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ABSTRACT 

Urbanization has significant impact on the hydrological processes that have 
caused an increase in magnitude and frequency of floods; therefore, a reliable 
rainfall-runoff model will be helpful to estimate discharge for any watershed 
management plans. Beside physically-based models, the data driven approaches have 
been also used frequently to model the rainfall-runoff processes. Neuro-fuzzy 
systems (NFS) as one of the main category of data-driven models are common in 
hydrological time series modeling. Among the different algorithms, Adaptive 
network-based fuzzy inference system (ANFIS) is well-practiced in hydrological 
modeling. ANFIS is an offline model and needs to be retrained periodically to be 
updated. Therefore, an NFS model that can employ different learning process to 
overcome such problem is needed. This study developed dynamic evolving neuro 
fuzzy inference system (DENFIS) model for event based and continuous rainfall-
runoff modeling and the results were compared with the existing models to check 
model capabilities. DENFIS evolves through incremental learning in which the rule-
base is evolved after accommodating each individual new input data and benefitted 
from local learning implemented through the clustering method, Evolving Clustering 
Method (ECM). In this study, extreme events were extracted from the historical 
hourly data of selected tropical catchments of Malaysia. The DENFIS model 
performances were compared with ANFIS, the hydrologic modeling system (HEC-
HMS) and autoregressive model with exogenous inputs (ARX) for event based 
rainfall-runoff modeling. DENFIS model was also evaluated against ANFIS for 
continuous rainfall-runoff modeling on a daily and hourly basis, multi-step ahead 
runoff forecasting and simulation of the river stage. The average coefficients of 
efficiency (CE) obtained from DENFIS model for the events in testing phase were 
0.81, 0.79 and 0.65 for Lui, Semenyih and Klang catchments respectively which 
were comparable with ANFIS and HEC-HMS and were better than ARX.  The CEs 
obtained from DENFIS model for hourly continuous were 0.93, 0.92 and 0.62 and 
for daily continuous were 0.73, 0.67 and 0.54 for Lui, Semenyih and Klang 
catchments respectively which were comparable to the ones obtained from ANFIS. 
The performances of DENFIS and ANFIS were also comparable for multistep ahead 
prediction and river stage simulation. This study concluded that less training time 
and flexibility of the rule-base in DENFIS is an advantage compared to an offline 
model such as ANFIS despite the fact that the results of the two models are generally 
comparable. However, the learning algorithm in DENFIS was found to be potentially 
useful to develop adaptable runoff forecasting tools.. 
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ABSTRAK 

 Perbandaran mempunyai kesan yang besar ke atas proses hidrologi yang 
menyebabkan peningkatan ke atas magnitud dan kekerapan banjir; oleh itu, sebuah 
model hujan-air larian yang tepat dan boleh dipercayai amat berguna untuk 
menganggar sebarang pelan pengurusan kawasan tadahan air. Selain model 
berasaskan fizikal, pendekatan data didorong juga kerap digunakan untuk 
memodelkan proses hujan-air larian. Neuro-fuzzy systems (NFS) merupakan salah 
satu kategori utama model biasa dalam model hidrologi siri masa. Antara algoritma 
yang berbeza, Adaptive network-based fuzzy inference system (ANFIS) merupakan 
sesuatu yang diamalkan dalam pemodelan hidrologi. ANFIS adalah satu model luar 
talian dan perlu dilatih semula secara berkala untuk dikemas kini. Oleh itu, model 
NFS yang boleh menggunakan proses pembelajaran yang berbeza untuk mengatasi 
masalah berkenaan adalah diperlukan. Kajian ini membangunkan dynamic evolving 
neuro fuzzy inference system (DENFIS) bagi pemodelan hujan dan pemodelan hujan 
yang berterusan dan hasilnya dibandingkan dengan model sedia ada untuk 
memeriksa keupayaan model. DENFIS menyesuai melalui pembelajaran tambahan di 
mana peraturan-asas menyesuai selepas mengisi setiap individu dengan data input 
baru dan mendapat manfaat daripada pembelajaran tempatan yang telah dilaksanakan 
melalui kaedah kelompok; evolving clustering method (ECM). Dalam kajian ini, 
peristiwa yang melampau diambil daripada data dalam sela jam daripada kawasan 
tadahan tropika Malaysia yang terpilih. Prestasi model DENFIS dibandingkan 
dengan ANFIS, the hydrologic modeling system (HEC-HMS) dan autoregressive 
model with exogenous inputs (ARX) untuk model hujan-air larian berdasarkan 
peristiwa. Model DENFIS juga dinilai terhadap ANFIS bagi model hujan-air larian 
berterusan pada setiap hari dan setiap jam, ramalan air larian pelbagai langkah di 
hadapan dan simulasi aras sungai. Pekali purata kecekapan (CE) yang diperoleh 
daripada model DENFIS untuk peristiwa dalam fasa ujian adalah 0.81, 0.79 dan 0.65 
untuk kawasan tadahan Lui, Semenyih dan Klang yang mana setanding dengan 
ANFIS dan HEC-HMS dan adalah lebih baik daripada ARX. CE yang didapati dari 
model DENFIS untuk setiap jam berterusan adalah 0.93, 0.92 dan 0.62 dan untuk 
setiap hari yang berterusan adalah 0.73, 0.67 dan 0.54 masing-masing bagi kawasan 
tadahan Lui, Semenyih dan Klang yang mana setanding dengan yang diambil dari 
ANFIS. Prestasi DENFIS dan ANFIS juga setanding untuk ramalan pelbagai langkah 
ke hadapan dan simulasi aras sungai. Kajian ini menyimpulkan bahawa masa latihan 
yang kurang dan fleksibiliti peraturan asas dalam DENFIS adalah satu kelebihan 
berbanding dengan model tanpa talian seperti ANFIS walaupun pada hakikatnya 
keputusan kedua-dua model amnya setanding. Walau bagaimanapun, algoritma 
pembelajaran di DENFIS didapati berpotensi untuk membangunkan adaptasi alat 
peramalan air. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background of Study 

The hydrologists are always dealing with the problem of determining the non-

linear relationship between the rainfall and runoff processes. A good understanding 

of rainfall-runoff relationship is required for hydrologic design, planning and 

management of a watershed. This relationship depends on many factors such as land 

use, soil moisture, evapotranspiration, infiltration, distribution and duration of 

rainfall and so on. Therefore, any effort to model the rainfall and runoff processes 

would be confronted with difficulties since hydrological processes have a greater 

degree of spatio-temporal variability, and are further played by the issues of non-

linearity of physical process, confliction in spatio-temporal scales, uncertainties 

involved in parameter estimation, and stochastic. In addition, deficiencies in data due 

to the unavailability of data, poor quality of data, etc. present a major problem in 

rainfall–runoff modeling. These are the reasons that make hydrologist’s 

understanding of hydrologic processes far from the perfect and then empiricism plays 

a vital role in hydrologic modeling studies (Vemuri and Vemuri, 1970). Hydrologists 

often strive to give the rational responses to the issues; those arise in designing and 

management of water resources projects. The desire of reliable modeling tool to 

model the rainfall–runoff transformation process has been one of the major 

hydrological research activities for decades (Shoaib et al. 2014).  

Since early 1930’s there have been various attempts to develop or to modify 

the rainfall-runoff models to forecast accurate streamflow. Such techniques can be 
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characterized into two main groups: physically-based models and system theoretic 

models.  The design of Physically-based models is based on approximation of the 

internal sub-processes and physical mechanisms which are involved in rainfall-runoff 

transformation process. These models generally incorporate basic physical laws and 

are generally non-linear, time-varying, and deterministic, with the parameters that are 

representative of watershed characteristics. Although the physically-based models 

are designed to present a clear understanding of the physics involved in hydrological 

processes but, require sophisticated mathematical tools, and usually require 

significant user expertise. On the other hand, system theoretic or black-box models 

apply a different approach to identify a direct mapping between rainfall and runoff, 

without the need for a detailed understanding of the physical processes. These 

models include linear and nonlinear regression models, artificial intelligence tools 

like artificial neural networks (ANNs), neuro fuzzy systems (NFS).  

These models do not provide any information about the physical 

characteristics of the watershed. These models are fast and there results are 

comparable to those obtained from physical models. Besides their successive 

applications in rainfall-runoff modeling the researchers are focusing to develop new 

algorithms, new software and procedures for designing future developments. 

Adaptive Network based Fuzzy Inference System (ANFIS) developed by Jang 

(1993) is so far the most popular NFS model and has been widely used in different 

hydrologic time series simulations. ANFIS is an off-line model which needs to be 

retrained for any happenings in the catchment for simulation of rainfall-runoff 

processes.  This study focuses on the advancement of NFS modeling techniques for 

simulation of rainfall-runoff dynamics for the tropical catchments.  

1.2 Problem Statement 

Rapid population growth, urbanization, and industrialization in many parts of 

the world have increased the demand of water. The increase in water demand 

resulted in altered watersheds and river systems and it became critical to plan and 

manage water resources systems intelligently. In recent years, concern has grown 
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worldwide that floods and droughts may be increasing in frequency, severity, and 

duration given changing climatic conditions (Sivakumar, 2012; Peterson et al., 

2013). The problem had been worse due to the malfunctioning of the early warning 

systems at the flood plains. Although these floods have caused massive damage, they 

also provided valuable information which can help researchers and authorities to 

develop new algorithms, Software and procedures to prevent these damages.  

The reliable hydrological modeling is in need to overcome the growing 

concern at watershed levels. The reason for modeling the relation between 

precipitation on a catchment and the runoff from it is that runoff information is 

needed for hydrologic engineering design and management purposes (Govindaraju, 

2000). However, as Tokar and Johnson (1999) state, the relationship between rainfall 

and runoff is one of the most complex hydrologic phenomena to comprehend. This is 

due to the tremendous spatial and temporal variability of watershed characteristics 

and precipitation patterns, and the number of variables involved in the modeling of 

the physical processes. In the past, prediction of river flow was mainly performed 

using conceptual and deterministic models (Bazartseren et al., 2003).  

In the cases with high rate of uncertainty and complexity where it is difficult 

to consider every effective physical parameter, it is not a surprising fact that black 

box models which convert inputs to output values in ways that have nothing to do 

with what happens in reality, may produce more accurate results than physical based 

models (Nourani et al., 2011). Recently, intelligence system approaches such as 

ANNs have been used successfully for time series modelling. In most instances for 

ANNs, multilayer perceptron (MLP) that are trained with the back-propagation 

algorithm has been used. The major shortcoming of this approach is that the 

knowledge contained in the trained networks is difficult to interpret. Using NFS 

approaches, which enable the information that is stored in trained networks to be 

expressed in the form of a fuzzy rule base, had overcome this issue. Presently the 

most popular neuro fuzzy model ANFIS is an offline model and needs to retrain 

periodically to be updated for any temporal and spatial changes of the catchment. 

The incremental learning is still an issue in existing neuro-fuzzy models. A real-time 
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neuro fuzzy rainfall-runoff model having capability of online learning and the ability 

to update itself without the need of being retrained offline can overcome the issue. 

1.3 Objectives 

The overall goal of this study is to simulate rainfall- runoff processes for the 

extreme events using Neuro-Fuzzy Systems approaches and comparisons with the 

other methods to address their capabilities for the tropical catchments. The specific 

objectives of this study were as follow: 

1. To evaluate the capability of DENFIS in simulating rainfall-runoff processes 

for the extreme events in three tropical catchments and compare the model 

performance with benchmark models such as HEC-HMS and autoregressive 

model with exogenous inputs (ARX). 

 

 

2. To evaluate the capability of DENFIS in simulating continuous (daily and 

hourly) rainfall-runoff time series and compare it with offline NFS model, 

ANFIS.  

  

 

3. To evaluate the capabilities of DENFIS in forecasting runoff for multistep 

ahead and compare it with offline NFS model, ANFIS. 

 

4. To explore the capability of DENFIS for other hydrological application such 

as simulation of river stage. 



5 

 

1.4 Scope of Study 

The study mainly focuses on development of dynamic evolving neuro fuzzy 

inference system (DENFIS) model for rainfall-runoff modeling. The developed 

model was applied to several tropical catchments of Malaysia. The catchments were 

selected on the data availability and after quality assessment of data. The study was 

performed for event based and continuous rainfall-runoff modeling for the selected 

catchments. The study also highlighted DENFIS application for multi-step ahead 

prediction and river stage simulation. 

To simulate event based rainfall-runoff modeling using DENFIS model, the 

extreme historical events were selected from the available rainfall and runoff dataset. 

The event based rainfall-runoff modeling was performed for Semenyih River 

catchment, Lui River catchment and Klang River catchment. The evaluation of 

DENFIS model for event based rainfall-runoff modeling was performed by 

comparing its performances against ANFIS model, HEC-HMS and ARX model. The 

continuous modeling was performed using DENFIS model on hourly and daily 

dataset for Lui, Semenyih and Klang River catchments. To assess the model 

performances DENFIS model was compared with ANFIS model. 

DENFIS and ANFIS models were developed for 1 hour, 2 hour and 3 hour 

ahead forecasting. The hourly data was re-organized to 3 hourly data to simulate 3 

hour, 6 hour and 9 hour ahead forecasting for Lui, Semenyih and Klang River 

catchments. The River stage simulation using DENFIS and ANFIS was only 

performed for Bekok River catchment, because of the date availability. .  

1.5 Significance of Study 

Rainfall-Runoff modeling is essential measure in water resources planning 

and development. Physically based rainfall-runoff models give proper insight of the 

catchment behavior however, they require significant number of parameters which 

could be difficult to be measured or estimated. On the other hand the data driven 
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approaches are able to identify a direct mapping between input and output with less 

number of physical parameters. This study is important from hydrologic point of 

view as it aimed to develop rainfall-runoff model using NFS approach known as 

DENFIS. The DENFIS model uses evolving clustering method (ECM), which is an 

online and distance based clustering method. DENFIS model can be used as a batch 

model and also can be employed with incremental learning. The incremental learning 

allows the model to update its rule base fuzzy inference system automatically with 

the input of new data. This makes it superior to other data driven modeling 

techniques. Generally, this research is a part of the pro-active approaches that can be 

adopted by hydrologists and researchers to model rainfall runoff relationship using 

only rainfall and runoff data. 

1.6 Thesis Outline 

This thesis is divided into five chapters. Descriptions of the chapters are 

given below in brief. 

 Chapter 1 presents the general introduction of this study and comprising of 

the background of study, problem statement, objectives of the study, scope of study 

and significance of study. 

 Chapter 2 provides a review of relevant literature. The review covers 

importance of rainfall-runoff modeling, characterizing of the models, history of 

models and their use in Malaysia, applications of ANNs and NFS, a general briefing 

on physically based and regression models used as bench mark, and some relevant 

issues.  

Chapter 3 presents the details of the models used in this study, detailed 

information of the study sites, data used, data preprocessing, events selection, 

performance evaluation matrices and input selections used in this study.  
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