4,198 research outputs found

    Opportunistic Localization Scheme Based on Linear Matrix Inequality

    Get PDF
    Enabling self-localization of mobile nodes is an important problem that has been widely studied in the literature. The general conclusions is that an accurate localization requires either sophisticated hardware (GPS, UWB, ultrasounds transceiver) or a dedicated infrastructure (GSM, WLAN). In this paper we tackle the problem from a different and rather new perspective: we investigate how localization performance can be improved by means of a cooperative and opportunistic data exchange among the nodes. We consider a target node, completely unaware of its own position, and a number of mobile nodes with some self-localization capabilities. When the opportunity occurs, the target node can exchange data with in-range mobile nodes. This opportunistic data exchange is then used by the target node to refine its position estimate by using a technique based on Linear Matrix Inequalities and barycentric algorithm. To investigate the performance of such an opportunistic localization algorithm, we define a simple mathematical model that describes the opportunistic interactions and, then, we run several computer simulations for analyzing the effect of the nodes duty-cycle and of the native self-localization error modeling considered. The results show that the opportunistic interactions can actually improve the self-localization accuracy of a strayed node in many different scenarios

    Transmission Power Adjustment Scheme for Mobile Beacon-Assisted Sensor Localization

    Full text link
    © 2005-2012 IEEE. Localization, as a crucial service for sensor networks, is an energy-demanding process for both indoor and outdoor scenarios. GPS-based localization schemes are infeasible in remote, indoor areas, and it is not a cost-effective solution for large-scale networks. Single mobile-beacon architecture is recently considered to localize sensor networks with the aim of removing numerous GPS-equipped nodes. The critical issue for the mobile beacon-Assisted localization is to preserve the consumed power to increase the lifetime. This paper presents a novel power control scheme, namely 'Z-power,' for mobile beacon traveling along a predefined path. The proposed scheme takes the advantage of deterministic path traveled by the single beacon to efficiently adjust the transmission power. Based on the extensive results, the proposed power control scheme could successfully improve the beacon and sensors energy consumption about 25.37% and 34.09%, respectively. A significant energy-Accuracy tradeoff was achieved using Z-power, which could successfully keep the same level of accuracy while providing lower energy consumption. Another group of results collected when obstacle-handling algorithm was applied at the presence of obstacles. In this scenario, Z-power improves energy consumption and localization accuracy with the same level of success

    Geometric Constraint Based Range Free Localization Scheme For Wireless Sensor Networks (WSNs)

    Get PDF
    Localization of the wireless sensor networks (WSNs) is an emerging area of research. The accurate localization is essential to support extended network lifetime, better covering, geographical routing, and congested free network. In this thesis, we proposed four distributed range-free localization schemes. The proposed schemes are based on the analytical geometry, where an arc is used as the geometric primitive shape. The simulation and experimental validation are performed to evaluate the performance of the proposed schemes. First, we have proposed a mobile beacon based range-free localization scheme (MBBRFLS). The proposed scheme resolved the two underlying problems of the constraint area based localization: (i) localization accuracy depends on the size of the constraint area, and (2) the localization using the constraint area averaging. In this scheme, the constraint area is used to derive the geometric property of an arc. The localization begins with an approximation of the arc parameters. Later, the approximated parameters are used to generate the chords. The perpendicular bisector of the chords estimate the candidate positions of the sensor node. The valid position of the sensor node is identified using the logarithmic path loss model. The performance of proposed scheme is compared with Ssu and Galstyan schemes. From the results, it is observed that the proposed scheme at varying DOI shows 20.7% and 11.6% less localization error than Ssu and Galstyan schemes respectively. Similarly, at the varying beacon broadcasting interval the proposed scheme shows 18.8% and 8.3% less localization error than Ssu and Galstyan schemes respectively. Besides, at the varying communication range, the proposed scheme shows 18% and 9.2% less localization error than Ssu and Galstyan schemes respectively. To further enhance the localization accuracy, we have proposed MBBRFLS using an optimized beacon points selection (OBPS). In MBBRFLS-OBPS, the optimized beacon points minimized the constraint area of the sensor node. Later, the reduced constraint area is used to differentiate the valid or invalid estimated positions of the sensor node. In this scheme, we have only considered the sagitta of a minor arc for generating the chords. Therefore, the complexity of geometric calculations in MBBRFLS-OBPS is lesser than MBBRFLS. For localization, the MBBRFLS-OBPS use the perpendicular bisector of the chords (corresponding to the sagitta of minor arc) and the approximated radius. The performance of the proposed MBBRFLS-OBPS is compared with Ssu, Galstyan, and Singh schemes. From the results, it is observed that the proposed scheme using CIRCLE, vii SPIRAL, HILBERT, and S-CURVE trajectories shows 74.68%, 78.3%, 73.9%, and 70.3% less localization error than Ssu, Galstyan, and Singh schemes respectively. Next, we have proposed MBBRFLS using an optimized residence area formation (ORAF). The proposed MBBRFLS-ORAF further improves the localization accuracy. In this scheme, we have used the adaptive mechanism corresponding to the different size of the constraint area. The adaptive mechanism defines the number of random points required for the different size of the constraint area. In this scheme, we have improved the approximation accuracy of the arc parameters even at the larger size of the constraint area. Therefore, the localization accuracy is improved. The previous scheme MBBRFLS-OBPS use the residence area of the two beacon points for approximation. Therefore, the larger size of the constraint area degrades the approximation accuracy. In the MBBRFLS-ORAF, we have considered the residence area of the three non-collinear beacon points, which further improves the localization accuracy. The performance of the proposed scheme is compared with Ssu, Lee, Xiao, and Singh schemes. From the results, it is observed that the proposed MBBRFLS-ORAF at varying communication range shows 73.2%, 48.7%, 33.2%, and 20.7% less localization error than Ssu, Lee, Xiao, and Singh schemes respectively. Similarly, at the different beacon broadcasting intervals the proposed MBBRFLS-ORAF shows 75%, 53%, 38%, and 25% less localization error than Ssu, Lee, Xiao, and Singh schemes respectively. Besides, at the varying DOI the proposed MBBRFLS-ORAF shows 76.3%, 56.8%, 52%, and 35% less localization error than Ssu, Lee, Xiao, and Singh schemes respectively. Finally, we have proposed a localization scheme for unpredictable radio environment (LSURE). In this work, we have focused on the radio propagation irregularity and its impact on the localization accuracy. The most of the geometric constraint-based localization schemes suffer from the radio propagation irregularity. To demonstrate its impact, we have designed an experimental testbed for the real indoor environment. In the experimental testbed, the three static anchor nodes assist a sensor node to perform its localization. The impact of radio propagation irregularity is represented on the constraint areas of the sensor node. The communication range (estimated distance) of the anchor node is derived using the logarithmic regression model of RSSI-distance relationship. The additional error in the estimated distances, and the different placement of the anchor nodes generates the different size of the constraint areas. To improve the localization accuracy, we have used the dynamic circle expansion technique. The performance of the proposed LSURE is compared with APIT and Weighted Centroid schemes using the various deployment scenarios of the anchor nodes. From the results, it is observed that the proposed LSURE at different deployment scenarios of anchor nodes shows 65.94% and 73.54% less localization error than APIT and Weighted Centroid schemes

    Multisensor Poisson Multi-Bernoulli Filter for Joint Target-Sensor State Tracking

    Full text link
    In a typical multitarget tracking (MTT) scenario, the sensor state is either assumed known, or tracking is performed in the sensor's (relative) coordinate frame. This assumption does not hold when the sensor, e.g., an automotive radar, is mounted on a vehicle, and the target state should be represented in a global (absolute) coordinate frame. Then it is important to consider the uncertain location of the vehicle on which the sensor is mounted for MTT. In this paper, we present a multisensor low complexity Poisson multi-Bernoulli MTT filter, which jointly tracks the uncertain vehicle state and target states. Measurements collected by different sensors mounted on multiple vehicles with varying location uncertainty are incorporated sequentially based on the arrival of new sensor measurements. In doing so, targets observed from a sensor mounted on a well-localized vehicle reduce the state uncertainty of other poorly localized vehicles, provided that a common non-empty subset of targets is observed. A low complexity filter is obtained by approximations of the joint sensor-feature state density minimizing the Kullback-Leibler divergence (KLD). Results from synthetic as well as experimental measurement data, collected in a vehicle driving scenario, demonstrate the performance benefits of joint vehicle-target state tracking.Comment: 13 pages, 7 figure

    Group-In: Group Inference from Wireless Traces of Mobile Devices

    Full text link
    This paper proposes Group-In, a wireless scanning system to detect static or mobile people groups in indoor or outdoor environments. Group-In collects only wireless traces from the Bluetooth-enabled mobile devices for group inference. The key problem addressed in this work is to detect not only static groups but also moving groups with a multi-phased approach based only noisy wireless Received Signal Strength Indicator (RSSIs) observed by multiple wireless scanners without localization support. We propose new centralized and decentralized schemes to process the sparse and noisy wireless data, and leverage graph-based clustering techniques for group detection from short-term and long-term aspects. Group-In provides two outcomes: 1) group detection in short time intervals such as two minutes and 2) long-term linkages such as a month. To verify the performance, we conduct two experimental studies. One consists of 27 controlled scenarios in the lab environments. The other is a real-world scenario where we place Bluetooth scanners in an office environment, and employees carry beacons for more than one month. Both the controlled and real-world experiments result in high accuracy group detection in short time intervals and sampling liberties in terms of the Jaccard index and pairwise similarity coefficient.Comment: This work has been funded by the EU Horizon 2020 Programme under Grant Agreements No. 731993 AUTOPILOT and No.871249 LOCUS projects. The content of this paper does not reflect the official opinion of the EU. Responsibility for the information and views expressed therein lies entirely with the authors. Proc. of ACM/IEEE IPSN'20, 202
    corecore