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Abstract—Enabling self-localization of mobile nodes is an
important problem that has been widely studied in the liter-
ature. The general conclusions is that an accurate localization
requires either sophisticated hardware (GPS, UWB, ultrasounds
transceiver) or a dedicated infrastructure (GSM, WLAN). In
this paper we tackle the problem from a different and rather
new perspective: we investigate how localization performance can
be improved by means of a cooperative and opportunistic data
exchange among the nodes. We consider a target node, completely
unaware of its own position, and a number of mobile nodes
with some self-localization capabilities. When the opportunity
occurs, the target node can exchange data with in-range mobile
nodes. This opportunistic data exchange is then used by the target
node to refine its position estimate by using a technique based
on Linear Matrix Inequalities and barycentric algorithm. To
investigate the performance of such an opportunistic localization
algorithm, we define a simple mathematical model that describes
the opportunistic interactions and, then, we run several computer
simulations for analyzing the effect of the nodes duty-cycle and of
the native self-localization error modeling considered. The results
show that the opportunistic interactions can actually improve the
self-localization accuracy of a strayed node in many different
scenarios.

I. INTRODUCTION

When dealing with mobile networks, the knowledge of the

position and trajectory of the nodes represents a precious

information that can be exploited for many different purposes,

such as communication protocols optimization, path planning,

cooperative task design and so on. The accuracy of the

localization estimation is strictly related to the environment

and the technology used by the devices to localize themselves.

A cheap and widespread technology like the Received Signal

Strength Indicator (RSSI) is very poor for localization [1],

while more expensive hardware can achieve better perfor-

mance, for instance by comparing the Time-of-Arrival of radio

signals or using acoustic or optical signals or a rather complex

infrastructure [2], [3], [4].

Whereas most of the literature on localization focus on sys-

tems and algorithms explicitly designed to provide localization

functionality to the nodes, in this paper we investigate how

localization can be obtained through opportunistic interactions

in systems that are not intended for providing such a service.

An example of scenario that falls within this category is the

swarm of robots, in which few robots are natively capable

of self-localization, whereas the others may infer their own

position by exchanging data with their neighbors on an oppor-

tunistic basis. Another example is that of a tourist at his first

visit to a city that may desire to estimate his own position by

opportunistically exchanging data with the passing-by vehicles

equipped with GPS-localization system. Yet another example

is the case of a sensor node deployed on a given area that needs

to infer its position by exchanging data with mobile nodes

(vehicles, persons, robots) that cross the area for different

purposes.

Such a vision offers a number of research challenges, such

as the definition of efficient node-discovery and link-set up

protocols in presence of heterogeneous and multi-interface

devices, the design of suitable algorithms for performing

the opportunistic data exchange and the related localization

estimate, the analysis of the tradeoffs between different per-

formance indexes (energy consumption and protocol overhead

vs. localization accuracy), not mentioning the reliability, con-

fidentiality and security issues.

In this paper we address only a very focussed subset of these

problems. More specifically, we investigate the probability that

an opportunistic data exchange can take place for different

choices of some design parameters, such as the radio coverage

range, the nodes speed, the percentage of time that nodes spend

looking for opportunistic interactions with other nodes. Then,

we apply the results of this preliminary analysis to a locali-

zation technique based on the Linear Matrix Inequality (LMI)

and a simple barycentric algorithm that is run by a strayed

node, unprovided with any native localization equipment.

The remaining of the paper is structured as follows. In

Section IV we present a short survey of the state of the art

on standard and cooperative localization. In Section II we

formally state the problem and we describe the system model.

Section III reports the performance figures obtained through

simulation and comments the results. Finally, Section V draws

some conclusions.

II. MODELING

A. Definitions and problem statement

We consider a system made of mobile Nodes equipped

with a common communication device (WiFi, Bluetooth or



ZigBee). We suppose one node, called User, is not capable

of self-localization, whereas the other nodes, named Peers,

can perform self-localization with a certain accuracy that, in

general, varies in time. A given Peer i can maintain a list of

past self-positioning estimations. The problem we address is

how self-positioning estimations of Peers can be used by User

to estimate its own position.

B. Communication model

Every node in the network is equipped with a common

wireless communication interface that is used for (opportuni-

stic) data exchange. Radio propagation is described by means

of a simple unit-disk model, according to which the radio

transmission is always correctly received within a distance

R (coverage range) from the transmitter, whereas it is not

received at longer distances. Although the unit-circle model is

known to be oversimplified, it permits to isolate the perfor-

mance analysis from the characteristics of the radio interface

that, at this stage of the work, is left generic.

C. Opportunistic interaction model

We assume that nodes can communicate only during a

certain period of time, the so-called Scan Phase, which may

correspond to an interlaced Inquiry/Scan phase of Bluetooth

[5] or to the Active Scanning procedure of IEEE 802.11

systems [6]. The scan phase is repeated with period T ,

asynchronously and independently by each node, so that the

offset between the scan phases of two nodes can be modeled

as a random variable with uniform distribution in the interval

(0, T ). The ratio between the scan phase and the entire cycle

time T , is called duty cycle and denoted by δ. Whereas the scan

period T is the same for all the nodes, we suppose that each

node can fix its own duty cycle depending on the requirements

and the management policy of that node.

We suppose that opportunistic data exchange can occur (in

a negligible time) only when the scan phases of the two nodes

overlap in time. Furthermore opportunistic data exchange also

requires the nodes to be mutually in range. We assume that

opportunistic interaction immediately takes place as soon as

both conditions are satisfied. Such an event is coined rendez-

vous.

D. Self-positioning model used by peers

We assume that peer nodes have “native” self-positioning

capabilities, provided by some (non opportunistic) scheme.

Accordingly, we denote by Pi and P̂i the real and the self-

estimated position of peer #i. Peers can be classified in

different classes, depending on their native self-localization

accuracy. For simplicity, we assume that the estimation error

ei = ‖Pi − P̂i‖ can be modeled as the module of a 2–

dimensional Gaussian Random Variable [x(t) y(t)], with

zero mean and variance σ2. The variance depends on the

localization class that for simplicity we assume to be the same

for all nodes during simulations. Moreover, the error model

considers two possible characteristics: correlation among con-

secutive estimations (considering a tracking-based technique)

and degradation of the estimate in time, so that the positioning

error is better modeled as a stochastic process ei(t), with the

following characterization:

• At the time t = 0, the positioning error ei(0) is the

module of a zero mean 2–D Gaussian Random Variable

[x(0) y(0)], with standard deviation σ(0)
• At the time t > 0, ei(t) is calculated from the two

coordinates [x(t) y(t)] drawn according to the correlated

Gaussian distribution:

f(x(t)|x(t−1); ρ) =
exp

[
−x(t)2−2ρx(t)x(t−1)+x(t−1)2)

2(1−ρ2)

]

2πσ(t)σ(t − 1)
√

1 − ρ2

(1)

where x(t) = x(t)
σ(t) and x(t−1) = x(t−1)

σ(t−1) . The parameter

ρ is the correlation coefficient, which can vary in the

interval [0, 1], where ρ = 0 means independent samples

and ρ = 1 means completely correlated (equal) samples.

The applies for the y coordinate.

The accuracy can degrade following the equation σ(t) =
σ(0) + αt, where α is the drift of the estimation error.

During a rendez-vous, peer nodes send packets containing

their estimated positions P̂i and the class of accuracy σ2(t).
This information may then be used by the User node to

estimate its own position by means of the opportunistic

localization mechanism described below.

E. Self-positioning model used by the user

As mentioned, the User node resorts to opportunistic loca-

lization to infer its geographical position. The opportunistic-

positioning process requires the User to stop and stay at a

fixed position for a given time interval W , during which the

node collects the information opportunistically exchanged with

passing-by Peer nodes. The localization time t is measured in

number of scan periods, starting from t = 1. The opportunistic
position estimation works in the following two stages.

1) At every scan period t, the User collects self-positioning
estimations P̂i(t) from each peer that are within radio

range and whose duty cycles overlap the User’s duty

cycle (rendez-vous). Let ebi = maxt(ei(t)) denote an

upper bound on the error between exact and estimated

position of Peer i, so that

‖P̂i(t) − Pi(t)‖ ≤ ebi for t ≥ 1 (2)

Furthermore, let Pu(t) be the exact position of User.

Assuming that communication is feasible only when the

nodes are within the coverage range R, we then have

‖Pu(r) − Pi(t)‖ < R (3)

Therefore, for each Peer i within the range of User

at time t, inequalities (2) and (3) yield the following

triangular inequality

‖Pu(t) − P̂i(t)‖ ≤ R + ebi (4)



Fig. 1. Raw LMI-only estimation

Fig. 2. LMI+barycentric estimation

Collecting the inequalities (4) for all the peers in the cov-

erage range of User we get a Linear Matrix Inequality

(LMI) that can be solved with standard techniques [7].

The resulting solution is used as a raw (LMI) estimation

P̂u,r(t) of the user position. Fig. 1 shows how P̂u,r(t)
is generated at cycle t, assuming that only P1 and P2

are within the User’s range at time t.
2) When t > 1, the user can compute the barycenter of the

primary estimations computed since t = 1. We define

this barycenter as the self-positioning estimation of the

user at time t:

P̂u(t) =

t∑

k=1

wkP̂u,r(k)

t∑

k=1

wk

, t ≥ 1 (5)

where wk is a weighting coefficient which is propor-

tional to the number of Peers that have contributed to

the kth raw LMI estimate.

This second stage is illustrated in Fig. 2, which shows

how P̂u(1), P̂u(2) and P̂u(3) are generated from

P̂u,r(t), t = 1, 2, 3, with all weights wk equal to

1.

We have made numerous experiments with this model, and

observed that in most cases, the self-positioning estimation

improves over time. We therefore use the estimation only after

a warm-up time denoted wu and measured in scan periods

starting at t = 1.

III. SIMULATION RESULTS

The models described in the previous section have been

implemented using Matlab R2008b and its Robust Control

Toolbox which provides an LMI solver. In this section we

define a reference test case and study the impact of selected

parameters, here the duty cycle δ, the accuracy parameter

σ(t) and the correlation parameter ρ. The impact of other

parameters such as the number of peers within range, the range

TABLE I
REFERENCE CASE PARAMETERS

N 100 peers R 10 m

T 1 s δ 50 %

µspeed 1.2 m/s σspeed 0.2 m/s

µdir(t) dir(t − 1) σdir π/6
σi 1 m α 0 m/s

ρ 0 Square 100 × 100 m

wu 30 s W 120 s

itself and the speed of peer nodes has been studied in other

papers [8], [9] and will be briefly summed up.

A. Reference case

Our reference case involves N = 100 peer nodes moving

in a 100 m × 100 m square and one user node remaining at

the center of this square. Peers and user share the same radio

range R = 10 meters, so that only a fraction of Peers are

within range of the user at each time.

Peers and user also have the same scan period T = 1 second

and the same duty cycle δ = 50%, so that duty cycles are

always partially overlapped. The scan period of the user starts

at t = 0 while the scan period of each peer starts with an

offset uniformly distributed in (0, T ).

The self-positioning estimations of each peer are generated

as follows. First, the trajectory is computed using the Ran-

dom Pedestrian Mobility Model defined in [8]: this model is

inspired by the Brownian movement, modified so that speeds

are drawn from a Gaussian distribution N(1.2, 0.2) and at each
time step the next direction is chosen in front of the pedestrian,

i.e. in another Gaussian distribution centered on the previous

direction, with a small standard deviation arbitrarily set to

σdir = π/6. The trajectory is kept within the considered square
area. Second, for each position a self-estimation is produced

using the peer self-positioning model defined in Section II-D.

In the reference case, the accuracy class of each peer has been

set to σ = 1 meter and it is assumed constant over time, i.e.

α = 0 m/s. Furthermore, the self-positioning estimates are

not correlated, i.e. ρ = 0. In practice, each peer self-position

estimation at cycle t is randomly drawn in a disc centered

around the exact position of the peer at cycle t, using a 2D

Gaussian distribution; ebi is the value such that [0, ebi] is

the 99 % confidence interval for the positioning error module

ei(t). Different settings for the self-positioning model will be

tried later in this section.

User, placed in the center of the area, estimates its po-

sition using the opportunistic localization model defined in

Section II-E. The opportunistic-localization time for the user is

set to W = 2 minutes and the warm-up time is set to wu = 30
seconds. We will also see what happens for shorter and longer

waiting times. The performance of the User’s opportunistic-

positioning scheme is evaluated in terms of distance between

real and estimate position ||Pu − P̂u(t)||.

Table I sums up the parameter values used for the reference

case.



5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Run #

A
c
c
u
ra

c
y
 (

m
e
te

rs
)

 

 

Accuracy A
µ

A

µ
A
 − σ

A

µ
A
 + σ

A

Fig. 3. Reference case runs

Accuracy of the reference case: The reference case has been

run 30 times with different random seeds. The accuracy A of

each run is the average localization error after the warm-up

time. The results, in terms of localization error of the user

node, strongly differ from one run to the other, as illustrated by

Fig. 3. The mean of the accuracy over 30 runs is µA = 1.13 m

and the standard deviation is σA = 0.45 m, while the worst

case has an accuracy of 2.28 m. These wide variations are

likely to be ascribed to the different trajectories of peers in

different runs. In fact, depending on the random seed of the

run, peers may be widely spread in space, thus permitting

good LMI-only localization and, in turn, good LMI+barycenter

estimation, or they may be unevenly distributed in the area

forming a small number of groups, a situation that yields to

poor LMI-only localization and, consequently, to a degradation

of LMI+barycenter performance.

To better understand the behavior of the protocol, we report

in Fig. 4(a) the successive user’s raw LMI estimations for a

single run and in Fig. 4(b) the self-localization estimations of

the user using LMI and barycenter algorithm. In Fig. 4(b), the

oldest plots are "far" from the user position and gradually

get closer, while in Fig. 4(a) old and new positions are

equally distributed around the user position. The barycentric

estimation clearly improves over time, and is better than the

raw one. This is remarked in Fig. 4(c), where the reader can

compare the evolution of the raw error ||Pu−P̂u,r(t)|| and the

error of the barycentric approach ||Pu− P̂u(t)||. The run-wide
accuracy A is also plotted.

In most runs, the accuracy of the barycentric estimation

tends to improve over time: each additional raw LMI es-

timation contributes to improve the estimation, since new

information is added.

B. Duty cycle impact

In this section we measure the impact of the duty cy-

cle length. There is clearly a trade-off between rendez-

vousprobability (long duty cycle) and energy consumption

(short duty cycle). We have run the simulation 30 times for two

additional values of duty cycle δ: 20 % and 40 %, the other

parameters being the same as for the reference case above.

The results are summed up in Table II, where the last line is

a reminder of the test case.
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TABLE II
DUTY CYCLE IMPACT

δ µA σA retained

20 % 2.40 m 1.18 m 1.13 peers
40 % 1.54 m 0.54 m 2.38 peers

50 % 1.13 m 0.45 m 3.01 peers

As expected, accuracy improves when the duty cycle in-

creases thanks to the higher number of peer self-positioning

estimations that improves the performance of the raw LMI

location estimation scheme and, in turn, the barycentric esti-

mation.

C. Peers self-positioning impact

In this section we measure the impact of the self-positioning

model characterizing peers. To this end, we consider three

different parameters: first, the correlation coefficient ρ among

successive self-positioning estimations of each peer; second,

the self-positioning accuracy class σ of peers; third, the

accuracy drift α of peers. The other parameters are set to the

values of the reference case.

Table III gathers all the results. As it can be observed,

the parameters have negligible impact on the accuracy of the

opportunistic localization scheme that, hence, proves to be

rather robust to localization errors of Peers. This is likely due

to the fact that, despite the errors, the positions provided by the

Peers form a uniform “cloud” of points around the User. Then,

applying the barycentric scheme, the User always localizes

itself near the center of such a cloud. To verify this conjecture,

however, we plan to consider in future work other error models



TABLE III
CORRELATION IMPACT

ρ σi α µA σA

0.4 1 m 0 m/s 1.14 m 0.46 m
0.9 1 m 0 m/s 1.15 m 0.48 m
0.99 1 m 0 m/s 1.19 m 0.48 m

0 3 m 0 m/s 1.18 m 0.49 m
0 5 m 0 m/s 1.24 m 0.54 m

0 1 m 0.01 m/s 1.14 m 0.45 m
0 1 m 0.03 m/s 1.15 m 0.46 m
0 1 m 0.1 m/s 1.23 m 0.48 m
0 1 m 0.3 m/s 1.62 m 0.62 m

0 1 m 0 m/s 1.13 m 0.45 m

for peers estimation, such as model for podometers, or for

MEMS-based inertial navigation systems, or for RSS-based

landmarks.

D. Other parameters

In previous papers [8], [9], we also studied the impact of

other parameters; we showed that the accuracy of the user

self-positioning scheme degrades when: the amount of peers

within range (N ) decreases, the range threshold R increases or

the peers mean speed µspeed decreases. We re-evaluate these

parameters and others quickly here.

For the setup used here, using 50 peers give a mean accuracy

of 1.76 m while 200 peers give a mean accuracy of 0.77 m (this

is not as overcrowded as it may seem, if you think of a station,

a big mall or a conference room for instance: in a 100m×100m

square, this gives 50 m2 per peer). Of course, the more peers

there are with random trajectories, the more communication

opportunities there are, and the more information are fed to

the LMI system, which induces better estimations.

Another way to improve the accuracy is to increase the

waiting time of the user: 5 minutes lead to an accuracy of

0.91 m. In that case, the barycentric estimation takes into

account more and more raw LMI estimations, thus giving less

weight to bad raw estimations. On the contrary, reducing to 1

minute degrades the accuracy to 1.67 m.

We also changed the radio coverage range. A 5 m range

leads to an accuracy of 1.01 m, while a 20 m range leads to

an accuracy of 1.86 m. This is not an intuitive result, since

a larger range would mean more opportunities for sharing

information. However, these additional positions are more far

away from the user, which increase both the raw LMI error

and the barycentric error.

Finally, we also changed the mean peer speed. If peers

are slow (0.6 m/s) the accuracy degrades to 2.14 m. If

peers are fast (3 m/s) the accuracy improves to 0.68 m.

When the speed increases, positions taken into account will

largely vary between two successive LMI-only estimations.

This diversication of spatial information improves the behavior

of the barycentric estimation.

IV. RELATED WORK

Self-localization problem has been investigated in a number

of papers. Most common localization methods consist in

measuring the power of the received RF signal (RSSI), the

Time of Arrival (ToA) or the Angle of Arrival (AoA) of the

RF signals from the beacons. In this way, every node estimates

a set of distances from the beacons and, then, guesses its

position by means of lateration and triangulation techniques

[10], [11] or by using statistical estimation methods [12].

Overviews of localization techniques based on RSSI and ToA

measurements can be found in [13], [14], [15]. Multi-step

localization techniques, which involve a number of successive

refinement phases, have been proposed by Savarese [16] and

Savvides [11]. Other solutions leveraging on specialized and

complex hardware and infrastructure are given in [3], [2], [4].

When nodes (either static or mobile) can detect each other,

then it is possible to devise cooperative position estimate

techniques, which are very well studied in robotics. In [17]

the authors utilize Markov localization for self-localize nodes

and, then, probabilistic methods to synchronize robots estimate

when they have a contact. Collective localization based on

a distributed Kalman Filter is proposed in [18], whereas an

anchor-free approach where robots infer their position estimate

on the basis of the only information exchanged among them

is proposed in [19].

In [7] Doherty et al. pioneered the use of semidefinite

programming (SDP) methods in the localization problem.

The problem is considered as a bounding problem containing

several convex geometric constraints mathematically repre-

sentated as linear matrix inequalities (LMI). The mechanism

proposed in this paper is based on this approach, taking into

estimation errors and introducing a barycentric improvement

over time.

The Centroid localization method [20] is developed to

estimate the user’s location by computing the barycenter of

all the positions received from those fixed beacon nodes. To

find the optimum deployment of those beacon nodes for a

given application may consume a lot of labor.

In the APIT method [21], a user chooses three beacon

nodes around him as the triangle vertex point and uses the

APIT algorithm to test if he is lying in the triangle. If the

APIT test can be passed, i.e., at least one node’s signal is

becoming barycenter of the triangle will be taken as the

location estimation of the user. Continuously, another different

three nodes will be chosen to face the APIT test again. If the

new test can also be passed, the barycenter of the intersection

of the triangles will be used. By analogy, the user will repeat

this APIT test until all combinations are exhausted or the

satisfying accuracy is achieved. It is noticeable that since the

APIT test is used under the condition of static beacon nodes,

accomplishing it is still not an easy thing. Additionally, the

APIT test may fail in less than 14% of the cases [21].

Other research works jointly solve the time synchronization

and localization problems. For instance, Enlightness [22] relies

on the availability of beacon nodes (at least 5% of the

nodes) providing absolute time and space information, like the

GPS in outdoor environments. Enlightness combines recursive

positioning estimation [23] with a clock offset estimation

scheme based on the measure of beacon packet delays and



timestamps.

In [24], an advanced integration of 802.11b equipments and

Inertial Navigation System (INS) is used to enhance the perfor-

mance of the indoor positioning system. As a result, a system

performance close to the meter accuracy can be achieved with

a low density of access points in the environment, provided

that users carry inexpensive INS equipment.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose an algorithm in which a still user

infers localization information using the positions of other

passing-by nodes. The opportunistic interaction is modeled

by considering several parameters that permit to compare the

performance of the scheme in different scenarios.

In all the cases considered in this study, we obtained a

localization error lower than 2.5 meters that can be reduced

to less than 1 meter with an accurate tuning of the system

parameters. In particular, the duty cycle of the opportunistic-

scan phase has been observed to have a significant impact on

the user self-positioning estimation: the shorter the duty cycle

the less the rendezvous probability with peers and, in turn,

the lower the localization accuracy. Furthermore, we observed

that the proposed opportunistic localization scheme is rather

robust to the self-positioning error model for Peers. In fact, the

correlation, the standard deviation and the drift of the self-

positioning error do not significantly affect the localization

accuracy, provided that the algorithm is performed over the

data gathered with a large enough number of opportunistic

exchanges.

In order to complete this work, some improvements will be

done. We will try to define a more realistic set-up involving

different types of peer nodes, e.g. access points with well-

known positions but only partial coverage and mobile peers

carrying cheap INS systems which accuracy drifts over time.

We will also implement the opportunistic meeting model

defined in [25] that applies to peer meetings. It is also possible

to take into account different self-localization models and

opportunistic update.
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