor Fusion Remote Sensing Technology For Assessing Multitemporal Responses In Ecohydrological Systems

    Get PDF
    Earth ecosystems and environment have been changing rapidly due to the advanced technologies and developments of humans. Impacts caused by human activities and developments are difficult to acquire for evaluations due to the rapid changes. Remote sensing (RS) technology has been implemented for environmental managements. A new and promising trend in remote sensing for environment is widely used to measure and monitor the earth environment and its changes. RS allows large-scaled measurements over a large region within a very short period of time. Continuous and repeatable measurements are the very indispensable features of RS. Soil moisture is a critical element in the hydrological cycle especially in a semiarid or arid region. Point measurement to comprehend the soil moisture distribution contiguously in a vast watershed is difficult because the soil moisture patterns might greatly vary temporally and spatially. Space-borne radar imaging satellites have been popular because they have the capability to exhibit all weather observations. Yet the estimation methods of soil moisture based on the active or passive satellite imageries remain uncertain. This study aims at presenting a systematic soil moisture estimation method for the Choke Canyon Reservoir Watershed (CCRW), a semiarid watershed with an area of over 14,200 km2 in south Texas. With the aid of five corner reflectors, the RADARSAT-1 Synthetic Aperture Radar (SAR) imageries of the study area acquired in April and September 2004 were processed by both radiometric and geometric calibrations at first. New soil moisture estimation models derived by genetic programming (GP) technique were then developed and applied to support the soil moisture distribution analysis. The GP-based nonlinear function derived in the evolutionary process uniquely links a series of crucial topographic and geographic features. Included in this process are slope, aspect, vegetation cover, and soil permeability to compliment the well-calibrated SAR data. Research indicates that the novel application of GP proved useful for generating a highly nonlinear structure in regression regime, which exhibits very strong correlations statistically between the model estimates and the ground truth measurements (volumetric water content) on the basis of the unseen data sets. In an effort to produce the soil moisture distributions over seasons, it eventually leads to characterizing local- to regional-scale soil moisture variability and performing the possible estimation of water storages of the terrestrial hydrosphere. A new evolutionary computational, supervised classification scheme (Riparian Classification Algorithm, RICAL) was developed and used to identify the change of riparian zones in a semi-arid watershed temporally and spatially. The case study uniquely demonstrates an effort to incorporating both vegetation index and soil moisture estimates based on Landsat 5 TM and RADARSAT-1 imageries while trying to improve the riparian classification in the Choke Canyon Reservoir Watershed (CCRW), South Texas. The CCRW was selected as the study area contributing to the reservoir, which is mostly agricultural and range land in a semi-arid coastal environment. This makes the change detection of riparian buffers significant due to their interception capability of non-point source impacts within the riparian buffer zones and the maintenance of ecosystem integrity region wide. The estimation of soil moisture based on RADARSAT-1 Synthetic Aperture Radar (SAR) satellite imagery as previously developed was used. Eight commonly used vegetation indices were calculated from the reflectance obtained from Landsat 5 TM satellite images. The vegetation indices were individually used to classify vegetation cover in association with genetic programming algorithm. The soil moisture and vegetation indices were integrated into Landsat TM images based on a pre-pixel channel approach for riparian classification. Two different classification algorithms were used including genetic programming, and a combination of ISODATA and maximum likelihood supervised classification. The white box feature of genetic programming revealed the comparative advantage of all input parameters. The GP algorithm yielded more than 90% accuracy, based on unseen ground data, using vegetation index and Landsat reflectance band 1, 2, 3, and 4. The detection of changes in the buffer zone was proved to be technically feasible with high accuracy. Overall, the development of the RICAL algorithm may lead to the formulation of more effective management strategies for the handling of non-point source pollution control, bird habitat monitoring, and grazing and live stock management in the future. Soil properties, landscapes, channels, fault lines, erosion/deposition patches, and bedload transport history show geologic and geomorphologic features in a variety of watersheds. In response to these unique watershed characteristics, the hydrology of large-scale watersheds is often very complex. Precipitation, infiltration and percolation, stream flow, plant transpiration, soil moisture changes, and groundwater recharge are intimately related with each other to form water balance dynamics on the surface of these watersheds. Within this chapter, depicted is an optimal site selection technology using a grey integer programming (GIP) model to assimilate remote sensing-based geo-environmental patterns in an uncertain environment with respect to some technical and resources constraints. It enables us to retrieve the hydrological trends and pinpoint the most critical locations for the deployment of monitoring stations in a vast watershed. Geo-environmental information amassed in this study includes soil permeability, surface temperature, soil moisture, precipitation, leaf area index (LAI) and normalized difference vegetation index (NDVI). With the aid of a remote sensing-based GIP analysis, only five locations out of more than 800 candidate sites were selected by the spatial analysis, and then confirmed by a field investigation. The methodology developed in this remote sensing-based GIP analysis will significantly advance the state-of-the-art technology in optimum arrangement/distribution of water sensor platforms for maximum sensing coverage and information-extraction capacity. Effective water resources management is a critically important priority across the globe. While water scarcity limits the uses of water in many ways, floods also have caused so many damages and lives. To more efficiently use the limited amount of water or to resourcefully provide adequate time for flood warning, the results have led us to seek advanced techniques for improving streamflow forecasting. The objective of this section of research is to incorporate sea surface temperature (SST), Next Generation Radar (NEXRAD) and meteorological characteristics with historical stream data to forecast the actual streamflow using genetic programming. This study case concerns the forecasting of stream discharge of a complex-terrain, semi-arid watershed. This study elicits microclimatological factors and the resultant stream flow rate in river system given the influence of dynamic basin features such as soil moisture, soil temperature, ambient relative humidity, air temperature, sea surface temperature, and precipitation. Evaluations of the forecasting results are expressed in terms of the percentage error (PE), the root-mean-square error (RMSE), and the square of the Pearson product moment correlation coefficient (r-squared value). The developed models can predict streamflow with very good accuracy with an r-square of 0.84 and PE of 1% for a 30-day prediction
    corecore