1,103 research outputs found

    Practical recommendations for gradient-based training of deep architectures

    Full text link
    Learning algorithms related to artificial neural networks and in particular for Deep Learning may seem to involve many bells and whistles, called hyper-parameters. This chapter is meant as a practical guide with recommendations for some of the most commonly used hyper-parameters, in particular in the context of learning algorithms based on back-propagated gradient and gradient-based optimization. It also discusses how to deal with the fact that more interesting results can be obtained when allowing one to adjust many hyper-parameters. Overall, it describes elements of the practice used to successfully and efficiently train and debug large-scale and often deep multi-layer neural networks. It closes with open questions about the training difficulties observed with deeper architectures

    Improvements to Test Case Prioritisation considering Efficiency and Effectiveness on Real Faults

    Get PDF
    Despite the best efforts of programmers and component manufacturers, software does not always work perfectly. In order to guard against this, developers write test suites that execute parts of the code and compare the expected result with the actual result. Over time, test suites become expensive to run for every change, which has led to optimisation techniques such as test case prioritisation. Test case prioritisation reorders test cases within the test suite with the goal of revealing faults as soon as possible. Test case prioritisation has received a lot of research that has indicated that prioritised test suites can reveal faults faster, but due to a lack of real fault repositories available for research, prior evaluations have often been conducted on artificial faults. This thesis aims to investigate whether the use of artificial faults represents a threat to the validity of previous studies, and proposes new strategies for test case prioritisation that increase the effectiveness of test case prioritisation on real faults. This thesis conducts an empirical evaluation of existing test case prioritisation strategies on real and artificial faults, which establishes that artificial faults provide unreliable results for real faults. The study found that there are four occasions on which a strategy for test case prioritisation would be considered no better than the baseline when using one fault type, but would be considered a significant improvement over the baseline when using the other. Moreover, this evaluation reveals that existing test case prioritisation strategies perform poorly on real faults, with no strategies significantly outperforming the baseline. Given the need to improve test case prioritisation strategies for real faults, this thesis proceeds to consider other techniques that have been shown to be effective on real faults. One such technique is defect prediction, a technique that provides estimates that a class contains a fault. This thesis proposes a test case prioritisation strategy, called G-Clef, that leverages defect prediction estimates to reorder test suites. While the evaluation of G-Clef indicates that it outperforms existing test case prioritisation strategies, the average predicted location of a faulty class is 13% of all classes in a system, which shows potential for improvement. Finally, this thesis conducts an investigative study as to whether sentiments expressed in commit messages could be used to improve the defect prediction element of G-Clef. Throughout the course of this PhD, I have created a tool called Kanonizo, an open-source tool for performing test case prioritisation on Java programs. All of the experiments and strategies used in this thesis were implemented into Kanonizo

    Toward the Automatic Classification of Self-Affirmed Refactoring

    Get PDF
    The concept of Self-Affirmed Refactoring (SAR) was introduced to explore how developers document their refactoring activities in commit messages, i.e., developers explicit documentation of refactoring operations intentionally introduced during a code change. In our previous study, we have manually identified refactoring patterns and defined three main common quality improvement categories including internal quality attributes, external quality attributes, and code smells, by only considering refactoring-related commits. However, this approach heavily depends on the manual inspection of commit messages. In this paper, we propose a two-step approach to first identify whether a commit describes developer-related refactoring events, then to classify it according to the refactoring common quality improvement categories. Specifically, we combine the N-Gram TF-IDF feature selection with binary and multiclass classifiers to build a new model to automate the classification of refactorings based on their quality improvement categories. We challenge our model using a total of 2,867 commit messages extracted from well engineered open-source Java projects. Our findings show that (1) our model is able to accurately classify SAR commits, outperforming the pattern-based and random classifier approaches, and allowing the discovery of 40 more relevent SAR patterns, and (2) our model reaches an F-measure of up to 90% even with a relatively small training datase

    The 11th Conference of PhD Students in Computer Science

    Get PDF

    Software defect prediction using maximal information coefficient and fast correlation-based filter feature selection

    Get PDF
    Software quality ensures that applications that are developed are failure free. Some modern systems are intricate, due to the complexity of their information processes. Software fault prediction is an important quality assurance activity, since it is a mechanism that correctly predicts the defect proneness of modules and classifies modules that saves resources, time and developers’ efforts. In this study, a model that selects relevant features that can be used in defect prediction was proposed. The literature was reviewed and it revealed that process metrics are better predictors of defects in version systems and are based on historic source code over time. These metrics are extracted from the source-code module and include, for example, the number of additions and deletions from the source code, the number of distinct committers and the number of modified lines. In this research, defect prediction was conducted using open source software (OSS) of software product line(s) (SPL), hence process metrics were chosen. Data sets that are used in defect prediction may contain non-significant and redundant attributes that may affect the accuracy of machine-learning algorithms. In order to improve the prediction accuracy of classification models, features that are significant in the defect prediction process are utilised. In machine learning, feature selection techniques are applied in the identification of the relevant data. Feature selection is a pre-processing step that helps to reduce the dimensionality of data in machine learning. Feature selection techniques include information theoretic methods that are based on the entropy concept. This study experimented the efficiency of the feature selection techniques. It was realised that software defect prediction using significant attributes improves the prediction accuracy. A novel MICFastCR model, which is based on the Maximal Information Coefficient (MIC) was developed to select significant attributes and Fast Correlation Based Filter (FCBF) to eliminate redundant attributes. Machine learning algorithms were then run to predict software defects. The MICFastCR achieved the highest prediction accuracy as reported by various performance measures.School of ComputingPh. D. (Computer Science

    Towards the detection and analysis of performance regression introducing code changes

    Get PDF
    In contemporary software development, developers commonly conduct regression testing to ensure that code changes do not affect software quality. Performance regression testing is an emerging research area from the regression testing domain in software engineering. Performance regression testing aims to maintain the system\u27s performance. Conducting performance regression testing is known to be expensive. It is also complex, considering the increase of committed code and developing team members working simultaneously. Many automated regression testing techniques have been proposed in prior research. However, challenges in the practice of locating and resolving performance regression still exist. Directing regression testing to the commit level provides solutions to locate the root cause, yet it hinders the development process. This thesis outlines motivations and solutions to address locating performance regression root causes. First, we challenge a deterministic state-of-art approach by expanding the testing data to find improvement areas. The deterministic approach was found to be limited in searching for the best regression-locating rule. Thus, we presented two stochastic approaches to develop models that can learn from historical commits. The goal of the first stochastic approach is to view the research problem as a search-based optimization problem seeking to reach the highest detection rate. We are applying different multi-objective evolutionary algorithms and conducting a comparison between them. This thesis also investigates whether simplifying the search space by combining objectives would achieve comparative results. The second stochastic approach addresses the severity of class imbalance any system could have since code changes introducing regression are rare but costly. We formulate the identification of problematic commits that introduce performance regression as a binary classification problem that handles class imbalance. Further, the thesis provides an exploratory study on the challenges developers face in resolving performance regression. The study is based on the questions posted on a technical form directed to performance regression. We collected around 2k questions discussing the regression of software execution time, and all were manually analyzed. The study resulted in a categorization of the challenges. We also discussed the difficulty level of performance regression issues within the development community. This study provides insights to help developers during the software design and implementation to avoid regression causes

    CONFPROFITT: A CONFIGURATION-AWARE PERFORMANCE PROFILING, TESTING, AND TUNING FRAMEWORK

    Get PDF
    Modern computer software systems are complicated. Developers can change the behavior of the software system through software configurations. The large number of configuration option and their interactions make the task of software tuning, testing, and debugging very challenging. Performance is one of the key aspects of non-functional qualities, where performance bugs can cause significant performance degradation and lead to poor user experience. However, performance bugs are difficult to expose, primarily because detecting them requires specific inputs, as well as specific configurations. While researchers have developed techniques to analyze, quantify, detect, and fix performance bugs, many of these techniques are not effective in highly-configurable systems. To improve the non-functional qualities of configurable software systems, testing engineers need to be able to understand the performance influence of configuration options, adjust the performance of a system under different configurations, and detect configuration-related performance bugs. This research will provide an automated framework that allows engineers to effectively analyze performance-influence configuration options, detect performance bugs in highly-configurable software systems, and adjust configuration options to achieve higher long-term performance gains. To understand real-world performance bugs in highly-configurable software systems, we first perform a performance bug characteristics study from three large-scale opensource projects. Many researchers have studied the characteristics of performance bugs from the bug report but few have reported what the experience is when trying to replicate confirmed performance bugs from the perspective of non-domain experts such as researchers. This study is meant to report the challenges and potential workaround to replicate confirmed performance bugs. We also want to share a performance benchmark to provide real-world performance bugs to evaluate future performance testing techniques. Inspired by our performance bug study, we propose a performance profiling approach that can help developers to understand how configuration options and their interactions can influence the performance of a system. The approach uses a combination of dynamic analysis and machine learning techniques, together with configuration sampling techniques, to profile the program execution, analyze configuration options relevant to performance. Next, the framework leverages natural language processing and information retrieval techniques to automatically generate test inputs and configurations to expose performance bugs. Finally, the framework combines reinforcement learning and dynamic state reduction techniques to guide subject application towards achieving higher long-term performance gains

    Empirically-Grounded Construction of Bug Prediction and Detection Tools

    Get PDF
    There is an increasing demand on high-quality software as software bugs have an economic impact not only on software projects, but also on national economies in general. Software quality is achieved via the main quality assurance activities of testing and code reviewing. However, these activities are expensive, thus they need to be carried out efficiently. Auxiliary software quality tools such as bug detection and bug prediction tools help developers focus their testing and reviewing activities on the parts of software that more likely contain bugs. However, these tools are far from adoption as mainstream development tools. Previous research points to their inability to adapt to the peculiarities of projects and their high rate of false positives as the main obstacles of their adoption. We propose empirically-grounded analysis to improve the adaptability and efficiency of bug detection and prediction tools. For a bug detector to be efficient, it needs to detect bugs that are conspicuous, frequent, and specific to a software project. We empirically show that the null-related bugs fulfill these criteria and are worth building detectors for. We analyze the null dereferencing problem and find that its root cause lies in methods that return null. We propose an empirical solution to this problem that depends on the wisdom of the crowd. For each API method, we extract the nullability measure that expresses how often the return value of this method is checked against null in the ecosystem of the API. We use nullability to annotate API methods with nullness annotation and warn developers about missing and excessive null checks. For a bug predictor to be efficient, it needs to be optimized as both a machine learning model and a software quality tool. We empirically show how feature selection and hyperparameter optimizations improve prediction accuracy. Then we optimize bug prediction to locate the maximum number of bugs in the minimum amount of code by finding the most cost-effective combination of bug prediction configurations, i.e., dependent variables, machine learning model, and response variable. We show that using both source code and change metrics as dependent variables, applying feature selection on them, then using an optimized Random Forest to predict the number of bugs results in the most cost-effective bug predictor. Throughout this thesis, we show how empirically-grounded analysis helps us achieve efficient bug prediction and detection tools and adapt them to the characteristics of each software project
    • …
    corecore